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Abstract 
In this paper, we have used the distributed mean value analysis (DMVA) technique with the help of 
random observe property (ROP) and palm probabilities to improve the network queuing system 
throughput. In such networks, where finding the complete communication path from source to 
destination, especially when these nodes are not in the same region while sending data between 
two nodes. So, an algorithm is developed for single and multi-server centers which give more in-
teresting and successful results. The network is designed by a closed queuing network model and 
we will use mean value analysis to determine the network throughput (β) for its different values. 
For certain chosen values of parameters involved in this model, we found that the maximum net-
work throughput for 0.7β ≥  remains consistent in a single server case, while in multi-server 
case for 0.5β ≥  throughput surpass the Marko chain queuing system. 
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1. Introduction 
Networks where a communication path between nodes doesn’t exist refer to delay tolerant networks [1] [2]; they 
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communicate either by already defined routes or through other nodes. Problem arises when network is distri-
buted and portioned in to several areas due to the high mobility or when the network extends over long distances 
and low density nodes. The traditional approach [3] for the queuing system was to design a system of balance 
equations for the joint property of distributed vector value state. The traditional approaches to the system of 
Markovian [4] queuing systems were to formulate a system of algebraic equations for the joint probability dis-
tributed system vector valued state, which was the key step introduced by Jackson [5], that for a certain types of 
networks the solutions of the balance equation is in the form of simple product terms. All remained to be norma-
lized numerically to form the proper probability distribution In case of networks with congested routing chains, 
this normalization turned out to be limited and degrades the system efficiency as well. 

Therefore, in practical these distribution contains an extra detail, such as mean queue size, mean waiting time 
and throughput is needed. The framework of conventional algorithm shows that these properties can be obtained 
by normalizing constants. The proposed algorithm given in this paper correlates directly with the required statis-
tics. Its complexity is asymptotically is almost equal to the already defined algorithms, but the implementation 
of program is very simple. 

Choosing the right queuing discipline and the adequate queue length (how long a packet resides in a queue) 
may be a difficult task, especially if your network is a unique one with different traffic patterns. Monitoring of 
the network determines which queuing discipline is adequate for the network. It is also important to select a 
queuing length that is suitable for your environment. Configuring a queue length that is too shallow could easily 
transmit traffic into the network too fast for the network to accept, which could result in discarded packets. If the 
queue length is too long, you could introduce an unacceptable amount of latency and Round-Trip Time (RTT) 
jitter. Program sessions would not work and end-to-end transport protocols (TCP) would time out or not work. 

Because queue management is one of the fundamental techniques in differentiating traffic and supporting 
QoS functionality, choosing the correct implementation can contribute to your network operating optimally. 

2. Mean Value Evaluation 

Included in the Quality of Service Internetwork architecture is a discipline sometimes called queue management. 
Queuing is a technique used in internetwork devices such as routers or switches during periods of congestion. 
Packets are held in the queues for subsequent processing. After being processed by the router, the packets are 
then sent to their destination based on priority. 

In the queuing network, the traditional approach to find the solution is using characteristics of a continuous 
time markov chain to formulate a system of balance equation for the joint probability distribution of the system 
state. The solution of the balance equations, for certain classes of networks such as Jackson networks and Gor-
don-Newell networks is in the form of a product of simple terms, see [6]. In general, the joint probability is not 
so simple and sometime it is inefficient to pursue. If we only interested in the average performance measure 
such as average waiting time, average response time or network throughput, we do not need the steady-state 
probabilities of the queue length distributions. In this stage, we will use an approach so called mean value analy-
sis. The algorithm for this approach works directly to the desired statistics and has been developed and applied 
to the analysis of queuing networks, for example see [7]. The mean value analysis is based on the probability 
distribution of a job at the moment it switches from one queue at a server to another and the steady state proba-
bility distribution of jobs with one job less. This relation is known as arrival theorem for closed queuing net-
works. In a closed queuing network, the bottleneck is the queue with the highest service demand per passage. 

