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ABSTRACT 
 

In this study, we are interested in the two-dimensional numerical simulation of the turbulent mixed 
convection in the case of a square with two side lid-driven cavity containing a hot obstacle. The 
transfer equations coupled with those of the     closure model and the boundary conditions were 
presented and discretized using the finite volume method. The coupling between the velocity and 
pressure fields is achieved by the SIMPLE algorithm. The technique of line-by-line scanning with 
the Thomas algorithm (TDMA) is used for the iterative resolution of discretized equations. The 
control parameters of the present study are the temperature gradient between the hot walls and the 
cold walls, and the speed imposed on the mobile walls. Streamlines generally show flow 
characterized by the presence of two counter-rotating cells. The areas adjacent to the isothermal 
walls and to the moving walls are the site of the development of thermal and dynamic boundary 
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layers, where significant temperature and velocity gradients have been observed, subsequently 
influencing the profiles of turbulent quantities such as turbulent viscosity, the production and 
dissipation of turbulent kinetic energy and the intensity of turbulence. 
 

 
Keywords: Turbulent flow; mixed convection; heat transfer; lid-driven cavity; finite volume method.  
 

NOMENCLATURES 
 

x, y : Coordinates in the horizontal and vertical directions respectively (m) 
u, v : Average horizontal and vertical components of the velocity (m/s) 
θ : Temperature (K) 
k : Average turbulent kinetic energy (m²/s²) 
ε* : Average turbulent kinetic energy dissipation (m²/s

3
 ) 

p : Average pressure (Pa) 
g : Gravity (m/s²) 
ρ : Density (kg/m

3
) 

  : Kinematic viscosity (m²/s) 

    : Turbulent kinematic viscosity (m²/s) 
L : Length of the side of the cavity (m) 
t : Time (s) 

 
 

DIMENSIONLESS VARIABLES 
 

 X, Y : Coordinates in horizontal and vertical directions 
U, V : Average horizontal and vertical components of the velocity 
T : Average temperature 
K : Average turbulent kinetic energy 
P : Average pressure 

    : Kinematic viscosity 

  
   : Kinematic turbulent viscosity 

ε : Average turbulent kinetic energy dissipation 

    : Reference temperature 

   : Time 

      : Time step  
 

DIMENSIONLESS NUMBERS 
 

   
 

 
 
  

 
 
: Reduced velocity 

   
  

  

 
: Mass number 

   
    

 
  

: Cauchy number 

     
  

     
: Richardson number 

     
      

    : Grashof number 
 

    
 

 
  : Prandtl number 

     
  

 
   : Reynolds number 

 

1. INTRODUCTION  
 

The problem of mixed convection in enclosures 
with moving walls is one of the main topics in the 
computational fluid dynamics field. The simple 
geometry and easy implementation of  boundary 
conditions make it very attractive for fluid 

dynamics researchers to validate their numerical 
codes [1,2]. “The lid-driven cavity is very 
important for fluid flow research and is found in 
various engineering fields and technological 
applications such as  flow and heat transfer in 
solar ponds, dynamics of lakes  thermal 
hydraulics of nuclear reactors, food processing 
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and float glass production” [3]. Due to its 
importance, a wide variety of experimental and 
numerical studies on lid-driven cavity flow for 
different configurations are available in the 
literature. According to Oztop et al. [4], “there are 
two major kinds of studies: the first one is 
concerned with two-dimensional enclosures 
where the horizontal top or bottom wall is sliding, 
with a constant velocity or oscillating [5,6], and 
similarly in three-dimensional cavities” [7,8]. “The 
second deals with side driven differentially 
heated cavities. In this case, left or right vertical 
wall or both vertical walls move with a constant 
velocity in the same or opposite in their planes. 
In these studies, usually the lid-driven side and 
the one opposing it are heated differentially to 
create a temperature gradient in the cavity” 
[9,10]. 
 
