
SYSTEMATIC REVIEW
published: 29 April 2022

doi: 10.3389/fcomp.2022.884533

Frontiers in Computer Science | www.frontiersin.org 1 April 2022 | Volume 4 | Article 884533

Edited by:

Jun Shen,

University of Wollongong, Australia

Reviewed by:

Sandra Sanchez-Gordon,

Escuela Politécnica Nacional, Ecuador

Luigi Benedicenti,

University of New Brunswick

Fredericton, Canada

*Correspondence:

Mirko Farina

farinamirko@gmail.com

Arina Fedorovskaya

a.fedorovskaya@innopolis.ru

Egor Polivtsev

e.polivtsev@innopolis.ru

Giancarlo Succi

giancarlo.succi@gmail.com

Specialty section:

This article was submitted to

Human-Media Interaction,

a section of the journal

Frontiers in Computer Science

Received: 26 February 2022

Accepted: 05 April 2022

Published: 29 April 2022

Citation:

Farina M, Fedorovskaya A, Polivtsev E

and Succi G (2022) Software

Engineering and Filmmaking:

A Literature Review.

Front. Comput. Sci. 4:884533.

doi: 10.3389/fcomp.2022.884533

Software Engineering and
Filmmaking: A Literature Review

Mirko Farina 1*, Arina Fedorovskaya 2*, Egor Polivtsev 2* and Giancarlo Succi 2*

1 Faculty of Humanities and Social Sciences, Innopolis University, Innopolis, Russia, 2 Faculty of Computer Science and

Engineering, Innopolis University, Innopolis, Russia

Software development is a complex process that requires skills in mathematics and

physics. Moreover, it usually includes collaboration with other people. To get a precise

understanding of the way such a process is organized, we need to understand its

essence. Technical knowledge is crucially important for any developer; however, another

important characteristic of any software engineer is creativity. In this article, we look at

one particular artistic practice [filmmaking] that involves both these latter characteristics

to determine whether insights from such a practice can be applied in the IT industry and

vice versa.

Keywords: software development, movie production, lean, agile, software management practices

1. INTRODUCTION

The relationship between software and art is one that has caused many interesting debates among
computer scientists since, at least, the mid 70’s (Sedelow, 1970), when a group of researchers, led by
Donald Knuth, first argued that programming is itself an art (Knuth, 1984). Throughout his career,
Knuth further defended this intuition (Knuth, 1997). More specifically, in a famous lecture titled
“God and Computers,” held at MIT in 1999, Knuth compared the beauty found in programming
with that typically observed in literature or music and argued for the presence of, what he called, a
sense of software aesthetics among computer scientist (Ahmed et al., 2009).

Knuth’s approach to characterize the relationship between software and art became very
influential. For example, Cramer and Gabriel (2001) extended Knuth’s original intuition and
focused on studying the beauty underlying the production of a code. Bond (2005) claimed that
software can be considered as an artistic medium and Graham (2004) successfully discussed the
relations between artistic works/behaviors and hacking, programming languages, and many other
technological issues.

Other researchers too claimed that software engineering should be considered as art (Wallace,
1999). Jonathan Wallace, for example, argued that despite the fact that software development
now occurs—for the most part at least—in teams; one still has the opportunity to show some
artistic creativity in the solutions of certain problems. Wallace also noted that certain branches
of software thrive in an artistic environment. For instance, he noticed how spreadsheets, databases,
and browsers, were originally developed by an “artist” (or a group of artists), who created their
initial prototype and then researched how to turn them into a product. In this sense then, artwork
can be later transformed into an engineering product.

More recently, Fishwick et al. (2003) explored the way art and aesthetics can coalesce to
increase innovation and creativity among software developers, while Fishwick (2008) further
specified the enhancing role they can both play in different areas of computer science. On a
similar vein, Trifonova et al. (2008) studied the extent to which software development can be
enriched by embracing a multidisciplinary approach that converges at the intersection between
art and computing.

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.884533
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.884533&domain=pdf&date_stamp=2022-04-29
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:farinamirko@gmail.com
mailto:a.fedorovskaya@innopolis.ru
mailto:e.polivtsev@innopolis.ru
mailto:giancarlo.succi@gmail.com
https://doi.org/10.3389/fcomp.2022.884533
https://www.frontiersin.org/articles/10.3389/fcomp.2022.884533/full

Farina et al. SLR on Software Engineering and Filmmaking

In general, we can say that there is a relatively small but
growing literature on these issues (Knuth, 2011) and that the field
is ripe for further explorations.

Building up on this debate, our study is concerned with the
analysis of software development techniques, their application
to filmmaking, and the role of teamwork in movie production
(Donelan, 2007). Our aim is thus to systematically compare
the practice of filmmaking with the work carried out by
software engineers. Before we go on to specify our motivation,
goals, and contribution to the literature in more details, it is
nevertheless worth noting that, as the topic of this investigation
is relatively new, the academic literature available on it is
quite limited.

The first step in producing an analysis capable of
describing the relations between filmmaking and software
development involves, we believe, the acknowledgment
that modern film production, like software development,
constitutively depends on successful teamwork (Kanaan, 2016)
and on many different collaborative practises (Ohanian and
Phillips, 2013). However, the analogy does not end here.
Naturally, some techniques or management models used in
software development are also profitably used by filmmakers
(Agrawal, 2016).

Two of such techniques or models are of particular interest
for us in this work. These are: agile (Beck et al., 2001), and
lean (Netland and Powell, 2016). Agile software development
can be described as non-traditional set of methodologies based
on collaborative efforts, which aim to maximize production
and efficiency by implementing: (i) quick responses to changes,
(ii) cross-team interactions, and (iii) work-processes simplicity
(Dingsøyr et al., 2010). The well-known Agile Manifesto
(Beck et al., 2001), in the early 2000s, described the basic
values and principles underlying Agile Software Development
(Beck et al., 2001).

The idea of lean management firstly arose from the
manufacturing environment (Shah and Ward, 2003),
subsequently becoming a philosophy for both product and
service industries (Janes and Succi, 2014). The Lean model can
be described by three basic principles (Feld, 2000). These are:

• value: methods that support maximization of delivered value;
• knowledge: methods that focus on the creation of a shared

understanding of the know-how, know-where, know-who,
know-what, know-when, and know-why within the company;

• improvement: methods that instil a culture of constant
improvement among and between team members.

Recently, Moreira (2020) successfully used lean concepts and
principles (Poppendieck and Cusumano, 2012); Ebert et al.
(2012) to bring assertiveness and increase team’s performance
in filmmaking.

Themotivation for this study is to improve and enrich existing
software development methodologies in light of contemporary
practices characterizing the process of filmmaking. To do so, we
distinguished three major steps in our work:

1. Definition of common features between software development
and filmmaking.

2. Detailed analysis of resemblance between software
development and movie production in respect to
certain techniques.

3. Comparison, focused on usage of collaborative techniques
(based on cooperation), between software development
and filmmaking.

The main contribution of this work is therefore to:

• analyse film production techniques and their possible adaptation in

software development.

• describe and comprehend the relevance of collaborative filmmaking for

software engineering.

• provide parallels between the artistic work of filmmakers and the artistic

work underlying the process of software development.

• create, on these grounds, potentially new techniques for software

development

The novelty of this review consists in the fact that it aims to
provide an original characterization of the relationship between
film production and software development. Crucially, such a
relationship has not been sufficiently studied by researchers
so far.

This review is then organized as follows. Section 2 reviews
the existing literature on filmmaking and software development,
describing the research questions underlying our work, as well
as the protocol, and the search strategy adopted in our study.
Section 3 presents our findings and contextualizes them, focusing
on possible parallels between film production and software
development. Section 4 offers a brief synoptic summary of our
results for the reader, while Section 5 describes shortcomings,
limitations, and potential issues threatening the validity of our
findings. Finally, section 6 explains the relevance of our findings
for the field and outlines possible future research directions.

2. METHODOLOGY

We conducted a literature review in accordance with the
suggestions outlined by Kitchenham (2004), Brereton et al.
(2007), Kitchenham et al. (2009), and Siddaway (2014), and in
conformity with the “Preferred Reporting Items for Systematic
reviews and Meta-Analyses” (PRISMA) checklist1 (Brereton
et al., 2007; Moher et al., 2009), detailed in Table 7. Table 1
describes our study protocol.