Using the arrival theorem, if a job move from queue i to queue j in a closed queuing networks with K jobs in 
it, will find on average ( )1iE N K −    jobs. With this result and assuming that a job is served in a first come 
first served basis, a relation between the average performance measure in this network with K jobs and 1K −  
job can be performed recursively. 

3. Proposed Mechanism 

Mean value analysis depends on the mean queue size and mean waiting time. This equation applied to each 
routing chain and separately to each service center will furnish the set of equations which will easily solved nu-
merically. The proposed algorithm is simple and avoid overflow, underflow actions which may arise with tradi-
tional algorithms. All mean values in the algorithm are calculated in a parallel manner. Thus memory require-
ment is higher than the previous ones, but new mechanism is relatively faster in multi-server scenarios. 
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We have considered the closed multi-chain queuing system which has the product form solution. Suppose C is a 
routing chain and S is a service center. Each chain contains a fixed number of customers who processed through 
subset of services using Markov chain technique, while service providers adopt one of the following mechanisms. 

1) FIFO: customers are serviced in order of arrival, and multi-servers can be used. 
2) Priority Queuing: customers are serviced according to the traffic categorization. 
3) WFQ (Weighted Fair Queuing): gives low-volume traffic flows preferential treatment and allows high-

er-volume traffic flows to obtain equity in the remaining amount of queuing capacity. WFQ tries to sort and in-
terleave traffic by flow and then queues the traffic according to the volume of traffic in the flow. 

4) PS: Customers are served in parallel by a single server. 
5) LCFSPR: customers are served in reverse order of arrival by a single server, (Last come first served 

preemptive resume). 
Now we assume that all the servers have constant service rate using multiple FCFS service centers starting 

with the following consequences, which relates mean waiting time ( )W K  to the mean queue size of the sys-
tem ( )W K Er−  with one customer less in the chain r making the following equation, 

( ){ }, , 1r l r l l rT n K Eσ= + −                               (1) 

,r lT  is the equilibrium mean waiting time of chain r  at service center l  ,r lσ  is the mean value of the ser-
vice demand, ln  represent equilibrium mean queue size, K  is size of chain r , and rE  is the R-dimensional 
unit vector. From the definition it is clear that 

, ,r l r lT σ=                                     (2) 

rK  is the average number of customers in chain between successive visits, then the mean number of visits 
( )θ  and its waiting time per visit with service center visited by chain ( )S r  is described as 

( )( ) , ,

1
r r

r l r ll S r

k
T

α
θ

∈

 
 =
  ∑

                              (3) 

where rα  is the throughput of chain r , considering service center ( )l r  i.e. ( ),r r l rα α=  then for multiple 
service stations each one yields the following relation, 

, , , , ,r l r l r l r r l r lN T Tα α θ= =                                (4) 

The above equations applicable for recursive analysis of mean queuing size, meat waiting time and system 
throughput. The initial point can be set as, ( ), 0 0r lN =  For all 1, ,r R=   and 1, ,l L=  . 

To make the substitution in an algorithmic form, we have , , ,r l r l r lT Tθ′ =  and 1 .l lN N′ = +  

3.1. Mathematical Model 
Our model is defined on a one-dimensional closed system consisting of M cells i.e. Figure 1. A closed queuing 
network model is justified for steady state conditions. In steady state, for a single-entry and single-exit lane, the 
traffic flow into the system will be equal to the traffic flow out of the system. We approximate this as a closed 
system where the number of vehicles remains the same. Each cell can either be empty or occupied by one ve-
hicle. To start with, we assume vehicles of identical size. Since the system is closed, the number of vehicles re-
mains constant, say equal to N . Thus the system density can be defined as N M ρ= . Hereon, this model will 
be referred to as the Path Cell Network model. A vehicle moves from the first to the second and so on to the 

thM  cell and then back to the first cell. It is apparent that the system has attributes of a queuing system with 
FIFO discipline. In the past, the general modeling of traffic using Queuing Theory has been macroscopic, but 
here instead of treating the whole closed link as a single queue, we consider it as a network of queues. The Path 
Cell Network model at first appears to be a cumbersome one as each cell has limited space and, therefore, each 
queue in the network limited buffer space. But, our task can be made much easier by our definition of the serv-
ers. The exact working of the model is as follows: 

Being a single lane model each vehicle moves to the next cell if empty or waits, and then moves when the ve-
hicle ahead vacates the cell. Thus there can only be two configurations for a particular vehicle: either the cell  
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Figure 1. Queuing model. 

 
ahead is empty or occupied. We say a vehicle is in service when the cell ahead is empty and “waiting” if it is 
occupied. 