The numerical simulations of turbulent flows and 
heat transfer have become over the last few 
decades, one of the essential attentions of 
engineering applications in the industrial and 
engineering fields. Turbulence flows are mainly 
simulated by three methods: the Direct 
Numerical Simulation (DNS), the Large Eddy 
Simulation (LES) method and the Reynolds 
Averaged Navier Stokes (RANS) models” 
[11,12,13]. Azzouz et al. [14] “have numerically 
studied the two-dimensional flow in a lid driven 
cavity with antiparallel motion of horizontal walls 
both in laminar and turbulent regime for different 
Reynolds numbers”. “In the turbulent regime, the 
study considered four RANS turbulence models: 
Omega RSM,        ,         and Spalart-
Allmaras. The results of their studies in terms of 
streamline and secondary vortex depth show a 
high similarity of the predicted flow structures 
between the Omega RSM model and those from 
the laminar flow assumption. In contrast, the flow 
calculated with the SST k ω model, the         
model, and the Spalart-Allmaras model reveals a 
remarkable underprediction that is clearly 
apparent in the size and number of secondary 
eddies in the near-wall regions” [14]. 
 
Henkes et al. [15] have investigated on “laminar 
and turbulent natural convection flow in a two-
dimensional squared enclosure through three 
different turbulence models such as the standard 
k–ε model with logarithmic wall functions, low-
Reynolds-number model of Chien [16] and low-
Reynolds-number model of Jones and Launder” 
[17]. “Their results shown that differences 
between the turbulence models are largest for 
quantities that are determined in the inner layer 
of the vertical boundary layer, for instance, the 

wall-heat transfer and the wall-shear stress. 
Many researchers examined heat transmission in 
lid-driven cavities with a heat source inside the 
cavity which directly influence the flow pattern” 
[18–24]. “Combined mixed convective heat 
transfer in a lid-driven square cavity having two 
heats conducting spinning cylinders located 
inside the cavity” has been studied numerically 
by Paul et al. [25] They kept horizontal walls 
were kept adiabatic, while the right and left walls 
were maintained at constant higher and lower 
temperatures. The authors examined the 
combined impacts of Reynolds number and 
Grashoft number on the Nusselt number, 
concluding that Nusselt is more                         
dependent on the increase of Grashoft                      
than the rise of Reynolds in this particular 
problem. 
   
A numerical investigation of mixed convection 
was conducted in a lid driven cavity with a hollow 
heat-conductive cylinder inside the cavity by 
Keya et al. [26], where the upper lid is given a 
constant velocity. The governing parameters of 
their studies were the Prandtl number, the 
Richardson number and the Reynolds number. 
The results were presented in terms of 
streamlines, isotherms and average heat transfer 
rate. They arrived to the conclusion that 
Richardson number has a significant impact on 
the flow inside the cavity, by increasing the 
Richardson number values, the buoyancy effect 
increases, and total convection and heat transfer 
rates improve. The flow field strength becomes 
more dependent on the shear force generated by 
lid motion as Re increases which also increases 
significantly heat transmission rate increases. 
They also observed that the fluid flow with a 
lower Prandtl number is more sensitive to 
changes in buoyancy force than fluids flow with a 
higher Prandtl. With rising Prandtl values, the 
size of the vortex grows in streamline and heat 
transmission is stronger at low Prandtl values 
than at higher Prandtl values. And finally on the 
basis of their results it can be observed that the 
flow strength increases substantially as the 
dimensionless time increases, and multiple 
vortices emerge as the convection rate 
increases.  In the study conducted by Sin-Yeob 
Kim et al. [27], computational fluid dynamics 
analyses of buoyancy-aided turbulent mixed 
convection in a vertical rectangular was 
investigated. The CFD analyses were performed 

using a realisable k–ε model and a   –    model  
and the results were compared with the 
experimental results constructed at Seoul 
National University. It was found that the results 
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of the   –   model exhibited good agreement 
with the experimental results. 
  