2.1. Research Questions
Our research questions concern the relations between
filmmaking and software engineering. More specifically, our
goal is to look for analogies between the processes underlying
the production of basic software and those characterizing the
creation and production of a movie. In particular, we focus on
finding analogies between both areas to proof that filmmaking

1http://www.prisma-statement.org

Frontiers in Computer Science | www.frontiersin.org 2 April 2022 | Volume 4 | Article 884533

http://www.prisma-statement.org
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

TABLE 1 | Study protocol.

Phase Stages

Review plan 1. Statement of research questions

2. Creation of review plan

3. Application of review plan

Review process 1. Identification of relevant studies

2. Selection of primary studies

3. Quality check on selected studies

4. Extraction of required information

5. Data analysis

Reporting 1. Creation of a report based on the data analyzed

and software development indeed share a common nature. Our
article thus attempt to answer the following research questions:

• RQ1: How do processes characterizing filmmaking resemble
practices and processes implemented in the software industry?

To answer this question we reviewed a series of filmmaking
practices and programming techniques and then critically
assessed the possibility to adapt such practices and techniques in
the respective fields.

• RQ2: Which practices used in filmmaking, and not yet
adopted in the software development industry, could be
profitably used? Conversely, could programming techniques
be successfully applied to filmmaking?

To answer this research question we analyzed the relevance of
certain movie-production practices to software engineering and
vice versa.

• RQ3: Which filmmaking practices require or actively involve
some degree of cooperation? Is it possible to identify practices
of cooperative work in the film industry that can also be
applied to software development?

Our goal here was to highlight potential connections between
these two practices, in light of this specific requirement
(collaboration or team work).

2.2. Search Process
A crucial stage in any literature review is the collection, and the
subsequent analysis, of the sources selected (Brereton et al., 2007;
Kitchenham et al., 2009; Piper, 2013; Petersen et al., 2015; Farina
et al., 2022).

We carried out a series of exploratory searches to locate
benchmark papers in the field. To perform our searches we used
the following electronic databases:

• Google Scholar;
• ACMDigital Library;
• IEEE Xplore;
• Science Direct;
• ReserchGate.

Our exploratory searches demonstrated a crucial lack of relevant
literature on the topic. We only found one study (Graham, 2004),
exploring the connection between programmers and painters,

which was only mildly relevant to our investigation. For each of
the research questions we introduced earlier on, we specified—in
accordance with the best standards and norms of our discipline—
a number of keywords characterizing them. Subsequently, we
constructed relevant search queries with the aim of broadening
our initial searches. An example of a query we used for the first
research question follows below:

• (Management OR development OR creation process OR
production) AND (practices OR techniques OR steps
OR stages) AND (movie production OR filmmaking OR
cinema industry) AND (software development OR software
engineering OR programming) AND (similarities OR
resemblance OR parallels OR correlation).

Additional examples of queries we used for the second and the
third research questions can be found below:

• (Lean OR Agile) AND (practices OR techniques OR steps
OR stages) AND (movie production OR filmmaking OR
cinema industry)

• (Cooperation OR teamwork OR collaboration) AND
(practices OR techniques) AND (movie production OR
filmmaking OR cinema industry).

We built a literature log to classify, store and further analyse the
results obtained for all the search queries we performed.

2.3. Literature Selection
The next step involved in our review required the application
of our Inclusion and Exclusion criteria to the set of papers
we gathered through our searches. The formulation of
inclusion/exclusion criteria is a necessary step for any systematic
literature review (Kitchenham et al., 2009). Inclusion and
exclusion criteria typically help identifying relevant studies
for inclusion or filtering out improper or irrelevant sources
(Kitchenham, 2004). With respect to this point, we would like
to notice that as the topic of our research is mostly overlooked
in the relevant literature, the inclusion and exclusion criteria
were formulated in a rather loose or comprehensive way; that
is, they were formulated to provide enough coverage, hence a
wider literature base for our study. For this reason, we decided
to include in this review a broad range of papers published
in software engineering in the last 20 years and put no time-
constraint for including papers related to the cinema industry.
Moreover, the selection process was applied primarily after the
initial search, but some of the criteria (such as time frames and
language restrictions), were included in the first stage as well.
Therefore, a paper was selected for inclusion if it met all the
following basic requirements:

• Time: filmmaking—no time-constrain; software
development—last 20 years

• Peer-review: books, articles in reputable journals, and
conference proceedings

• Language: literature written in either English or Russian.
Russia is home of a large and very productive IT community.
In addition, the Russian language is spoken by ∼300
millions people worldwide and some of the researchers who

Frontiers in Computer Science | www.frontiersin.org 3 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

FIGURE 1 | Flow chart diagram.

participated in this study are Russians. Hence, we believe it is
fine, also for cross-cultural reasons, to consider this language
requirement in our review.

• Relevancy: literature relevant to the chosen topic.

On the contrary a paper was excluded from our log and hence
from this study if it did not met any of the inclusion criteria
above-mentioned or if it was a duplicate. The process described
above is summarized in Figure 1 below.

We would like to note that all the studies that were included
in the review were cross-checked for adherence to the above-
mentioned inclusion criteria by all the researchers involved in
the study.

2.4. Quality Assessment
Having specified the search process as well as the
Inclusion/Exclusion criteria we adopted in our research
protocol, we next focused on the qualitative assessment of
our results.

In order to maximize objectivity and minimize the possibility
of subjective interpretations and/or mistakes, the studies we
selected were simultaneously assessed by all the researchers
involved in the review process.

To determine the scientific reliability and accuracy of the
studies included, we first generated a set of questions that we
applied to each of the papers included in our review. We then
assigned to each question a specific score, so that papers’ quality
could be objectively assessed.

If “yes” was given as an answer, then the paper would receive 1
point on our scoring board. If “partially” was given as an answer,

then the paper would receive 0.5 points on our scoring board.
If “no” was given as an answer, then the paper would receive 0
points on our scoring board.

The total score for each paper was then calculated and a
qualitative assessment performed. The results of this process can
be observed on Tables 2, 3 below. Below, we also report the set of
questions we used in order to evaluate the papers’ quality and to
establish their scientific soundness:

1. Were the objectives of the paper clearly stated?

• 1 point if the objectives were explicitly stated;
• 0.5 points if the objectives were clear enough to

be understood;
• 0 points if no objectives were stated, or if the objectives

were hard to determine, or if they didn’t relate to the
proposed research.

2. Did the paper achieve the objectives stated?

• 1 point if the paper achieved the proposed objectives or
goals or if it implemented a solution that was instrumental
to such an end;

• 0.5 points if the paper achieved the proposed goals with
some limitations, deviations, or shortcomings;

• 0 points if the paper did not achieve the proposed goals
or objectives.

3. Was the research process clearly described? In other words,
was it transparent and reproducible?

• 1 point if the paper clearly specified methods, technologies,
and data, along with all necessary references and sources
needed to reproduce the research;

• 0.5 points if minor details were lacking or if the research
process was not fully transparent;

• 0 points if it was impossible to restore the sequence of
actions (hence the research process was not transparent),
or if certain critical details were missing.

4. Were the results properly evaluated?

• 1 point if the paper provided a clear and systematic analysis
of the results; hence if the results were assessed in an
appropriate manner;

• 0.5 points if the paper offered only a partial analysis of the
results or if they could have been better analyzed;

• 0 points if the results provided were not sufficiently
scrutinized or if there was no attempt to evaluate the data.

5. Was the conclusion sound?

• 1 point if the conclusion was deemed to be logically sound
and scientifically grounded;

• 0.5 points if the conclusion was acceptable but some
limitations were found;

• 0 points if the conclusion was overstated or if certain
techniques (such as spin) were deployed.

Thus, the total score that could potentially be attributed to each
paper ranged from 0 to 5. The results of this quality assessment
procedure can be found on Tables 2, 3 below. This process of

Frontiers in Computer Science | www.frontiersin.org 4 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

TABLE 2 | Quality assessment—statistics.

