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This article introduces a three-axis framework indicating how AI can be informed by

biological examples of social learning mechanisms. We argue that the complex human

cognitive architecture owes a large portion of its expressive power to its ability to

engage in social and cultural learning. However, the field of AI has mostly embraced

a solipsistic perspective on intelligence. We thus argue that social interactions not

only are largely unexplored in this field but also are an essential element of advanced

cognitive ability, and therefore constitute metaphorically the “dark matter” of AI. In the

first section, we discuss how social learning plays a key role in the development of

intelligence. We do so by discussing social and cultural learning theories and empirical

findings from social neuroscience. Then, we discuss three lines of research that fall

under the umbrella of Social NeuroAI and can contribute to developing socially intelligent

embodied agents in complex environments. First, neuroscientific theories of cognitive

architecture, such as the global workspace theory and the attention schema theory, can

enhance biological plausibility and help us understand how we could bridge individual

and social theories of intelligence. Second, intelligence occurs in time as opposed to

over time, and this is naturally incorporated by dynamical systems. Third, embodiment

has been demonstrated to provide more sophisticated array of communicative signals.

To conclude, we discuss the example of active inference, which offers powerful insights

for developing agents that possess biological realism, can self-organize in time, and are

socially embodied.

Keywords: social interaction, cognitive architecture, virtual agents, social learning, Neuro-AI, neurodynamics,

self-organization, Alan Turing

1. THE IMPORTANCE OF SOCIAL LEARNING

1.1. Social Learning Categories
Various approaches have been proposed in order to reach a human-like level of intelligence.
For example, some argue that scaling foundational models (self-supervised pretrained deep
network models), data and compute can lead to such kind of intelligence (Bommasani
et al., 2021; Yuan et al., 2022). Others argue that attention, understood as a dynamical
control of information flow (Mittal et al., 2020), is all we need. Transformers have
proposed a general purpose architecture where inductive biases shaping the flow of
information are learned from the data itself (Vaswani et al., 2017); this architecture can
be applied to various domains ranging from sequence learning to visual processing and
time-series forecasting. Others argue that by having a complex enough environment, any
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reward should be enough to elicit some complex behavior and
end up in intelligent behavior that subserves the maximization
of such reward. This therefore discards the idea that specialized
problem formulations are needed for each ability (Silver
et al., 2021). Our proposal stems from the idea that human
cognitive functions such as theory of mind (the capacity to
understand other people by ascribing mental states to them)
and explicit metacognition (the capacity to reflect on and
justify our behavior to others) are not genetically programmed,
but rather constructed during development through social
interaction (Heyes, 2018). Since their birth, social animals use
their conspecifics as vehicles for gathering information that can
potentially help them respond efficiently to challenges in the
environment, avoiding harm and maximizing rewards (Kendal
et al., 2018). Learning adaptive information from others results
in better regulation of task performance, especially by gaining
fitness benefits and in avoiding some of the costs associated
with asocial, trial-and-error learning, such as time loss and
energy loss as well as exposure to predation (Clark and Dumas,
2016). Importantly, cultural inheritance permeates a broad array
of behavioral domains, including migratory pathways, foraging
techniques, nesting sites and mates (Whiten, 2021). The spread
of such information across generations gives social learning a
unique role in the evolution of culture and therefore makes it
a crucial candidate to investigate the biological bases of human
cognition (Gariépy et al., 2014). In the current paper, we do not
focus extensively on the differences between social learning in
humans and in other animals as the cognitive processes used
in acquiring behavior seem to be very similar across a wide
range of species (Heyes, 2012). What sets humans apart from
other animals, however, is: a) social learning in humans is highly
rewarded from early infancy (Nielsen et al., 2012), b) the nature
of the inputs surrounding humans is way more complex than
for other animals (Heyes, 2012). According to the ontogenetic
adaptation hypothesis (Tomasello, 2020), human infant’s unique
social-cognitive skills are the result of shared intentionality
(capacity to share attention and intention) and are adaptations
for life in a cultural group—with individuals coordinating,
communicating and learning from each other in several ways.
Recent reviews have identified four main categories of social
learning that differ in what is socially learnt and in the cognitive
skills that are required (Hoppitt and Laland, 2008; Whiten, 2021)
(Figure 1). These categories have been developed through the
approach of behaviorism. While we acknowledge that there is
more to social learning than mere behavior (the affective and
cognitive dimensions are equally crucial Gruber et al., 2021), we
keep it as the focus of this short article because it is an empirically
solid starting point with clarified mechanisms. The purpose
of this section, then, is to give an example of social learning
mechanisms that are common across multiple species and can be
understood as a natural form of Social Neuro-AI. Moreover, this
section aims at demonstrating how social interactions are a key
component of biological intelligence; we make the case that they
might be of inspiration for the development of socially intelligent
artificial agents that can cooperate efficiently with humans and
with each other. In other words, although there are examples
of social agents (chatbots, non-player characters in video games,