Islam et al. [18] performed the numerical 
investigation on laminar mixed convection 
characteristics in a square cavity with an 
isothermally heated square blockage inside has 
been investigated numerically using the finite 
volume method of the ANSYS FLUENT 
commercial CFD code. Various blockage ratio 
and the blockage position inside the cavity have 
been considered in this study where the 
blockage is maintained at a hot temperature, and 
the surfaces of the cavity, including the lid are 
maintained at à cold temperature. The governing 
flow parameters are the Reynolds number, the 
Grashof number, and the Richardson number. 
The flow and heat transfer behaviour in the cavity 
for a range of Richardson number between 0.01–
100 at a fixed Reynolds number and Prandtl 
number is examined comprehensively. The local 
and the average Nusselt number at the blockage 
surface for different values of Richardson 
number and for various positions of the bloc 
inside the cavity. It is found that the average 
Nusselt number is less impacted by the value of 
Richardson expected when the value of the 
Richardson is of the order of 1 beyond which the 
average Nusselt number increases rapidly with 
the Richardson number. For the central 
placement of the blockage at any fixed 
Richardson number, the average Nusselt number 
decreases with increasing blockage ratio and 
reaches a minimum at around a blockage ratio of 
slightly larger than 1/2. For further increase of the 
blockage ratio, the average Nusselt number 
increases again and becomes independent of the 
Richardson number. The most preferable heat 
transfer (based on the average Nusselt number) 
is obtained when the blockage is placed around 
the top left and the bottom right corners of the 
cavity”. 
 
This study presents numerical analysis results on 
turbulent mixed convection in a double-sided lid 
driven cavity with a hot bloc inside the cavity, 
using the     model, and a discussion of the 
heat-transfer and the different turbulent some 
parameters predicted by the     models. 
 

2. NUMERICAL SIMULATION 
 

2.1 Problem Description 
 
The problem under consideration is a two-sided 
lid driven square cavity with an isothermal hot 
square block inside as shown in Fig.1. The space 

between the bloc and the cavity is fulfilled with air 
which is assumed to be incompressible. The 
vertical walls are isothermal, maintained at cold 
temperature and with antiparallel motion. The 
lower wall is assumed to be perfectly adiabatic, 
and static with the no-slip boundary condition. 
The upper wall is static with the no-slip boundary 
condition. It is divided into three parts; where the 
central isothermal part is kept at the hot 
temperature and the other two parts are 
adiabatic. Two different cases were considered 
in the present study. In the first case, with the 
cold temperature and the velocity of the moving 
walls fixed, the hot temperature is gradually 
increased and the impact of the increase of the 
thermal gradient on the flow is analyzed. In the 
second case, the hot and cold temperatures are 
fixed and the impact of the increase of the 
moving wall velocity on the flow is studied. 
  

 
 
Fig. 1. Schematic diagram of the problem with 

boundary conditions 
 

2.2 Governing Equations 
 
2.2.1 Dimensional form of transfer equations 
 
The flow is considered unsteady, turbulent, 
incompressible, and two-dimensional. The fluid 
properties are assumed to be constant except for 
the density variation which is modelled according 
to the Boussinesq approximation while viscous 
dissipation effects are considered to be 
negligible. According to the aforementioned 
assumptions, the governing equations for the 
mass, momentum, energy conservation and the 
standard     turbulence model equations are 
given as follows [28-31]: 
 
- Continuity equation: 
 

  

  
 

  

  
                                                    (1)                                         
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- Momentum equation in x direction    
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- Momentum equation in y direction 
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-  Energy equation 
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                             (4) 

 

These equations are completed by the equations of the     standard model: 
 
- Turbulent kinetic energy transport equation 
 

  

  
 

 

  
     

 

  
     

 

  
    

  

  
 

  

  
  

 

  
    

  

  
 

  

  
                                          (5)  

 
- Dissipation of turbulent kinetic energy transport equation 
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The constants of the turbulent model are defined as in Table 1. 
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Table 1. Values of the constants of the turbulence model 
 