QA score Quantity Percentage

0–2.5 0 0

2.5–4 5 38.4

4–5 8 61.6

TABLE 3 | Quality mean values by year.

Years Quantity Average quality

1983–2004 4 4.5

2013–2015 4 3.5

2017–2020 5 4

quality assessment was performed on the 13 papers selected for
inclusion in our review and it was, as noted above, of paramount
importance to evaluate the quality of the papers we included
in this study. As the tables below clearly demonstrate, the vast
majority of the papers we ended up including in our study were
of either good quality (overall score between 2.5 and 4) or of high
quality (overall score between 4 and 5). On these grounds, we can
infer that the results we gathered from the papers we included in
our log are accurate and scientifically sound.

3. RESULTS

Before we go on to cluster the papers we selected in our study by
topics, we quickly show their distribution by year of publication
(Figure 2 below). This data is meant to provide our readers with
some general, yet important information about how research on
this topic has developed in recent years.

Table 4 below clusters the papers we selected around two
main topics: (i) filmmaking practices and (ii) analogies between
filmmaking practices and software development. Table 5 below
shows whether our selected papers belonged to gray or white
literature. Figure 3 below further specifies the distribution (in
terms of percentage) of the papers we selected by publisher.
As customary for a literature review, we focused—mostly—on
white literature and on secondary sources, even though we also
included in our study some gray literature. We would like to
note here that including gray literature in a literature review
(so advocating a multivocal approach to literature reviews)
is becoming an increasingly acceptable practice in software
engineering (Mahood et al., 2014; Garousi et al., 2016, 2020).

The first topic we analyzed (movie practices) is characterized
by a relatively large amount of publications. Therefore, we
arranged the relevant literature into two main streams or
parts: (i) papers describing the movie creation process and
(ii) papers describing the techniques used, in filmmaking, by
famous movie directors. If, for the first topic, inclusion was
pretty straightforward, the selection process for the second topic
proved to be slightly more complicated. More specifically, it
was necessary to exclude the sources that did not explicitly

FIGURE 2 | Paper distribution by year of publication.

TABLE 4 | Number of sources per topic.

Searched topics Initial sources Included sources

White Gray White Gray

Filmmaking

practices

The movie creation

process

19 0 1 0

Directors’

techniques

12 9 4 0

Resemblance
Similarities

between creativity

and programming

1 4 1 2

Lean and Agile in

cinema

1 17 1 4

relate to the research (for example, papers about artistic, or
non-management techniques).

The second topic instantiated parallels between filmmaking
and software development. We first examined the similarities
between certain creative processes and particular engineering or
programming techniques. We only found a few sources attesting
to some kind of resemblance between filmmaking and software
production. Among such sources, we came across two articles
(gray literature, Garousi et al., 2019) that were proposing an
interesting parallelism between movie management and software
development. We also explored the possibility to apply software
development approaches (such as Lean and Agile principles or
methodologies) to filmmaking.Most of the sources we found here
could be classified as gray literature; however, there were some
books describing curious experiments, for example, about Lean

Frontiers in Computer Science | www.frontiersin.org 5 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

filmmaking (more on this below), that we ended up including in
our review.

Having presented our research protocol, we next focused on
answering the research questions characterizing our study, in
light of our findings.

3.1. About RQ1: Resemblance Between
Filmmaking and Software Development
To answer this research question, we preliminary analyzed
studies describing some analogies between art and software
development. As mentioned above, we found an interesting
study proposing some similarities between the work of software

TABLE 5 | Types of sources selected.

Grey literature

Magazines

- Code

- Filmmaker

Blogs

- Pipefy

- The Beat

- Axosoft Dev

- Carey Martell

White literature

Journals

- Essays

- Extreme Leadership: Leaders, Teams, and Situations Outside the Norm

Conferences

- Conference and Symposium on the Foundations of Software Engineering

Books

- O’Reilly Media, Inc.

- National Academies Press Washington, DC

- Gulf Professional Publishing

- Vintage

- Springer

- Cambridge Scholars Publishing

engineers (programmers) and the work of painters (Graham,
2004). More specifically, this study considered both artists
and programmers as “makers.” The analogy thus revolved
around the fact that both artists and programmers produce
things, that can be practically used or appreciated, by different
people. A second important analogy described in the study,
which is partly derived from the first one we discussed above,
concerns the idea that both artists and programmers are
ultimately creative individuals (Sacks, 1992), deeply involved
in acts of creativity (Csikszentmihalyi, 1990, 2015; Greenberg,
2007), that shape and mould the world around themselves
(Csikszentmihalyi, 2014).

Other potential analogies or parallels were observed. In
particular, a paper by Calvo (2013) describes the structural
similarities between filmmaking and the process involved
in the production of any given software. The first step
in the production of a movie is known as script writing
(or screenwriting, Parker, 1999). This is a process that
requires writing down the movement, actions, expression and
dialogue of the characters in the screenplay (Field, 2008).
Screenwriting serves to construct the film’s narrative and to
shape it and design it to match the targeted audience (Hueth,
2019). The corresponding process in software development
involves the analysis and design of software parts. In software
engineering, this step typically includes the formation of
a core structure as well as the identification of functional
and non-functional requirements and explanation of user
interactions (Pressman, 2005). Thus, there seems to be a
relatively strong parallel (in terms of structures at least) between
the processes involved in the production of a movie and
those characterizing the development of any given software
system architectures.

Another important analogy concerns the similarity
between screenwriting and code production. Filmmakers
make storyboards, blueprints for their movie, and these are
typically created on the basis of a script base (Van der Lelie,
2006). Creating project prototypes capable of informing
product development is a general technique used in software
development as well (Winkler et al., 2013; Huber et al., 2020).

FIGURE 3 | Papers distribution—by publisher.

Frontiers in Computer Science | www.frontiersin.org 6 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

Yet, we found that there is no direct and precise analogue of
the screenplay editing process in software engineering (Millard,
2010; Koivumki, 2011). Screenplay editing processes typically
require multiple re-shoots, test screenings, and constant honing.
Nevertheless, it is, of course, possible to argue that honing is
crucially important in software development, inasmuch as a
solution to problems often requires multiple interactions and
progressive, incremental changes.

Another significant point of contact between these two
practices is the fact that both are designed and are indeed
intended for a human audience (Altenloh, 1914; Dijkstra, 1979;
Seffah et al., 2005; Hanich, 2018). Both the filmmaker and the
software developer in organizing their work, must keep in mind
the user; hence, they must make their products (be it movies or
programs) easily accessible by virtually anyone.

3.2. About RQ2: Potentially Overlapping
Practices Used in Filmmaking and
Software Development Techniques
The second research question was split in two different
parts: (i) potential application of filmmaking techniques to
software development and (ii) potential usage of programming
approaches in the movie industry.

3.2.1. Potential Adaptation of Filmmaking Techniques

to Programming
Unfortunately, no researcher has been investigating this issue in
the scholarly community at the time of writing; hence, there is
an instructive lack of studies with respect to this point. To solve
this issue and to provide some basis for our review, we decided to
review some approaches and techniques used by various movie
directors with respect to management practices.

Akira Kurosawa, a famous Japanese director, shared his
vision and thoughts about filmmaking in his autobiography
(Kurosawa, 1983). In this book, he is portrayed as actively
involved and directly participating in every single aspect of the
movie production (including writing the scripts, developing the
design, preparing the actors, placing shots and editing; Stiglegger,
2001). This, it can be argued, is what gave Kurosawa’s movies the
feeling that the director was in command over every aspect of
the production process (Richie and Mellen, 1998) as well as what
determined part of their success. This capacity, we note, is also
important in software engineering, where having a leader, who is
highly experienced in every aspect of the project development, is
an important condition for the successful implementation of the
project itself (Alefari et al., 2017).