social robots), we argue that social interactions still remain the
“dark matter” of the field. These social behaviors often emerge
from a Piagetian perspective on human intelligence. As argued
by Kovač et al. (2021), mainstreamDeep Reinforcement Learning
research sees intelligence as the product of the individual agent’s
exploration of the world; it mainly focuses on sensorimotor
development and problems involving interaction with inanimate
objects rather than social interactions with animate agents. This
approach can and has given rise to apparent social behaviors, but
we argue that this is not the best approach, as it does not involve
any focus on the genuine social mechanisms per se (Dumas et al.,
2014a). Instead, it sees social behaviors as a collateral effect of the
intelligence of a solitary thinker. For this reason, as Schilbach
et al. (2013) argued a decade ago that social interactions were
the “dark matter” of cognitive neuroscience, here we argue that
social interactions can also be considered metaphorically as the
“dark matter” of AI (Schilbach et al., 2013). Indeed, more than
being a rather unexplored topic, social interactions can constitute
a critical missing piece for the understanding and modeling of
advanced cognitive abilities.

At the most elementary level, enhancement consists of an
agent observing a model that focuses on particular objects or
locations and consequently adopting the same focus (Thorpe,
1963; Heyes, 1994). For example, it was demonstrated that bees
outside the nest land more often on flowers that they had seen
preferred by other bees (Worden and Papaj, 2005). This skill
requires social agents to perform basic associative learning in
relation to other agents’ observed actions; it is likely to be
the most widespread form of social learning across the animal
kingdom. A more complex form of social learning consists
of observational conditioning, which exposes a social agent
to a relationship between stimuli (Heyes, 1994); this exposure
causes a change in the agent. For example, the observation of
experienced demonstrators facilitated the opening of hickory
nuts by red squirrels, relative to trial-and-error learning (Weigl
and Hanson, 1980). This is therefore a mechanism through
which agents learn the value of a stimulus from the interaction
with other agents. Yet a more complex form of social learning
consists of affordance learning, which allows a social agent to
learn the operating characteristics of objects or environments
by observing the behavior of other agents (Whiten, 2021). For
example, pigeons that saw a demonstrator push a sliding screen
for food made a higher proportion of pushes than observers in
control conditions, thus exhibiting affordance learning (Klein
and Zentall, 2003). In other words, the animals perceive the
environment partly in terms of the action opportunities that it
provides. Finally, at the most complex level, copying another
individual can take the shape of pure imitation, where every detail
is copied, or emulation, where only a few elements are copied
(Byrne, 2002). For example, most chimpanzees mastered a new
technique for obtaining food when they were under the influence
of a trained expert, whereas none did so in a population lacking
an expert (Whiten, 2005). As to what is required for imitation,
there are debates in the literature ranging from the distinctions
between program-level and production-level imitation (Byrne,
2002) to the necessity of pairing Theory of Mind (ToM) with
behavioral imitation to obtain “true” imitation (Call et al., 2005).
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FIGURE 1 | Social learning categories. Figure inspired by Whiten (2005).