                     

0.09 1 1 1.3 1.44 1.92 0.70 

 
2.2.2 Dimensional form of boundary and initial conditions 
 
2.2.2.1 Boundary conditions 
 

On the walls of the obstacle: 
 

                                                                                                                   (9) 
 

On the walls of the cavity: 
 

- At                   
  

  
     ;     ; ε                                                                    (10)                                                                                       

- At                     
  

  
                            ;     ; ε                         (11)            

- At                          ;     ; ε                                                                   (12)             

- At                      ;     ; ε                                                                      (13) 
 

2.2.2.2 Initial conditions 
 

The initial conditions used to solve the problem are as follows: 
 

For t = 0,       ;     ;      ;        ; ε                                                              (14) 
 

2.2.3 Non dimensional form of transfer equations 
 

The equations, the associated initial and boundary conditions defined above are made non-
dimensional by introducing the following dimensionless variables and parameters: 
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The dimensionless equations obtained from the dimensionless variables posed above are as follows: 
- Continuity equation: 
 

  

  
 

  

  
                                                                                                                             (16)       

 
- Momentum equation in x direction 
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- Momentum equation in y direction 
 

  
 
    
                               (18) 
 
 
 

-  Energy equation 
 

 
 
 
                                                   (19)  
 
 
 
 

 
- Turbulent kinetic energy transport equation 

 
 
 
 
 
                   (20) 
 
 
 
 
                    

 
- Dissipation of turbulent kinetic energy transport equation 
 

                                                                
 
 
                                    

                      
(21) 

 
 
 
 
 

 
2.2.4 Non dimensional form of boundary and initial conditions 
 
2.2.4.1 Boundary conditions 
 
On the walls of the obstacle  
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On the walls of the cavity 
 

- At                     
  

  
     ;     ; ε                                                               (23) 

- At                     
  

  
                              ;     ; ε                      (24) 

- At                      ;     ; ε                                                                    (25) 

- At                       ;     ; ε                                                                     (26) 
 
2.2.4.2 Initial conditions  
 
The dimensionless initial conditions are as follows: 
 

For t = 0,       ;     ;      ;   
     

   
 ; ε  

        

     
                                                      (27) 

 

3. NUMERICAL PROCEDURE AND 
VALIDATION 

 

3.1 Numerical Procedure 
 

The discretization procedure of the mathematical 
model described above is based on a finite 
control volume using the staggered grid 
arrangement. The SIMPLE algorithm is used to 
deal with the pressure-velocity coupling 
equations. The power law differencing scheme is 
used for the formulation of the convection 
contribution to the coefficients in the finite-
volume equations [32]. The algebraic system 
resulting from numerical discretization is           
solved sequentially by utilizing the TDMA method 
[33]. 
 
The iterative procedure is used with a sub-
relaxation coefficient equal to 0.8 for each 

dependent variables. This procedure is stopped 
when the following test is verified: 
 

 
 
      

 
          with   denoting dependent 

variable and n is the number of iterations.  
 

3.2 Validation 
 
We have tested the validity of our computational 
code by comparing our results with                         
those available in the literature. To do this, we 
compare our results with those from the 
experimental work of Ampofo [34] et al on natural 
turbulent convection in a square cavity filled             
with air, on the one hand, and, on the other    
hand, with the results from the numerical work           
of Henkes et al. [35] for the case of natural 
turbulent convection in a square cavity fulfill with 
air.  
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Fig. 2. Comparison of v velocity at y = 0.5 
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We compared quantitatively on Fig. 2 and on Fig. 
3 the vertical velocity and the temperature along 
the vertical centerline. It is observed here that the 
present numerical computations match very 
closely those of Ampofo et al. [34]. We also 
qualitatively compared the flow structure, the 
isotherms, and the turbulent viscosity obtained 

by Henkes et al. [35] for the natural turbulent 
convection of squared cavity filled with air. As 
can be seen from Fig. 4, Fig. 5 and Fig. 6 there is 
a good agreement for the results obtained in the 
present study when compared to those of 
Henkes [35]. 
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Fig. 3. Comparison of temperature at y = 0.5 