However, Kurosawa was not solely responsible for the
writing of his movies. He was actively collaborating with other
screenwriters. Each of them worked on the same script, often at
the same time, adding text and suggestions and often different
points of view. At a later stage, Kurosawa reviewed the scripts
produced and picked what he thought was the best, among those
that were submitted to him. This rather authoritative way of
selecting and organizing contents helped Kurosawa streamlining
potential disagreement among different scriptwriters. We note
that this approach is often replicated in the software development

industry. For example, the process of architectural design is in
many ways analogous to that of screenwriting. In such a process,
each qualified team member does provide his or her own version
of the project structure, but then the project leader intervenes and
ultimately chooses which one he would like to pursue.

However, it is worth also noting that despite this rather
authoritative approach to production during his career,
Kurosawa preferred working with the same group of
creative technicians, crew members and actors, popularly
known as the “Kurosawa-gumi” or Kurosawa’s group. The
intimate relations between professional team members
usually contributes to increase the project’s quality. It can
surely be argued that Kurosawa-gumi ensured the success of
Kurosawas’movies (Nogami, 2006). Again, the same results
(project’s improvements)—we notice—are often achieved by
following this practice in software engineering. Well-established
and long-term collaborative partnership between and within
software engineering teams do provide higher work efficiency
during the project development and contribute to maximize
outcomes as well as results (Whitehead, 2007).

Another very famous director—Steven Spielberg—who is also
a fan of Kurosawa—perhaps inspired by him—developed his own
way to organize and supervise the production of a movie (Acuña,
2018). One of the greatest strengths underlying Spielberg’s work
is arguably the capacity to meticulously plan the pre-production
stage of his movies (Gordon, 2007). This involves paying a lot of
attention to the movie script as well as to the storyboards and to
the mockup, a full-sized structural model of the movie typically
used for reviewing format (Awalt, 2014). Such careful planning,
it has been argued helped Spielberg sticking to deadlines and
production budgets, determining many of his successes (Morris,
2007). On a similar vein, we note that the waterfall approach
in software engineering, which typically allows the breakdown
of projects into linear sequential phases, each characterized by
a specific deliverable that depends on the deliverables of the
previous phase and corresponds to a specialization of tasks
(Adenowo and Adenowo, 2013), requires a similar approach.

Another decisive component, which arguably contributed to
the success of Spielberg’s work is his direct involvement in the
selection of the professionals used in the movie production
(Awalt, 2014). Spielberg is known to give special attention
to friendly management and social skills. His priority is to
achieve the maximum degree of cooperation possible in any
given project in which he is involved. This requires remaining
open to suggestions for improvement coming from other team
members (Peña-Acuña, 2018). As software development is a
deeply collaborative process (Saeki, 1995; O’Neill, 2001), we
notice that successful team leaders in software engineering often
adopt this type of practice (Whitehead, 2007).

3.2.2. Potential Usage of Programming Techniques in

the Movie Industry
To answer this second sub-question we looked at existing
successful implementation of Lean principles in filmmaking.

First, we found that the Lean principle of focusing on people,
its motivation and collaboration (Poppendieck and Cusumano,
2012) has been largely adopted by moviemakers. Filmmaking is

Frontiers in Computer Science | www.frontiersin.org 7 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

an quintessentially collaborative practice that relies on different
types of talents, skills, and expertise, all working collectively
to successfully produce the end product, the movie (Hodge,
2009). Pixar studio recently introduced a policy that allows
everyone in the company, irrespective of their position, to express
their opinions, provide feedback, and share their ideas with the
director. The aim of this policy is to maximize collaborative
interactions among team members and boost production and
efficiency (Moreira, 2020).

Besides, it is worth noting that the Pixar studio represents a
very good illustration of how a company can successfully use
lean principles. At various stages of the film production, their
workers actively use various lean tools and procedures (such as
Kanban and Andon) to minimize waste and avoid production
bottlenecks. For example, in his movies Pixar director, Jason
Blum, aims at reducing waste by producing small-budget films,
which use relatively inexpensive shots and limit the number of
locations, dialogues, and speaking roles (Yakimchuk, 2017).

Another important thing to mention in this context is the first
Lean filmmaking experiment made by Eddy and Eddy (2020).
The goal of this experiment was to apply a number of Lean
principles to the movie production process. In his experiment,
which involved recording a hackathon, groups of eight-nine
people were creating films for 2 days working in abbreviated
cycles. Each film cycle was showed to an audience with the
purpose of gathering feedback, which informed subsequent
changes in the production line. In this way, the need for a script
was abolished, as it was considered redundant. The experiment
was quite successful and the authors’ achievements confirmed the
possibilities to tailor and adapt software engineering techniques
to different contexts (such as movie production).

To further analyze the potential relevance of software
engineering methods, practices, and techniques to filmmaking,
we also looked, as mentioned in the introduction, at the
Agile approach. Specifically, we analyzed it in terms of movie
production. A study by Figueroa (2015) claimed that Agile
methodologies can be applied successfully in filmmaking based
on similarities between movies and software projects. According
to Martell (2015), Scrum methods can be applied to any kind of
work and are “perfect systems for adapting to the film industry”
Martell (2015).

3.3. RQ3: Collaborative Practices in
Filmmaking and Software Development
3.3.1. Teamwork and Leadership in Filmmaking
Another important aspect of our research involved an analysis
of the importance of collaborative efforts. Such an analysis was
instrumental to answer the third research question characterizing
our work.

First, we researched teamwork practices in Stanley Kubrick’s
work (Perko, 2018). We found out that one the many skills
in which Kubrick excelled was communication (Falsetto, 2001).
Not only that, but we understood that he was always open to
suggestions and ideas from other crew members and that he was
also a good listener (Phillips, 2013). It can thus be argued that this

peculiar talent and overall attitude also helped him winning over
his people hearts and minds.

Our investigation of Kubrick’s work revealed that Kubrick,
in order to streamline movie production, often used to divide
larger tasks into smaller ones. More specifically, we found out
that he used to separate crew members in smaller groups and
assign them a team leader (Falsetto, 2001). This approach was
pursued to determine a fair and efficient division of the tasks
among workers (Adam, 2016). Moreover, such an approach to
teammanagement was instrumental to introduce another crucial
cooperative practice; that of mentorship. Team leaders and even
Kubrick himself occasionally assumed the role of mentors to
guide, orient, and help young and inexperienced film workers.
This was instrumental to provide them with opportunities for
learning and developing their respective careers.

However, it is important to note that there wasn’t an
unlimited degree of freedom for collaborative team members
under Kubrick’s supervision. Krubrick extensively used the social
capital as well as the connections he had accumulated over
his career, to persuade people, put under pressure, or even
directly control them during the production process of hismovies
Kubrick (2001).

A number of studies mention leadership as a crucially
important factor in collaborative processes (Ferren and Stanton,
2004; Slater, 2005; Ciancarini et al., 2021a,b). For example,
Mainemelis and Epitropaki (2014) examined the way in
which Francis Ford Coppola organized the production of his
masterpiece “The Godfather.” The director in this case used an
approach that can be called of extreme leadership, according to
which “the leader act as the troublemaker, who induces crises and
creates chaos” (Mainemelis and Epitropaki, 2014).

During the shooting of The Godfather, Coppola used to
continuously change script as well as the shooting process.
Coppola had understood that film creation process is fluid and
one must always search for new ideas and opportunities to
improve the project. This flexible approach allowed him to better
integrate creative contributions from its crew mates.

Now, we know that at the beginning the production of The
Godfather wasn’t going so well because of these continuous
changes. We also know that Coppola was on the verge of getting
fired; yet he continued applying his style to the production of his
movie, making unusual and risky decisions (such as the decision
to cast Brando and Pacino for leading roles). Nevertheless,
Coppola efforts were crowned with success, and the movie has
given him international acclaim.

3.3.2. Correlation Between Collaboration Practices in

Movie and Software
As the reader may recall the significance of the third research
question lied in the identification of movie practices that are
potentially applicable to software development. At the time of
writing we can not say whether the techniques we discussed
above can necessarily be beneficial in the software industry.
This is because the current available scientific literature did not
investigate this specific question.