We refer the reader to Breazeal and Scassellati (2002) for a more
detailed discussion of imitation in robots.

1.2. Social Learning Strategies
Crucially, while social learning is widespread, using it
indiscriminately is rarely beneficial. This suggests that individuals
should be selective in what, when, and from whom they learn
socially, by following “social learning strategies” (SLSs; Kendal
et al., 2018). Several SLSs might be used by the same population
and even by the same individual. The aforementioned categories
of social learning have been shown to be refined by modulating
biases that can strengthen their adaptive power (Kendal et al.,
2018). For example, an important SLS is copying when asocial
learning would be costly; research has shown that, when task
difficulty increases, various animals are more likely to use social
information. Individuals also prefer using social information
when they are uncertain about a task; high-fidelity copying is
observed among children who lack relevant personal information
(Wood et al., 2013). In general, other state-based SLSs can affect
the decision to use social information, such as age, social rank,
and reproductive state of the learner; for example, low- and mid-
ranking chimpanzees are more likely to use social information
than high-ranking individuals (Kendal et al., 2015). Model-based
biases are another crucial category; for example, children prefer
to copy prestigious individuals, where status is evidenced by
their older age, popularity and social dominance (Flynn and
Whiten, 2012). Multiple evidence also suggests that a conformist
transmission bias exists, whereby the behavior of the majority of
individuals is more likely to be adopted by others (Kendal et al.,
2018).

1.2.1. Social Learning in Neuroscience
We have presented evidence that social learning is a crucial
hallmark of many species and it manifests itself across different
behavioral domains; without it, animals would lose the possibility

to quickly acquire valuable information from their conspecifics
and therefore lose fitness benefits. However, one important
question is: how does the brain mediate social processes and
behavior? Despite the progress made in social neuroscience
and in developmental psychology, only in the last decade,
serious efforts have started focusing on the answer to this
question—as neural mechanisms of social interaction were
seen as the “dark matter” of social neuroscience (Schilbach
et al., 2013); recently, a framework for computational social
neuroscience has been proposed, in an attempt to naturalize
social interaction (Tognoli et al., 2018). At the intra-brain
level, it was demonstrated that social interaction is categorically
different from social perception and that the brain exhibits
different activity patterns depending on the role of the subject
and on the context in which the interaction is unfolding
(Dumas et al., 2012). At the inter-brain level, functional
Magnetic Resonance Imaging (fMRI) or Electroencephalography
(EEG) recordings of multiple brains (i.e., hyperscanning) have
allowed to demonstrate inter-brain synchronization during
social interaction—specifically, while subjects were engaged in
spontaneous imitation of hand movements (Dumas et al.,
2010). Interestingly, the increase in coupling strength between
brain signals was also shown to be present during a two-
person turn-taking verbal exchange with no visual contact,
in both a native or a foreign language context (Pérez et al.,
2019). Inter-brain synchronization is also modulated by the
type of task and by the familiarity between subjects (Djalovski
et al., 2021). Overall, this shows that, beyond their individual
cognition, humans are also coupled in the social dimension.
Interestingly, the field of computational social neuroscience has
also focused on explaining the functional meaning of such
correlations between inter-brain synchronization and behavioral
coupling. A biophysical model showed that the similarity of both
endogenous dynamics and anatomical structure might facilitate
inter-individual synchronization and explain our propensity to
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socially bind with others via perception and actions (Dumas et al.,
2012). More specifically, the connectome, a wiring diagram that
maps all neural connections in the brain, not only facilitates
the integration of information within brains, but also between
brains. In those simulations, tools from dynamical systems thus
suggest that beyond their individual cognition, humans are also
dynamically coupled in the social realm (Dumas et al., 2012).