 

 
 

(a): Henkes et al. [35] (b) : Present model 
 

Fig. 4. Comparison of streamlines 
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(a) : Henkes et al. [35] (b) : Present model 
 

Fig. 5. Comparison of contour plot of temperature 
 

  

(a) : Henkes et al. [35] (b) : Present model 
 

Fig. 6. Comparison of contour plot of turbulent viscosity 
 

4. RESULTS AND DISCUSSION 
 

4.1 Influence of the Thermal Gradient 
 

The analysis done in this section show the 
influence of the temperature gradient between 
the hot and cold walls on the velocity field, the 
temperature field, and on turbulence 
characteristic parameters for a 1 m square cavity 
with the left wall moving downward with a 
velocity of         and the right vertical wall 
moving upward with the same velocity in the 
presence of a       square obstacle. The 
temperature of the cold wall is maintained at 
      and the hot temperature is increased. 
 

4.1.1 Velocity field 
 

For a small value of the thermal gradient (∆  = 

40  ), the flow structure is represented by two 
counter-rotating cells; one spreading from left to 
right throughout the lower part of the cavity at the 
bottom of the obstacle and the other spreading 

from the obstacle to the upper right corner of the 
cavity. These cells are deformed by the effect of 
the moving walls (forced convection). The 
highest values of velocities are observed in the 
cell located near the lower wall and the lowest 
values in the cell located on the left in the upper 
part. With the increase of the temperature 

gradient to 80   we note that the cell in the lower 
part gradually disappears in favor of two large 
counter-rotating cells in the upper part of the 
cavity and two small secondary counter-rotating 

cells in the lower part of the cavity. At 120   the 
secondary cells disappear in favor of the main 
cells in the upper part of the cavity, of which 
there is a consequent increase in their intensity 
and size. These cells occupy almost the entire 
upper part of the cavity. These different 
observations show that the buoyancy forces take 
more and more the upper part of the cavity with 
the birth and increase in size of the counter-
rotating cells (Fig. 7). The observation of the 
profiles of the different components of the 
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velocity at mid-height of the enclosure reveals 
that the vertical component of the velocity at this 
height varies very little with the increase of the 
temperature gradient contrary to the horizontal 
component which varies enormously according 
to the values of the thermal gradient (Fig. 8). 
 
4.1.2 Temperature field 
 
Looking at Fig. 9 showing the thermal fields, we 
notice that at low temperature gradients the heat 
transfer is dominated by a forced regime, and 
becomes mixed as the value of the thermal 
gradient increases. At low values of the 
temperature gradient, the heat transfer is more 
efficient because for this configuration the heat 
transfer depends essentially on the direction of 
displacement of the vertical walls. This 
configuration can be reproduced for industrial 
applications such as cooling of electronic 
components, thermal power plants, buildings. 
The temperature profiles at half height in Fig. 10 
show that the temperature is constant at the 

surface of the obstacle with a significant increase 
in temperature in the vicinity of the obstacle. 
 

4.1.3 Turbulence patterns 
 

4.1.3.1 Turbulent kinetic energy 
 

The turbulent kinetic energy distribution is shown 
in Fig. 11. It is generally noticed that the turbulent 
kinetic energy is more important in the vicinity of 
hot spots and moving walls. This is due, on the 
one hand, to the fluctuations of the speed of the 
mass of fluid entrained by the moving walls and, 
on the other hand, to the effect of buoyancy 
which causes the increase of the speed of the 
fluid in the vertical direction. This combined effect 
of natural and forced convection induces an 
increase in velocity fluctuations and 
consequently an increase in turbulent kinetic 
energy. The maxima are always located in the 
vicinity of moving walls and in the vicinity of the 
hot part of the upper wall. As soon as one moves 
away from these areas, the levels of turbulent 
kinetic energy are very low. 