However, our analysis was significant because we discovered
that software development and filmmaking share a common

Frontiers in Computer Science | www.frontiersin.org 8 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

nature; that of both being highly collaborative and creative
social practices (Mitchell et al., 2003). Collaboration in software
engineering and filmmaking is certainly complex and happening
at many different levels, as we have seen above. For example,
project members in both the IT and Cinema Industries typically
deal with how the work is separated, how the results are
gathered and combined, how the resources are allocated, or
how the communication is organized. This requires a significant
amount of coordination, cooperation and organization; however,
it seems that the combination of these factors (and possibly
of more, involving of course also a good degree of creativity)
is a recipe for high work performance and success. On these
grounds, we can probably suggest that, at least, some filmmaking
practices and techniques could be successfully adopted in
software development.

4. SUMMARY OF OUR RESULTS

In this section, we schematically summarize for the reader what
we have achieved so far.

4.1. Analogies Between Software
Development and Filmmaking (RQ1)
We identified a series of important commonalities between
fimmaking and software engineering, such as:

• both artists and programmers can be seen asmakers.
• both artists and programmers can be seen as highly

creative individuals.
• both filmmaking and software development require

and demand continuous cooperative interactions and
incremental changes.

• both software development and filmmaking are designed are
indeed intended for a human audience.

4.1.1. Movie and Software Development Techniques

(RQ2)
Our review of the literature allowed us to identify relevant
information about the adaptation of software development
techniques in the movie industry: Our literature review, in
particular, established that:

• this topic is not yet well-investigated in the relevant scientific
community, hence it showed the importance of our selected
topic for future research in the field.

• Kurosawa used to control and direct almost every aspect
of his film production. Our work also demonstrated
that this capacity of leadership is crucially important in
software engineering.

• Kurosawa, while centralizing decision making, was also
seeking collaborative interactions with his team members in
the production of the screenplay and that he preferred working
with the same group of creative collaborators (or gumi). Our
work also showed that long-term team engagement is crucially
important in the software development industry.

• Spielberg’s work is an excellent example of Waterfall.
• Spielberg pays maniacal attention to management,

cooperation, and social skills. Our review also showed

the centrality of such an open minded, collaborative approach
to software engineering/development.

We nevertheless also found that software development
techniques or approaches can also be used in filmmaking.
In particular, we found:

• that the lean principle of focusing on people, its motivation
and collaboration is adopted by moviemakers.

• that Pixar studio successfully uses lean principles.
• that Agile methodologies and especially Scrum can be also

successfully applied in film industry.

4.1.2. Collaborative Filmmaking Practices (RQ3)
In addition, in the context of filmmaking practices we also found:

• that openness to suggestions and ideas from other crew
members is widely used.

• that division of larger tasks into smaller ones is often beneficial.
• that mentorship and supervision are profitable.
• that leadership is an important factor in collaborative

processes as well as in the implementation of any project’s plan.

5. LIMITATIONS AND THREATS TO
VALIDITY

In this section, we critically analyse the above-mentioned results,
focusing especially on potential biases in selection as well as on
other sort of limitations, and on potential threats to the validity
of this study (Keele et al., 2007; Akl et al., 2019).

5.1. Results Validation
Results validation is a significant part of any literature review
(Robson and McCartan, 2016). We preliminary reviewed the
outcomes of this study through self-assessment. In particular, we
investigated the risk of bias in our study. Table 6 describes the
possible biases potentially affecting our study and the solutions
adopted to avoid them.

Although it is, de facto, impossible to perform a fully
unbiased research; we aimed at reducing biases as much as
possible. Based on the explanation given on Table 4 below,
we reached the conclusion that our level of bias is moderate,
and—as a consequence—that our work can be considered to be
scientifically reliable.

5.2. General Limitations
During the review process, we faced some challenges, which
gave us an opportunity to notice the many potential limitations
affecting this research. The biggest limitation affecting this
study probably concerns the lack of relevant academic literature
connecting the practices of software development and movie
production and the limited amount of studies included in
this review. As a consequence, the relationship between the
practices underlying software development and film-making are
investigated by a very small number of papers in scientific
databases and our claim partially lack a strong scientific backup.
Another important limitation affecting our study, which directly
descend from the first one we mentioned above, is the heavy

Frontiers in Computer Science | www.frontiersin.org 9 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

TABLE 6 | Potential biases.

Type of bias Comment

Pre-trial bias

Flawed study design • The Methodology section clearly describes objectives,

research questions, plan and methods for the review.

So, this bias type is minimized and mostly avoided.

Selection bias • We adopted rigorous criteria for literature selection

and that—we believe helped avoiding this type of bias.

Section 2 above describes this point in more details.

Bias during trial

Data collection bias • A bias (involving conflict of interest, for example) may

occur in this stage. We would like to notice that we do

not have any conflict of interest to declare. Hence,

there was no bias relationship between the authors of

the paper and the authors of the sources selected for

the review. Another bias typically occurring in the

stage of data collection concerns the inclusion of gray

literature in the review. We admit that we included a lot

of gray literature in this study and that might be

problematic. However, we also reiterate—as argued

above—that including gray literature in literature

reviews is becoming an increasingly acceptable

practice in software engineering. We would also like to

notice that while we found many scientific articles

describing both the principles and the background for

software and filmmaking practices, we couldn’t locate

any information about their resemblance in peer

reviewed manuscript; hence, we had to include

sources belonging to gray literature.

Bias after trial

Analysis bias • Despite this work tries to find confirmation for our

hypothesis; the bias is still moderate because there is

not much literature that researched our topic.

Publication bias • This type of bias normally occurs in published

academic research, especially when certain research

influences the decision to publish, distribute or select

for publication a given paper Begg, 1994 We followed

the PRISMA checklist and specified our research

protocol upfront. Therefore, we are confident that we

did not incur in this sort of bias.

reliance on gray literature. There is, potentially, a lot of useful
scientific information presented in reports, blogs, and various
other non-academic venues (Paez, 2017); however, when using
it, one must be particularly careful, so as to avoid relying
on incorrect or inaccurate data. We carefully scrutinized such
literature in accordance with the best practices of our discipline
(Schmucker et al., 2013; Borrego et al., 2014), and attempted to
include only reliable data in our review.

5.3. Critical Assessment Against
Benchmark Questions
A final step in the evaluation of research findings involves their
critical assessment against a set of benchmark questions, which
can be used as a point of reference to assess the overall quality of
a literature review (Kitchenham, 2004):

1. Are the review’s inclusion and exclusion criteria described and
appropriate? All criteria used for inclusion or exclusion were

TABLE 7 | Prisma checklist.

Section Reported on page

TITLE

Title 1

ABSTRACT

Structured summary 1

INTRODUCTION

Rationale 1

Objectives 1-2

METHODS

Protocol and registration 2

Eligibility criteria 3

Information sources 3

Search 3

Study selection 3

Data collection process 3

Data items 3

Risk of bias in individual studies 3

Summary measures 4-5

Synthesis of results 1

Risk of bias across studies 1

Additional analyses 1

RESULTS

Study selection 3-4

Study characteristics 4

Risk of bias within studies 4

Results of individual studies 4

Synthesis of results 4-7

Risk of bias across studies 4

Additional analysis 7

DISCUSSION

Summary of evidence 7-8

Limitations 7

Conclusions 8

FUNDING

Funding 9-10

mentioned upfront in our research protocol. All the criteria
used in this research seem to be reasonable and relevant to the
topic. We thus believe that they are appropriate and coherent
for this research.

2. Is the literature search likely to have covered all relevant studies?
The process we established to gather papers via search queries
as well as the methods we used to search relevant databases
were sound and comprehensive. We are thus confident that
our literature searches were representative and accurate.

3. Did the reviewers assess the quality/validity of the included
studies? We count this condition as sufficiently met as we
included in our review a brief quality assessment of the
findings included in this study.

4. Were the basic data/studies adequately described? We believe
this condition is met because we built a reading log to put
all the relevant information extracted from the papers we

Frontiers in Computer Science | www.frontiersin.org 10 April 2022 | Volume 4 | Article 884533

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

selected. This allowed us to process our data systematically
and comprehensively.