1.2.2. Social Learning and Language Development
Regarding language development in humans, cognitive and
structural accounts of language development have often
conceptualized linguistic abilities as static and formal sets
of knowledge structures, ignoring the contextual nature of
language. However, good communication must be tailored to
the characteristics of the listener and of the context—language
can also be explained as a social construct (Whitehurst, 1978).
For example, evidence shows that the language outcome of
children with cochlear implants is heavily influenced by parental
linguistic input during the first years after cochlear implantation
(Holzinger et al., 2020). In terms of specific social learning
variables, imitation has also been shown to play a major role in
boosting language development, usually in the form of selective
imitation (Whitehurst et al., 1974; Whitehurst and Vasta, 1975).
Moreover, in children with autism spectrum disorder, social
learning variables such as joint attention, immediate imitation,
and deferred imitation have been shown to be the best predictors
of language ability and rate of communication development
(Toth et al., 2006). These results clearly suggest that social
learning skills have an influence on language acquisition in
humans.

2. STEPS TOWARD SOCIAL NEURO AI

How Could Social Learning Be Useful for AI?
In the previous sections, we have provided convincing

evidence that interpersonal intelligence enhances intrapersonal
intelligence through the mechanisms and biases of social
learning. It is a crucial aspect of biological intelligence that
possesses a broad array of modulating biases meant to strengthen
its adaptive power. Recent efforts in computational social
neuroscience have paved the way for a naturalization of social
interactions.

Multi-agent reinforcement learning (MARL) is the best
subfield of AI to investigate the interactions between multiple
agents. Such interactions can be of three types: cooperative
games (all agents working for the same goal), competitive games
(all agents competing against each other), and mixed motive
games (a mix of cooperative and competitive interactions). At
each timestep t, each agent is attempting to maximize its own
reward by learning a policy that optimizes the total expected
discounted future reward. We refer the reader to high-quality
reviews that have been written on MARL (Hernandez-Leal
et al., 2019; Nguyen et al., 2020; Wong et al., 2021). Here, we
highlight that, among others, low sample efficiency is one of the
greatest challenges for MARL, as millions of interactions with the
environment are usually needed for agents to learn. Moreover,
multi-agent joint action space increases exponentially with the

number of agents, leading to problems that are often intractable.
In the last few years, part of the AI community has already
started demonstrating that these problems can be alleviated
by mechanisms that allow for social learning (Jaques, 2019;
Ndousse et al., 2021). For example, rewarding agents for having
a causal influence over other agents’ actions leads to enhanced
coordination and communication in challenging social dilemma
environments (Jaques et al., 2019) and rewarding agents for
coordinating attention with another agent improves their ability
of coordination, by reducing the cost of exploration (Lee et al.,
2021). More in general, concepts from complex systems such
as self-organization, emergent behavior, swarm optimization
and cellular systems suggest that collective intelligence could
produce more robust and flexible solutions in AI, with higher
sample efficiency and higher generalization (Ha and Tang,
2021). In the following sections, we argue that to exploit all
benefits that social learning can offer AI and robotics, more
focus on biological plausibility, social embodiment and temporal
dynamics is needed. Studies have focused on the potential of
conducting research at the intersection of some of these three
axes (Kerzel et al., 2017; Husbands et al., 2021). Moreover, it is
worth noticing that (Dumas et al., 2012; Heggli et al., 2019) offer a
tentative glimpse of what the intersection of the three axes would
look like-both using dynamical systems with computational
simulations to address falsifiable scientific questions associated
with the idea of social embodiment.