 

  
                

 
         

 
Fig. 7. Streamlines for different values of the thermal gradient 
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The profiles of the turbulent kinetic energy at 
y=0.5 are shown in Fig. 12. It can be seen that 
the turbulent kinetic energy is higher near the 
moving walls; it decreases progressively when 
moving away from the vertical walls until it 

cancels. In general, it can be seen that the 
kinetic energy of the turbulence is higher in the 
areas where the current lines are more 
concentrated. 
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Fig. 8. Profiles of velocity components as a function of x for different values of the 
thermal gradient 

 

 
 

                

 
         

 

Fig. 9. Isotherms for different values of the thermal gradient 
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4.1.3.2 Dissipation rate of the turbulent kinetic 
energy 

 

The structure of the turbulent kinetic energy 
dissipation rate and the profiles of the turbulent 
kinetic energy dissipation rate at the midpoint of 
the enclosure are shown in Fig. 13 and Fig. 14. 
The same qualitative appearance is observed for 
the different configurations. The dissipation rate 
values are high in the vertical wall boundary layer 
which decreases sharply until they cancel. The 
maximum values are proportional to the thermal 
gradients. Away from these walls,  the dissipation 
is zero in the rest of the cavity. 
 

4.2 Influence of the Lid Speed 
 

In this section we study the impact of the velocity 
of the vertical walls (left wall moving downward 
and the right wall in the opposite direction) on the 
fluid flow within the cavity. The temperature 
gradient between the hot and cold walls is kept at 

60   and the size of the square obstacle is set to 
0.2  . 
 

4.2.1 Velocity field 
 

Fig. 15 at   = 1  .  
-1

 shows us that the flow field 
is characterized by two large counter-rotating 
cells. With the increase of the velocity of the 
entrained walls, we notice an intensification of 
the convective transfers with the stratification of 
the streamlines around the obstacle walls 
modifying the structure of the flow. Indeed, for 
low values of the velocity imposed on the moving 
walls, the streamlines are affected by the 
movement of the walls. On the other hand, when 
the imposed velocity is increased, the 
streamlines behave almost independently of the 

direction of movement of the moving walls. We 
also notice a considerable increase in the 
amplitude of the flow velocity with the increase of 
the imposed velocity on the driven walls. 
 
It is obvious to note that the velocity values are 
zero on the contours of the obstacle, as a 
consequence of the non-slip condition imposed 
on these walls and the velocity profile in the main 
direction of the flow (vertical direction) has 
negative values in the left half of the cavity and 
positive values in the right half with a good 
adherence of the boundary conditions. The flow 
velocity in the main direction thus follows the 
direction of the moving walls very well. It 
increases with the growth of the velocity imposed 
on the walls (Fig. 16). 
 
4.2.2 Temperature field 
 
The isotherms illustrated in Fig. 17 show a 
domination of the forced convection for low 
values of the imposed speed on the moving walls 
with a temperature field evolving according to the 
direction of movement of the walls. With the 
increase of the imposed velocity, the forced 
regime disappears progressively giving way to a 
mixed convection then a natural convection 
which settles for very high values where one 
observes the gradual decrease of the 
temperature while going from the hot points to 
the cold points. The profiles of temperature as 
function of x at the midpoint of the enclosure, 
shown in Fig. 18 follow the imposed conditions 
on temperature, with an increase in temperature 
as one approaches the obstacle. The 
temperature at the surface of the obstacle 
remains constant for all configurations. 
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Fig. 10. Temperature profiles as a function of x for different values of the thermal gradient 
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Fig. 11. Isovalues of the turbulent kinetic energy for different values thermal gradient 
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Fig. 12. Profiles of the turbulent kinetic energy as a function of x for different values of the 

thermal gradient 
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Fig. 13. Isovalues of the turbulent kinetic energy dissipation rate for different values of the 

thermal gradient 
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Fig.14. Profiles of the turbulent kinetic energy dissipation rate as a function of x for different 

values of the thermal gradient 
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Fig. 15. Streamlines for different values of wall speed 
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(a): v velocity profile (b): u velocity profile 