5.4. Adherence to PRISMA Checklist
In order to produce a systematic and coherent piece of
work, as noticed in Section 2 above, our research protocol
was developed in accordance with the PRISMA checklist.
Table 7 describes in some detail how and where we dealt
with the most important items of the PRISMA checklist. This
checklist demonstrates the quality of the review and allows
our readers to more comprehensively evaluate its strengths
and weaknesses:

6. CONCLUSIONS

Naturally, the analysis performed on our findings is somehow
subjective, hence subject to interpretations, which may lead
to disagreement. However, as mentioned above, in order to
maximize objectivity and reduce suggestiveness, all authors of
this research were directly involved in the analysis.

Our analysis demonstrated that software development and
filmmaking indeed have a common nature. This study also
showed that these two seemingly different processes are not only
highly creative practices, but also that they are cooperative in
character. We managed to show that artists and programmers
can be considered as makers of things and that they are—to some
extent at least—moved by the same goal; namely making things
for a human audience. In addition, our study demonstrated—
through a comparative analysis—, that it is possible to use
and successfully deploy the methods of cooperative work used
in the film industry in software development (Callens, 2013).
Similarly, we showed that some methodologies used in software

engineering (such as Agile and Lean) can be profitably adapted
by filmmakers.

This review therefore suggested a new promising line of
research for the exploration of the relations between software
engineering and filmmaking. However, we are aware that this
work constitutes only a preliminary and rather partial attempt
of analysis; it is nevertheless hoped that this review will broaden
interest in this topic and provide new theoretical grounds for
more detailed explorations into these extraordinarily rich and
fascinating set of phenomena. As a matter of fact, we will now
turn our attention to performing an empirical analysis on the
field. The goal of this analysis will be to articulate and specify
the findings of this review, by considering whether and how
the variety in genres of movies (action, comedy, drama, science
fiction, . . .) can be mapped to the variety of software being
produced (apps, real time, embedded, commercial, etc. . . .).

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

All authors: conception, elaboration, and review. All authors
contributed to the article and approved the submitted version.

FUNDING

The authors thank Russian Science Foundation for generously
supporting this research with grant number 22-21-00494.

REFERENCES

Acu na, B. (2018). Understanding Steven Spielberg. New Horizon. Cambridge

Scholars Publishing.

Adam, S. (2016). The Wealth of Nations. Toronto, ON: Aegitas.

Adenowo, A. A., and Adenowo, B. A. (2013). Software engineering methodologies:

a review of the waterfall model and object-oriented approach. Int. J. Sci.

Eng. Res. 4, 427–434. Available online at: https://www.ijser.org/paper/

Software-Engineering-Methodologies-A-Review-of-the-Waterfall-Model-

and-ObjectOriented-Approach.html

Agrawal, M. (2016). Filmmaking: A Project Management Case Study for Software

Development.

Ahmed, S. U., Jaccheri, L., Sindre, G., and Trifonova, A. (2009). “Conceptual

framework for the intersection of software and art,” in Handbook

of Research on Computational Arts and Creative Informatics eds J.

Braman, G. Vincenti, G. Trajkovski (Hershey, PA: IGI Global), 26–44.

doi: 10.4018/978-1-60566-352-4.ch002

Akl, E., Altman, D., Aluko, P., Askie, L., Beaton, D., Berlin, J., et al. (2019).

Cochrane Handbook for Systematic Reviews of Interventions. Hoboken, NJ: John

Wiley & Sons.

Alefari, M., Salonitis, K., and Xu, Y. (2017). The role of leadership in implementing

lean manufacturing. Proc. Cirp 63, 756–761. doi: 10.1016/j.procir.2017.03.169

Altenloh, E. (1914). A sociology of the cinema: the audience. Screen 42, 249–293.

doi: 10.1093/screen/42.3.249

Awalt, S. (2014). Steven Spielberg and Duel: The Making of a Film Career. Rowman

& Littlefield.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,

M., et al. (2001). The Agile Manifesto. Available online at: https://agilemanifesto.

org/

Begg, C. B. (1994). “Publication bias,” in The Handbook of Research Synthesis,

eds H. Cooper and L. V. Hedges (New York, NY: Russell Sage Foundation),

299–409.

Bond, G. W. (2005). Software as art. Commun. ACM 48, 118–124.

doi: 10.1145/1076211.1076215

Borrego, M., Foster, M. J., and Froyd, J. E. (2014). Systematic literature reviews

in engineering education and other developing interdisciplinary fields. J. Eng.

Educ. 103, 45–76. doi: 10.1002/jee.20038

Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., and Khalil, M.

(2007). Lessons from applying the systematic literature review process

within the software engineering domain. J. Syst. Softw. 80, 571–583.

doi: 10.1016/j.jss.2006.07.009

Callens, B. (2013). Pixar’s 22 Rules of Storytelling and How They Apply to

Software Development. Available online at: https://wraltechwire.com/2013/

09/26/pixars-22-rules-of-storytelling-and-how-they-apply-to-software-

development-13927/

Calvo, A. (2013). Why Filmmaking is Like Software Design. Available online

at: https://filmmakermagazine.com/67052-why-filmmaking-is-like-software-

design/#.Ylb6lMhBw2w

Ciancarini, P., Farina, M., Masyagin, S., Succi, G., Yermolaieva, S., and

Zagvozkina, N. (2021a). Non verbal communication in software engineering-

an empirical study. IEEE Access 9, 71942–71953. doi: 10.1109/ACCESS.2021.30

75983

Frontiers in Computer Science | www.frontiersin.org 11 April 2022 | Volume 4 | Article 884533

https://www.ijser.org/paper/Software-Engineering-Methodologies-A-Review-of-the-Waterfall-Model-and-ObjectOriented-Approach.html
https://www.ijser.org/paper/Software-Engineering-Methodologies-A-Review-of-the-Waterfall-Model-and-ObjectOriented-Approach.html
https://www.ijser.org/paper/Software-Engineering-Methodologies-A-Review-of-the-Waterfall-Model-and-ObjectOriented-Approach.html
https://doi.org/10.4018/978-1-60566-352-4.ch002
https://doi.org/10.1016/j.procir.2017.03.169
https://doi.org/10.1093/screen/42.3.249
https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1145/1076211.1076215
https://doi.org/10.1002/jee.20038
https://doi.org/10.1016/j.jss.2006.07.009
https://wraltechwire.com/2013/09/26/pixars-22-rules-of-storytelling-and-how-they-apply-to-software-development-13927/
https://wraltechwire.com/2013/09/26/pixars-22-rules-of-storytelling-and-how-they-apply-to-software-development-13927/
https://wraltechwire.com/2013/09/26/pixars-22-rules-of-storytelling-and-how-they-apply-to-software-development-13927/
https://filmmakermagazine.com/67052-why-filmmaking-is-like-software-design/#.Ylb6lMhBw2w
https://filmmakermagazine.com/67052-why-filmmaking-is-like-software-design/#.Ylb6lMhBw2w
https://doi.org/10.1109/ACCESS.2021.3075983
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

Ciancarini, P., Farina, M., Masyagin, S., Succi, G., Yermolaieva, S., and Zagvozkina,

N. (2021b). Root causes of interaction issues in agile software development

teams-status and perspectives. Adv. Intell. Syst. Comput. 2, 1017–1036.

doi: 10.1007/978-3-030-73103-8_74

Cramer, F., and Gabriel, U. (2001). Lanham, MD: Software art.

Csikszentmihalyi, M. (1990). The Domain of Creativity. New York City,

NYC: Harper.

Csikszentmihalyi, M. (2014). “Society, culture, and person: a systems view

of creativity,” in The Systems Model of Creativity (Springer), 47–61.

doi: 10.1007/978-94-017-9085-7_4

Csikszentmihalyi, M. (2015). The Systems Model of Creativity: The CollectedWorks

of Mihaly Csikszentmihalyi. Springer. doi: 10.1007/978-94-017-9085-7

Dijkstra, E. (1979). “Programming considered as a human activity,” in Classics in

Software Engineering (Yourdon Press), 1–9.

Dingsøyr, T., Dybå, T., and Moe, N. B. (2010). “Agile software development: an

introduction and overview,” in Agile Software Development eds T. Dingsøyr, T.

Dybå, N. Moe (Berlin: Springer), 1–13. doi: 10.1007/978-3-642-12575-1_1

Donelan, J. (2007). Lessons in filmmaking. Comput. Graph. World 34–39.