2.1. Biological Plausibility
Biological plausibility refers to the extent to which an
artificial architecture takes inspiration from empirical results
in neuroscience and psychology. The social learning skills and
biases that we have shown so far are boosted in humans by
their advanced cognitive architecture (Whiten, 2021). Equipping
artificial agents with complex social learning abilities will
therefore require more complex architectures that can handle
a great variety of information efficiently. This is exactly what
"Neuro-AI" aims at: drawing on how evolution has shaped the
brain of humans and of other animals in order to create more
robust agents (Figure 2). While the human unconscious brain
aligns well with the current successful applications of deep
learning, the conscious brain involves higher-order cognitive
abilities that perform much more complex computations than
what deep learning can currently do (Bengio, 2019). More
specifically, “unconsciousness” is where most of our intelligence
lies and involves unconscious abilities related to view-invariance,
meaning extraction, control, decision-making and learning; “i-
consciousness” is the part of human consciousness that is focused
on integrating all available evidence to converge toward a single
decision; “m-consciousness” is the part of human consciousness
that is focused on reflexively representing oneself, utilizing
error detection, meta-memory and reality monitoring (Graziano,
2017). Notably, recent efforts in the deep learning community
have indeed focused on Neuro-AI: building advanced cognitive
architectures that are inspired from neuroscience. In particular,
the global workspace theory (GWT) is the most widely accepted
theory of consciousness, and it postulates that when a piece
of information is selected by attention, it may non-linearly
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FIGURE 2 | Billions of humans interact daily with algorithms—yet AI is far from human social cognition. We argue that creating such socially aware agents may require

“Social Neuro-AI”—a program developing 3 research axes: 1. Biological plausibility 2. Temporal dynamics 3. Social embodiment. Overall, those steps toward socially

aware agents will ultimately help in aligned interactions between natural and artificial intelligence. Figure inspired by Schilbach et al. (2013).

achieve “ignition,” enter the global workspace (GLW) and be
shared across specialized cortical modules, therefore becoming
conscious (Baars, 1993; Dehaene et al., 1998). The use of such
a communication channel in the context of deep learning was
explored for modeling the structure of complex environments.
This architecture was demonstrated to encourage specialization
and compositionality and to facilitate the synchronization of
otherwise independent specialists (Goyal et al., 2021). Moreover,
inductive biases inspired by higher-order cognitive functions
in humans have been shown to improve OOD generalization.
Overall, this section proposes that we draw inspiration from
one structure we know is capable of comprehensive intelligence
capable of perception, planning, and decisionmaking: the human
brain (Figure 2). For a more extensive discussion on biological
plausibility in AI, we refer the reader to Hassabis et al. (2017) and
Macpherson et al. (2021).

2.2. Temporal Dynamics
Figure 2more specifically, FFNs allow signals to travel only from
input to output, whereas RNNs can have signals traveling in
both directions and therefore introduce loops in the network.

Incorporating differential equations in a RNN (continuous-
time recurrent neural network) can help learn long-term
dependencies (Chang et al., 2019) and model more complex
phenomena, such as the effects of incoming inputs on a
neuron. Moreover, viewing RNNs as a discretization of ordinary
differential equations (ODEs) driven by input data has led to
gains in reliability and robustness to data perturbations (Lim
et al., 2021b). This becomes clear when one notices that many
fundamental laws of physics and chemistry can be formulated
as differential equations. In general, differential equations
are expected to contribute to shifting the perspective from
representation-centered to self-organizing agents (Brooks, 1991).
The former view has been one predominant way of thinking
about autonomous systems that exhibit intelligent behavior: such
autonomous agents use their sensors to extract information
about the world they operate in and use it to construct an
internal model of the world and therefore rationally perform
optimal decision making in pursuit of some goal. In other
words, autonomous agents are information processing systems
and their environment can be abstracted away as the source
of answers to questions raised by the ongoing agents’ needs.
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Cognitive processes are thought to incorporate representational
content and to acquire such contents via inferential processes
instantiated by the brain. Importantly, according to this view,
the sensorimotor connections of the agents to the environment
are still relevant to understand their behavior, but there is
no focus on what such connections involve and how they
take place (Newell and Simon, 1976). The latter view, in
line with the subsumption architecture introduced by Brooks
(1991), shows how the representational approach ignores the
nonlinear dynamical aspect of intelligence, that is, the temporal
constraints that characterize the interactions between agent and
environment. Instead, dynamics is a powerful framework that
has been used to describe multiple natural phenomena as an
interdependent set of coevolving quantitative variables (van
Gelder, 1998) and a crucial aspect of intelligence is that it occurs
in time and not over time. If we abstract away the richness of real
time, then we also change the behavior of the agents (Smithers,
2018). In other words, one should indeed focus on the structural
complexity and on the algorithmic computation the agents need
to carry out, but without abstracting away the dynamical aspects
of the agent-environment interactions: such dynamical aspects
are pervasive and, therefore, necessary to explain the behavior
of the system (van Gelder, 1998; Barandiaran, 2017; Smithers,
2018).

