Information Models for Forecasting Nonlinear Economic Dynamics in the Digital Era

Akaev, Askar and Sadovnichiy, Viktor (2021) Information Models for Forecasting Nonlinear Economic Dynamics in the Digital Era. Applied Mathematics, 12 (03). pp. 171-208. ISSN 2152-7385

[thumbnail of am_2021031814055412.pdf] Text
am_2021031814055412.pdf - Published Version

Download (2MB)

Abstract

The aim of this study was to develop an adequate mathematical model for long-term forecasting of technological progress and economic growth in the digital age (2020-2050). In addition, the task was to develop a model for forecast calculations of labor productivity in the symbiosis of “man + intelligent machine”, where an intelligent machine (IM) is understood as a computer or robot equipped with elements of artificial intelligence (AI), as well as in the digital economy as a whole. In the course of the study, it was shown that in order to implement its goals the Schumpeter-Kondratiev innovation and cycle theory on forming long waves (LW) of economic development influenced by a powerful cluster of economic technologies engendered by industrial revolutions is most appropriate for a long-term forecasting of technological progress and economic growth. The Solow neoclassical model of economic growth, synchronized with LW, gives the opportunity to forecast economic dynamics of technologically advanced countries with a greater precision up to 30 years, the time which correlates with the continuation of LW. In the information and digital age, the key role among the main factors of growth (capital, labour and technological progress) is played by the latter. The authors have developed an information model which allows for forecasting technological progress basing on growth rates of endogenous technological information in economics. The main regimes of producing technological information, corresponding to the eras of information and digital economies, are given in the article, as well as the Lagrangians that engender them. The model is verified on the example of the 5th information LW for the US economy (1982-2018) and it has had highly accurate approximation for both technological progress and economic growth. A number of new results were obtained using the developed information models for forecasting technological progress. The forecasting trajectory of economic growth of developed countries (on the example of the USA) on the upward stage of the 6th LW (2018-2042), engendered by the digital technologies of the 4th Industrial Revolution is given. It is also demonstrated that the symbiosis of human and intelligent machine (IM) is the driving force in the digital economy, where man plays the leading role organizing effective and efficient mutual work. Authors suggest a mathematical model for calculating labour productivity in the digital economy, where the symbiosis of “human + IM” is widely used. The calculations carried out with the help of the model show: 1) the symbiosis of “human + IM” from the very beginning lets to realize the possibilities of increasing work performance in the economy with the help of digital technologies; 2) the largest labour productivity is achieved in the symbiosis of “human + IM”, where man labour prevails, and the lowest labour productivity is seen where the largest part of the work is performed by IM; 3) developed countries may achieve labour productivity of 3% per year by the mid-2020s, which has all the chances to stay up to the 2040s.

Item Type: Article
Subjects: Oalibrary Press > Mathematical Science
Depositing User: Managing Editor
Date Deposited: 29 Nov 2022 05:09
Last Modified: 02 Jul 2024 12:41
URI: http://asian.go4publish.com/id/eprint/492

Actions (login required)

View Item
View Item