Ebert, C., Abrahamsson, P., and Oza, N. (2012). Lean software development. IEEE

Comput. Archit. Lett. 29, 22–25. doi: 10.1109/MS.2012.116

Eddy, D., and Eddy, K. (2020). The Art of Lean Filmmaking: An Unconventional

Guide to Creating Independent Feature Films. Lean Film making.

Falsetto, M. (2001). Stanley Kubrick: A Narrative and Stylistic Analysis. Berlin:

Greenwood Publishing Group.

Farina, M., Gorb, A., Kruglov, A., and Succi, G. (2022). Technologies for GQM-

basedmetrics recommender systems: a systematic literature review. IEEEAccess

10, 23098–23111. doi: 10.1109/ACCESS.2022.3152397

Feld,W.M. (2000). LeanManufacturing: Tools, Techniques, andHowToUse Them.

Westport, CT: CRC Press. doi: 10.1201/9781420025538

Ferren, A. S., and Stanton, W. W. (2004). Leadership Through Collaboration: The

Role of the Chief Academic Officer. Boca Raton, FL: Greenwood Publishing

Group.

Field, S. (2008). The Definitive Guide to Screenwriting. Westport, CT: Random

House.

Figueroa, G. (2015). Lights, Camera, Software Development!. Available online at:

https://www.projecttimes.com/articles/lights-camera-software/

Fishwick, O. P., Malina, R., Sommerer, C., Bertelsen, W., and Fishwick,

P. (2003). Aesthetic computing "manifesto". Leonardo. 36:255.

doi: 10.1162/002409403322258556

Fishwick, P. A. (2008). Aesthetic Computing. New York City, NY: MIT Press.

Garousi, V., Felderer, M., and Mäntylä, M. V. (2016). “The need for multivocal

literature reviews in software engineering: complementing systematic literature

reviews with grey literature,” in Proceedings of the 20th International Conference

on Evaluation and Assessment in Software Engineering (Cambridge, MA:), 1–6.

doi: 10.1145/2915970.2916008

Garousi, V., Felderer, M., andMäntylä, M. V. (2019). Guidelines for including grey

literature and conducting multivocal literature reviews in software engineering.

Inform. Softw. Technol. 106, 101–121. doi: 10.1016/j.infsof.2018.09.006

Garousi, V., Felderer, M., Mäntylä, M. V., and Rainer, A. (2020). “Benefitting

from the grey literature in software engineering research,” in Contemporary

Empirical Methods in Software Engineering eds M. Felderer, G. Travassos

(Berlin: Springer), 385–413. doi: 10.1007/978-3-030-32489-6_14

Gordon, A. M. (2007). Empire of Dreams: The Science Fiction and Fantasy Films of

Steven Spielberg. Limerick: Rowman & Littlefield Publishers.

Graham, P. (2004).Hackers& Painters: Big Ideas From the Computer Age. Lanham,

MD: O’Reilly Media, Inc.

Greenberg, I. (2007). Processing: Creative Coding and Computational Art. Newton,

MA: Apress.

Hanich, J. (2018). Audience Effect: On the Collective Cinema Experience. New York

City, NYC: Edinburgh University Press. doi: 10.1515/9781474414968

Hodge, C. (2009). Film collaboration and creative conflict. J. Film Video 61, 18–30.

doi: 10.1353/jfv.0.0020

Huber, T. L., Winkler, M. A., Dibbern, J., and Brown, C. V. (2020). The use of

prototypes to bridge knowledge boundaries in agile software development.

Inform. Syst. J. 30, 270–294. doi: 10.1111/isj.12261

Hueth, A. C. (2019). Scriptwriting for Film, Television and New Media. Edinburgh:

Routledge. doi: 10.4324/9780429461361

Janes, A. and Succi, G. (2014). Lean Software Development in Action. London:

Springer. doi: 10.1007/978-3-642-00503-9

Kanaan, G. (2016). Great Teamwork Makes Great Films, So What Makes Great

Teamwork? THE [LEGAL] ARTIST.

Keele, S., et al. (2007). Guidelines for Performing Systematic Literature Reviews in

Software Engineering. Technical report, Citeseer.

Kitchenham, B. (2004). Procedures for Performing Systematic Reviews, Vol. 33.

Keele: Keele University, 1–26.

Kitchenham, B., Brereton, O. P., Budgen, D., Turner, M., Bailey, J.,

and Linkman, S. (2009). Systematic literature reviews in software

engineering-a systematic literature review. Inform. Softw. Technol. 51,

7–15. doi: 10.1016/j.infsof.2008.09.009

Knuth, D. (2011). The art of programming. ITNow (Berlin) 53, 18–19.

doi: 10.1093/itnow/bwr021

Knuth, D. E. (1984). Literate programming. Comput. J. 27, 97–111.

doi: 10.1093/comjnl/27.2.97

Knuth, D. E. (1997). The Art of Computer Programming, Vol. 3. Pearson Education.

Koivumki, M.-R. (2011). The aesthetic independence of the screenplay. J.

Screenwrit. 2, 25–40. doi: 10.1386/josc.2.1.25_1

Kubrick, S. (2001). Stanley Kubrick: Interviews. University Press of Mississippi.

Kurosawa, A. (1983). Something Like an Autobiography. New York City, NYC:

Vintage.

Mahood, Q., Van Eerd, D., and Irvin, E. (2014). Searching for grey literature for

systematic reviews: challenges and benefits. Res. Synth. Methods 5, 221–234.

doi: 10.1002/jrsm.1106

Mainemelis, C., and Epitropaki, O. (2014). Extreme leadership as creative

leadership: reflections on francis ford coppola in the godfather. Extreme

Leadersh. 187–200. doi: 10.4337/9781781002124.00024

Martell, C. (2015). Agile SCRUM for Film-makers: How to Produce Movies & TV

Shows in Half the Time. Martell Books.

Millard, K. (2010). After the typewriter: the screenplay in a digital era. J. Screenwrit.

1, 11–25. doi: 10.1386/josc.1.1.11/1

Mitchell, W. J., Inouye, A. S., Blumenthal, M. S., et al. (2003). Beyond Productivity:

Information Technology, Innovation, and Creativity. Washington, DC: National

Academies Press.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., Group, P., et al. (2009).

Preferred reporting items for systematic reviews and meta-analyses: the

prisma statement. PLoS Med. 6:e1000097. doi: 10.1371/journal.pmed.10

00097

Moreira, L. (2020). Pixar: Where Creativity Meets, Performance Through Lean.

Available online at: https://www.pipefy.com/blog/lean-pixar-where-creativity-

meets-performance/#::text=In%20order%20to%20organize%20their,idea

%20until%20it’s%20finally%20animated.

Morris, N. (2007). The Cinema of Steven Spielberg: Empire of Light. New York City,

NYC: Columbia University Press. doi: 10.7312/morr476489

Netland, T. H., and Powell, D. J. (2016). The Routledge Companion to Lean

Management. London: Taylor & Francis. doi: 10.4324/9781315686899

Nogami, T. (2006).Waiting on the Weather: Making Movies With Akira Kurosawa.

Berkeley, CA: Stone Bridge Press, Inc.

Ohanian, T., and Phillips, N. (2013). Digital Filmmaking: The Changing

Art and Craft of Making Motion Pictures. Boca Raton, FL: CRC Press.

doi: 10.4324/9780080504407

O’Neill, E. (2001). User-Developer Cooperation in Software Development: Building

Common Ground and Usable Systems. Berlin: Springer Science & Business

Media.

Paez, A. (2017). Gray literature: an important resource in systematic reviews. J.

Evid. Based Med. 10, 233–240. doi: 10.1111/jebm.12266

Parker, P. (1999). The Art and Science of Screenwriting. Bristol: Intellect Books.

Pe na-Acu na, B. (2018). Understanding Steven Spielberg. Cambridge: Cambridge

Scholars Publishing.

Perko, M. (2018). “Origin stories: Stanley Kubrick’s Collaborations,” in Essais,

(Hors-série 4). doi: 10.4000/essais.717

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015). Guidelines for conducting

systematic mapping studies in software engineering: an update. Inform. Softw.