2.3. Social Embodiment
There has been a resurgence of enactivism in cognitive
neuroscience over the past decade, emphasizing the circular
causality induced by the notion that the environment is acting
upon the individual and the individual is acting upon the
environment. To understand how the brain works, then one
has to acknowledge that it is embodied (Clark, 2013; Hohwy,
2013). Evidence for this shows that embodied intelligence in
human children arises from the interaction of the child with
the environment through a sensory body that is capable of
recognizing the statistical properties of such interaction (Smith
and Gasser, 2005). Moreover, higher primates interpret each
other as psychological subjects based on their bodily presence;
social embodiment is the idea that the embodiment of a socially
interactive agent plays a significant role in social interactions. It
refers to “states of the body, such as postures, arm movements,
and facial expressions, that arise during social interaction and
play central roles in social information processing.” Thompson
and Varela (2001) and Barsalou et al. (2003). This includes
internal and external structures, sensors, and motors that allow
them to interact actively with the world. We argue that robots
are more socially embodied than digital avatars for a simple
reason: they have a higher potential to use parts of their bodies
to communicate and to coordinate with other agents (Figure 2).
At a high level, sensorimotor capabilities in the avatar and robots
are meant to model their role in biological beings: the agent
now has limitations in the ways they can sense, manipulate,
and navigate its environments. Importantly, these limitations are
closely tied to the agent’s function (Deng et al., 2019). The idea
of social embodiment in artificial agents is supported by evidence
of improvements in the interactions between embodied agents
and humans (Zhang et al., 2016). Studies have shown positive

effects of physical embodiment on the feeling of an agent’s social
presence, the evaluation of the agent, the assessment of public
evaluation of the agent, and the evaluation of the interaction
with the agent (Kose-Bagci et al., 2009; Gupta et al., 2021). In
robots, social presence is a key component in the success of social
interactions and it can be defined as the combination of seven
abilities that enhance a robot/s social skills: 1. Express emotion,
2. Communicate with high-level dialogue, 3. Learn/recognize
models of other agents, 4. Establish/maintain social relationships,
5. Use natural cues, 6. Exhibit distinctive personality and
character, and 7. Learn/develop social competencies (Lee, 2006).
Social embodiment thus equips artificial agents with a more
articulated and richer repertoire of expressions, ameliorating the
interactions with it (Jaques, 2019). For instance, in human-robot
interaction, a gripper is not limited to its role in the manipulation
of objects. Rather, it opens a broad array of movements that can
enhance the communicative skills of the robot and, consequently,
the quality of its possible interactions (Deng et al., 2019). The
embodied agent is therefore the best model of the aspects
of the world relevant to its surviving and thriving, through
performing situationally appropriate actions (Ramstead et al.,
2020) (Figure 2). Therefore, it will be crucial to scale up the
realism of what the agents perceive in their social context, going
from simple environments like GridWorld tomore complex ones
powered by video-game engines and, finally, to extremely realistic
environments, like the one offered by theMetaHuman Creator of
Unreal Engine. In parallel, greater focus is needed on the mental
processes supporting our interactions with social machines, so as
to develop amore nuanced understanding of what is ‘social’ about
social cognition (Cross and Ramsey, 2021) and to gather insights
critical for optimizing social encounters between humans and
robots (Henschel et al., 2020). For a more extensive discussion
on embodied intelligence, we refer the reader to Roy et al.
(2021). These advancements will hopefully result in more socially
intelligent agents and therefore in more fruitful interactions
between humans and virtual agents.

