3D Collagen-Nanocellulose Matrices Model the Tumour Microenvironment of Pancreatic Cancer

Curvello, Rodrigo and Kast, Verena and Abuwarwar, Mohammed H. and Fletcher, Anne L. and Garnier, Gil and Loessner, Daniela (2021) 3D Collagen-Nanocellulose Matrices Model the Tumour Microenvironment of Pancreatic Cancer. Frontiers in Digital Health, 3. ISSN 2673-253X

[thumbnail of pubmed-zip/versions/1/package-entries/fdgth-03-704584/fdgth-03-704584.pdf] Text
pubmed-zip/versions/1/package-entries/fdgth-03-704584/fdgth-03-704584.pdf - Published Version

Download (2MB)

Abstract

Three-dimensional (3D) cancer models are invaluable tools designed to study tumour biology and new treatments. Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest types of cancer, has been progressively explored with bioengineered 3D approaches by deconstructing elements of its tumour microenvironment. Here, we investigated the suitability of collagen-nanocellulose hydrogels to mimic the extracellular matrix of PDAC and to promote the formation of tumour spheroids and multicellular 3D cultures with stromal cells. Blending of type I collagen fibrils and cellulose nanofibres formed a matrix of controllable stiffness, which resembled the lower profile of pancreatic tumour tissues. Collagen-nanocellulose hydrogels supported the growth of tumour spheroids and multicellular 3D cultures, with increased metabolic activity and matrix stiffness. To validate our 3D cancer model, we tested the individual and combined effects of the anti-cancer compound triptolide and the chemotherapeutics gemcitabine and paclitaxel, resulting in differential cell responses. Our blended 3D matrices with tuneable mechanical properties consistently maintain the growth of PDAC cells and its cellular microenvironment and allow the screening of anti-cancer treatments.

Item Type: Article
Subjects: Oalibrary Press > Multidisciplinary
Depositing User: Managing Editor
Date Deposited: 30 Nov 2022 05:21
Last Modified: 02 Jul 2024 12:41
URI: http://asian.go4publish.com/id/eprint/474

Actions (login required)

View Item
View Item