Technol. 64, 1–18. doi: 10.1016/j.infsof.2015.03.007

Phillips, G. D. (2013). Stanley Kubrick: Interviews. Oxford, MS: University Press of

Mississippi.

Frontiers in Computer Science | www.frontiersin.org 12 April 2022 | Volume 4 | Article 884533

https://doi.org/10.1007/978-3-030-73103-8_74
https://doi.org/10.1007/978-94-017-9085-7_4
https://doi.org/10.1007/978-94-017-9085-7
https://doi.org/10.1007/978-3-642-12575-1_1
https://doi.org/10.1109/MS.2012.116
https://doi.org/10.1109/ACCESS.2022.3152397
https://doi.org/10.1201/9781420025538
https://www.projecttimes.com/articles/lights-camera-software/
https://doi.org/10.1162/002409403322258556
https://doi.org/10.1145/2915970.2916008
https://doi.org/10.1016/j.infsof.2018.09.006
https://doi.org/10.1007/978-3-030-32489-6_14
https://doi.org/10.1515/9781474414968
https://doi.org/10.1353/jfv.0.0020
https://doi.org/10.1111/isj.12261
https://doi.org/10.4324/9780429461361
https://doi.org/10.1007/978-3-642-00503-9
https://doi.org/10.1016/j.infsof.2008.09.009
https://doi.org/10.1093/itnow/bwr021
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1386/josc.2.1.25_1
https://doi.org/10.1002/jrsm.1106
https://doi.org/10.4337/9781781002124.00024
https://doi.org/10.1386/josc.1.1.11/1
https://doi.org/10.1371/journal.pmed.1000097
https://www.pipefy.com/blog/lean-pixar-where-creativity-meets-performance/#::text=In%20order%20to%20organize%20their,idea%20until%20it's%20finally%20animated
https://www.pipefy.com/blog/lean-pixar-where-creativity-meets-performance/#::text=In%20order%20to%20organize%20their,idea%20until%20it's%20finally%20animated
https://www.pipefy.com/blog/lean-pixar-where-creativity-meets-performance/#::text=In%20order%20to%20organize%20their,idea%20until%20it's%20finally%20animated
https://doi.org/10.7312/morr476489
https://doi.org/10.4324/9781315686899
https://doi.org/10.4324/9780080504407
https://doi.org/10.1111/jebm.12266
https://doi.org/10.4000/essais.717
https://doi.org/10.1016/j.infsof.2015.03.007
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Farina et al. SLR on Software Engineering and Filmmaking

Piper, R. J. (2013). How To Write a Systematic Literature Review: A Guide for

Medical Students. National AMR, Fostering Medical Research, 1–8.

Poppendieck, M., and Cusumano, M. A. (2012). Lean software development: a

tutorial. IEEE Softw. 29, 26–32. doi: 10.1109/MS.2012.107

Pressman, R. S. (2005). Software Engineering: A Practitioner’s Approach. London:

Palgrave Macmillan.

Richie, D. and Mellen, J. (1998). The Films of Akira Kurosawa. Berkeley, CA: Univ

of California Press.

Robson, C. andMcCartan, K. (2016). Real World Research. Social Science Research

Group.

Sacks, O. (1992). Tourette’s syndrome and creativity. BMJ 305:1515.

doi: 10.1136/bmj.305.6868.1515

Saeki, M. (1995). “Communication, collaboration and cooperation in software

development-how should we support group work in software development?,”

in Proceedings 1995 Asia Pacific Software Engineering Conference, 12–20.

Schmucker, C., Bluemle, A., Briel, M., Portalupi, S., Lang, B., Motschall, E., et al.

(2013). A protocol for a systematic review on the impact of unpublished studies

and studies published in the gray literature in meta-analyses. Syst. Rev. 2, 1–7.

doi: 10.1186/2046-4053-2-24

Sedelow, S. Y. (1970). The computer in the humanities and fine arts.ACMComput.

Surveys, 2, 89–110. doi: 10.1145/356566.356568

Seffah, A., Gulliksen, J., and Desmarais, M. C. (2005). “An introduction

to human-centered software engineering,” in Human-Centered Software

Engineering-Integrating Usability in the Software Development Lifecycle

eds A. Seffah, J. Gulliksen, M. Desmarais (Berlin: Springer), 3–14.

doi: 10.1007/1-4020-4113-6_1

Shah, R., and Ward, P. T. (2003). Lean manufacturing: context,

practice bundles, and performance. J. Oper. Manage. 21, 129–149.

doi: 10.1016/S0272-6963(02)00108-0

Siddaway, A. (2014). What is a systematic literature review and how do i do one.

Univ. Stirl. 1, 1–13.

Slater, L. (2005). Leadership for collaboration: an affective process. Int. J. Leadersh.

Educ. 8, 321–333. doi: 10.1080/13603120500088745

Stiglegger, M. (2001). Donald Richie: The Films of Akira Kurosawa, 3rd Edn,

Expanded and Updated With a New Epiloque. Redditch: Westland.

Trifonova, A., Jaccheri, L., and Bergaust, K. (2008). Software engineering

issues in interactive installation art. International J. Arts Technol. 1, 43–65.

doi: 10.1504/IJART.2008.019882

Van der Lelie, C. (2006). The value of storyboards in the product design process.

Pers. Ubiquit. Comput. 10, 159–162. doi: 10.1007/s00779-005-0026-7

Wallace (1999). Is Software Art or Engineering? Available online at: https://www.

spectacle.org/1199/software.html

Whitehead, J. (2007). “Collaboration in software engineering: a roadmap,” in

Future of Software Engineering (FOSE’07), 214–225. Washington, DC: IEEE.

doi: 10.1109/FOSE.2007.4

Winkler, D., Mordinyi, R., and Biffl, S. (2013). “Research prototypes versus

products: lessons learned from software development processes in research

projects,” in European Conference on Software Process Improvement (Berlin

Springer), 48–59. doi: 10.1007/978-3-642-39179-8_5

Yakimchuk, N. (2017). Small Budget? Producer Jason Blum’s 5 Rules for Lean

Filmmaking.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Farina, Fedorovskaya, Polivtsev and Succi. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computer Science | www.frontiersin.org 13 April 2022 | Volume 4 | Article 884533

https://doi.org/10.1109/MS.2012.107
https://doi.org/10.1136/bmj.305.6868.1515
https://doi.org/10.1186/2046-4053-2-24
https://doi.org/10.1145/356566.356568
https://doi.org/10.1007/1-4020-4113-6_1
https://doi.org/10.1016/S0272-6963(02)00108-0
https://doi.org/10.1080/13603120500088745
https://doi.org/10.1504/IJART.2008.019882
https://doi.org/10.1007/s00779-005-0026-7
https://www.spectacle.org/1199/software.html
https://www.spectacle.org/1199/software.html
https://doi.org/10.1109/FOSE.2007.4
https://doi.org/10.1007/978-3-642-39179-8_5
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	Software Engineering and Filmmaking: A Literature Review
	1. Introduction
	2. Methodology
	2.1. Research Questions
	2.2. Search Process
	2.3. Literature Selection
	2.4. Quality Assessment

	3. Results
	3.1. About RQ1: Resemblance Between Filmmaking and Software Development
	3.2. About RQ2: Potentially Overlapping Practices Used in Filmmaking and Software Development Techniques
	3.2.1. Potential Adaptation of Filmmaking Techniques to Programming
	3.2.2. Potential Usage of Programming Techniques in the Movie Industry

	3.3. RQ3: Collaborative Practices in Filmmaking and Software Development
	3.3.1. Teamwork and Leadership in Filmmaking
	3.3.2. Correlation Between Collaboration Practices in Movie and Software

	4. Summary of Our Results
	4.1. Analogies Between Software Development and Filmmaking (RQ1)
	4.1.1. Movie and Software Development Techniques (RQ2)
	4.1.2. Collaborative Filmmaking Practices (RQ3)

	5. Limitations and Threats to Validity
	5.1. Results Validation
	5.2. General Limitations
	5.3. Critical Assessment Against Benchmark Questions
	5.4. Adherence to PRISMA Checklist

	6. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References