3. ACTIVE INFERENCE

The active inference framework represents a biologically realistic
way of moving away from rule-governed manipulation of
internal representations to action-oriented and situationally
appropriate cognition (Friston et al., 2006). More specifically,
active inference can be seen as a self-organizing process of
action policy selection (Ramstead et al., 2020), which a) concerns
the selective sampling of the world by an embodied agent and
b) instantiates in a generative model the goal of minimizing
their surprise through perception and action (Ramstead et al.,
2020). In other words, generative models do not encode
exploitable and symbolic structural information about the world,
because cognition does not perform manipulation of internal
representations, but rather instantiates control systems that
are expressed in embodied activity and utilize information
encoded in the approximate posterior belief (Ramstead et al.,
2020). Interestingly, by grounding GWT within the embodied
perspective of the active inference framework, the Integrated
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World Modeling Theory (IWMT) suggests that conscious
experience can only result from autonomous embodied agents
with global workspaces that generate integrative models of the
world with spatial, temporal and causal coherence (Safron, 2020).

Active inference models are still very discrete in their
architectures, especially regarding high-level cognitive aspects,
but they may be a good class of models to raise the tension
between computation and implementation (Figure 2). Therefore,
they only have been able to handle small policies and state-spaces,
while also requiring the environmental dynamics to be well
known. However, using deep neural networks to approximate key
densities, the agent can scale to more complex tasks and obtain
performance comparable to common reinforcement learning
baselines (Millidge, 2020). Moreover, one advantage of active
inference is that the associated biologically inspired architectures
predict future trajectories of the agent N steps forward in
time, rather than just at the next step. By sampling from these
trajectories, the variance of the decision is reduced (Millidge,
2020).

Interestingly, by grounding GWT within the embodied
perspective of the active inference framework, the Integrated
World Modeling Theory (IWMT) suggests that complexes
of integrated information and global workspaces can entail
conscious experiences if (and only if) they are capable of
generating integrative world models with spatial, temporal,
and causal coherence. These ways of categorizing experience
are increasingly recognized as constituting essential “core
knowledge” at the foundation of cognitive development (Spelke
and Kinzler, 2007). In addition to space, time, and cause, IWMT
adds embodied autonomous selfhood as a precondition for
integrated world modeling.

4. A DETAILED PROPOSAL: HOW CAN
INCREASED BIOLOGICAL PLAUSIBILITY
ENHANCE SOCIAL AFFORDANCE
LEARNING IN ARTIFICIAL AGENTS?

Attention has become a common ingredient in deep learning
architectures. It can be understood as a dynamical control
of information flow (Mittal et al., 2020). In the last decade,
transformers have demonstrated how attention may be all we
need, obtaining excellent performances in sequence learning
(Vaswani et al., 2017), visual processing (Dosovitskiy et al.,
2020) and time-series forecasting (Lim et al., 2021a). While
transformers proposed a general purpose architecture where
inductive biases shaping the flow of information are learned
from the data itself, we can imagine a higher-order informational
filter built on top of attention: an Attention Schema (AS),
namely a descriptive and predictive model of attention. In this
regard, the attention schema theory (AST) is a neuroscientific
theory that postulates that the human brain, and possibly the
brain of other animals, does construct a model of attention:
an attention schema (Graziano and Webb, 2015). Specifically,
the proposal is that the brain constructs not only a model of
the physical body but also a coherent, rich, and descriptive
model of attention. The body schema contains layers of valuable