 

Fig. 16. Profiles of velocity components as a function of x for values of the modulus of 
the velocity of vertical walls in opposite directions 

 
4.2.3 Turbulence patterns 
 

4.2.3.1 Turbulent kinetic energy 
 

The distribution as well as the values of the 
turbulent kinetic energy are strongly modified by 

increasing the velocity of the moving walls      
(Fig. 19). When the imposed velocity is         
the maximum values are recorded in the vicinity 
of the hot upper wall. With increasing velocity, 
these maxima are observed in the vicinity of the 
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moving walls of the cavity and a gradual increase 
in turbulent viscosity is observed as one moves 
away from the obstacle and closer to the moving 

walls. This shows that the velocity fluctuations in 
the flow field are mainly caused by the kinematic 
condition on the vertical walls. 

 

  

                

 
         

 
Fig. 17. Isotherms for different values of wall speed 
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Fig. 18. Temperature profiles as a function of x for different values of the modulus of the 

vertical wall velocity in opposite directions 
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Fig. 19. Isovalues of the turbulent kinetic energy for different values of the wall velocity 
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Fig. 20. Profiles of turbulent kinetic energy as a function of x for different values of the 

modulus of the velocity of vertical walls in opposite directions 
 

The analysis of Fig. 20 shows us that, as             
for the velocity profiles at y=0.5 m the increase in 
the velocity of the moving walls leads to an 
increase in the values of the turbulent kinetic 
energy. 

4.2.3.2 Dissipation rate of the turbulent kinetic 
energy 

 

The structure of the turbulent kinetic energy 
dissipation rate and the profiles of the turbulent 
kinetic energy dissipation rate at the               
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midpoint of the enclosure are shown in                 
Fig. 21 and Fig. 22. The same qualitative 
appearance is observed for the different 
configurations, high values in the vertical wall 
boundary layer that decrease sharply until                  

they cancel. The maximum values are 
proportional to the thermal gradients. Away from 
these walls, the dissipation is zero in the rest of 
the cavity. 

  
 

  
                

 
         

 

Fig. 21. Isovalues of the turbulent kinetic energy dissipation rate for different values of the wall 
displacement velocity 
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Fig. 22. Profiles of turbulent kinetic energy dissipation rate as a function of x for different 

values of the modulus of the vertical wall velocity in opposite directions 
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5. CONCLUSIONS 
 
Turbulent mixed convection in a lid-driven square 
cavity having a hot square bloc inside has been 
investigated numerically using the      model, 
for different governing parameters. The flow 
parameters include the temperature gradient 
between the hot walls and the cold walls, and the 
speed imposed on the mobile walls. The 
streamline, the isotherm patterns, the turbulent 
kinetic energy pattern and the dissipation rate of 
the turbulent kinetic energy inside the cavity are 
presented for representative cases and their 
profile at the mid height of the cavity are plotted. 
Results indicate that the turbulent field is slightly 
affected by the temperature gradient and the 
velocity of the moving walls in the flow domain 
except along the moving wall and the heated 
walls where we noticed a significant variation of 
turbulent parameters. The temperature field 
changes significantly faster when increasing the 
temperature gradient or the speed of the moving 
walls. Streamlines are more affected by the 
increase of the velocity imposed on the moving 
walls than the temperature gradient. Thus, the 
transport of fresh fluid towards the obstacle is all 
the more efficient if the drag speed of the moving 
walls is kept low.  
 
In the future, it would be interesting to study the 
fluid-structure interaction by considering the 
obstacle inside the cavity as deformable. This 
configuration has major applications in medicine, 
naval industry, aeronautics and civil engineering. 
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