Geomagnetic Storm Variation of Vertical Total Electron Content (VTEC) Over Some Euro-African Stations

Ugonabo, Obiageli J. and Ugwu, Ernest Benjamin Ikechukwu and Okpala, Kingsley C. and Amanekwe, Godsfavour C. (2024) Geomagnetic Storm Variation of Vertical Total Electron Content (VTEC) Over Some Euro-African Stations. Physical Science International Journal, 28 (1). pp. 23-34. ISSN 2348-0130

[thumbnail of Ugwu2812023PSIJ111134.pdf] Text
Ugwu2812023PSIJ111134.pdf - Published Version

Download (667kB)

Abstract

Geomagnetic storms are events which have physical effects on some ionospheric parameters that, to some extent,affects the state and dynamics of the ionosphere with important implications on GNSS applications. Here, the total electron content (TEC) of Brussels (50.80oN, 04.37oE), Madrid (40.43oN, 04.25oW) and Irkutsk (52.22oN, 104.32oE), which are all mid-latitude European stations are compared with Libreville (00.35oN, 09.67oE) and Lusaka (15.43oS, 28.32oE) which are equatorial and low-latitude stations respectively. This study is done over two geomagnetic storms that took place in the solstice period of 2004. Deviations of storm time VTEC from solar quiet (Sq) averages are calculated, analysed and presented. Similarities and differences of storm effects are observed in the European stations with enhancements and depressions. Diurnal solar quiet day variations showed high VTEC during the post-noon hours for all the stations. The VTEC deviations during storm time at Libreville lie within, for Lusaka it is. For the mid-latitude European stations, the deviations are lower such that is recorded at Brussels while is recorded for both Irkutsk and Madrid. Enhancement of VTEC during the daytime storm period is attributable to the super-fountain effect caused by the prompt penetration electric fields (PPEFs) into the ionosphere and magnetosphere while low VTEC at night-time is attributed to the process of recombination. Understanding the behaviour of the ionosphere during geomagnetic storms is important and necessary for a better understanding of the applications of GNSS.

Item Type: Article
Subjects: Oalibrary Press > Physics and Astronomy
Depositing User: Managing Editor
Date Deposited: 05 Feb 2024 07:05
Last Modified: 05 Feb 2024 07:05
URI: http://asian.go4publish.com/id/eprint/3645

Actions (login required)

View Item
View Item