information that help control and predict stable and dynamic
properties of the body; in a similar fashion, the attention schema
helps control and predict attention. One cannot understand
how the brain controls the body without understanding the
body schema, and in a similar way one cannot understand how
the brain controls its limited resources without understanding
the attention schema (Graziano, 2017). The key reason a
higher-order filter on top of attention seems a promising
idea for deep learning comes from control engineering: a
good controller contains a model of the item being controlled
(Conant and Ross Ashby, 1970). More specifically, a descriptive
and predictive model of attention could help the dynamical
control of attention and therefore maximize the efficiency with
which resources are strategically devoted to different elements
of an ever-changing environment (Graziano, 2017). Indeed,
the performance of an artificial agent in solving a simple
sensorimotor task is greatly enhanced by an attention schema,
but its performance is greatly reduced when the schema is not
available (Wilterson and Graziano, 2021). Therefore, the study
of consciousness in artificial intelligence is not a mere pursuit of
metaphysical mystery; from an engineering perspective, without
understanding subjective awareness, it might not be possible to
build artificial agents that intelligently control and deploy their
limited processing resources. It has also been argued that, without
an attention schema, it might be impossible to build artificial
agents that are socially intelligent. This idea stems from the
evidence that points at an overlap of social cognition functions
with awareness and attention functions in the right temporo-
parietal junction of the human brain (Mitchell, 2008). It was
then proposed that an attention schema might also be used for
social cognition, giving rise to an overlap between modeling
one’s own attention and modeling others’ attention. In other
words, when we attribute to other people an awareness of their
surroundings, we are constructing a simplified model of their
attention—a schema of others’ attention (Graziano and Kastner,
2011). Indeed, such a model would enhance the ability of the
agent to predict social affordances in real time, which is a
goal the field has been trying to achieve in different ways (Shu
et al., 2016; Ardón et al., 2021). Without a model of others’
attention, even if we had detailed information about them, we
could not predict their behavior on a moment-by-moment basis.
However, with a component that tracks how and where other
agents are focusing their resources in the environment, the
probabilities for many affordances in the environment become
computable in real time (Graziano, 2019). Specifically, there
are three predictions that are investigated in this proposal. The
first prediction is that, without an attention schema, attention is
still possible, but it suffers deficits in control and thus leads to
worse performance. The second prediction is that an attention
schema is useful for modeling the attention of other agents
as well —as the machinery that computes information about
other people’s attention is the same machinery that computes
information about our own attention (Graziano and Kastner,
2011). The third prediction is that an agent equipped with an
attention schema is going to have better OOD generalization
than a classic Proximal Policy Optimization agent (Schulman
et al., 2017), especially in environments in which the ability to
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intelligently control and deploy limited processing resources is
necessary.

5. CONCLUSION

At the crossroads of robotics, computer science, psychology,
and neuroscience, one of the main challenges for humans
is to build autonomous agents capable of participating in
cooperative social interactions. This is important not only
because AI will play a crucial role in daily life well into
the future, but also because, as demonstrated by results in
social neuroscience and evolutionary psychology, intrapersonal
intelligence is tightly connected with interpersonal intelligence,
especially in humans (Dumas et al., 2014b). In this opinion
article, we have proposed an approach that unifies three lines
of research that, at the moment, are separated from each
other; in particular, we have proposed three research directions
that are expected to enhance efficient exchange of information
between agents. Biological plausibility attempts to increase the
robustness and OOD generalization of algorithms by drawing
on knowledge about biological brains; temporal dynamics
attempts to better capture long-term temporal dependencies;
social embodiment proposes that states of the body that arise
during social interaction play central roles in social information

processing. Unifying these axes of research would contribute
to creating agents that are able to cooperate efficiently in
extremely complex and realistic environments (Dennis et al.,
2021), while interacting with other embodied agents and with
humans.
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