Strategy for Managing Industrial Anaerobic Sludge through the Heterotrophic Cultivation of Chlorella sorokiniana: Effect of Iron Addition on Biomass and Lipid Production

Charria-Girón, Esteban and Amazo, Vanessa and De Angulo, Daniela and Hidalgo, Eliana and Villegas-Torres, María Francisca and Baganz, Frank and Caicedo Ortega, Nelson. H. (2021) Strategy for Managing Industrial Anaerobic Sludge through the Heterotrophic Cultivation of Chlorella sorokiniana: Effect of Iron Addition on Biomass and Lipid Production. Bioengineering, 8 (6). p. 82. ISSN 2306-5354

[thumbnail of bioengineering-08-00082.pdf] Text
bioengineering-08-00082.pdf - Published Version

Download (2MB)

Abstract

Microalgae provides an alternative for the valorization of industrial by-products, in which the nutritional content varies substantially and directly affects microalgae system performance. Herein, the heterotrophic cultivation of Chlorella sorokiniana was systematically studied, allowing us to detect a nutritional deficiency other than the carbon source through assessing the oxygen transfer rate for glucose or acetate fermentation. Consequently, a mathematical model of the iron co-limiting effect on heterotrophic microalgae was developed by exploring its ability to regulate the specific growth rate and yield. For instance, higher values of the specific growth rate (0.17 h−1) compared with those reported for the heterotrophic culture of Chlorella were obtained due to iron supplementation. Therefore, anaerobic sludge from an industrial wastewater treatment plant (a baker’s yeast company) was pretreated to obtain an extract as a media supplement for C. sorokiniana. According to the proposed model, the sludge extract allowed us to supplement iron values close to the growth activation concentration (KFe ~12 mg L−1). Therefore, a fed-batch strategy was evaluated on nitrogen-deprived cultures supplemented with the sludge extract to promote biomass formation and fatty acid synthesis. Our findings reveal that nitrogen and iron in sludge extract can supplement heterotrophic cultures of Chlorella and provide an alternative for the valorization of industrial anaerobic sludge.

Item Type: Article
Subjects: Oalibrary Press > Engineering
Depositing User: Managing Editor
Date Deposited: 16 Feb 2023 07:48
Last Modified: 01 Jan 2024 12:44
URI: http://asian.go4publish.com/id/eprint/677

Actions (login required)

View Item
View Item