( )if cell occupied
     wait
else
     In_service

= 






 

In effect, each empty cell acts as a server, and at any point in time there are always M N−  servers in the 
system that keeps changing their positions. These dynamic cells act as servers to M N−  queues in the system 
that together form a closed network. The number of waiting units in each queue can be counted as the total 
number of vehicles between the empty cell and the one empty behind it. Thus if there are two consecutive empty 
cells, both act as servers with one of them having zero queue size. Service in each queue is assumed to be expo-
nential, and for the basic Path Cell Network model, assuming identical vehicles, the service rate of each vehicle 
is also taken to be the same. As the service is exponential, from the Poisson-in-Poisson-out property inter-arrival 
times at each queue are also exponential. 

The model we claim can be mapped onto a cyclic Jackson network with M N−  cells and N customers. Thus, 
effectively, a path segment with very limited buffer space at each queue is mapped onto a well-known cyclic 
queuing network with buffer space of size N. 

The results of a cyclic Jackson network are well known. A state is indicated by 

1 2 3 ,   where  n ik k k k k N=∑  

and ik  indicates the number of units at each stage of the closed queuing network. The probability of being in a 
state 1 2 3 nk k k k  is written as ( )1 2 3 np k k k k  Transitions between states occur when a unit enters or leaves a 
stage. Service rate iµ  at each stage is allowed to be dependent upon the number of units i  in the stage. Then 

( ) ( )
1

32

1
1 2 3

2 2

,0,0,0
n

N k

n k kk
k

p k k k k p N µ
µ µ µ

−

=



                         (5) 

while, ( )1 2 3 1nk k k k =∑   
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In this case we have consider the service rate and probability at each node and stage is same and equal to the 
inverse of the number of ways of selecting N  out of 1N k+ −  places as customers and remaining 1k −  
places being the partitions, it is calculated as 

( )! 1
1

N k
p

k N
−

=
+ −

, 

here throughput jα  of the network can be calculated as 

( ) ( )( )1 10 1 0j p k p kα µ µ= > = − =                              (6) 

where ( )1 0p n p=  is simply the number of ways of selecting N  out of the last 2N k+ −  places as cus-
tomers, the first place being a partition 

1j
N

N k
α µ=

+ −
                                     (7) 

For the corresponding network number of queues k M N= − , throughput rβ  of the network is obtained by 
scaling jα  using the following relation 

( )
r jM M Nβ α= −                                    (8) 

After scaling, throughput becomes 

( )
( )1r

N M N
M M

β µ
−

=
−

                                    (9) 

For ,  1N M  , ( )1r p pβ µ= −  
The algorithm starts with an empty network (zero customers), then increases the number of customers by 1 

until it reaches the desired number of customers of chain r . 
The average waiting time in this closed queuing network and the average response time per visit are given by 

the following formulas: 

( ) ( ) ( )1i i iE w k E N k E s= −                                    (10) 

where, is  is the service time, and iw  is waiting time. To obtain the average response time per passage, the 
above equation can be obtained by each time visit ratio as 

( ) ( ) ( )1 1i i i iE P k E N k E s v= − +                                  (11) 

where, ip  is response time and iv  is each time visit. The expected number of jobs in queue I  is given by 
little’s formula [6] as. 

( ) ( ) ( )i iE N k k E p kβ=                                     (12) 

3.2. Case Studies 
Now we have to implement our model in single and multi-server scenarios to calculate throughput and mean 
waiting time. 

a) SINGLE SERVER CASE 
Initialize [ ]0 0lN ′ =  for all 1, 2,3, ,l L=   

( )1 1for 0, ,i K=  , ( )2 2for 0, ,i K=  , and ( )for 0, ,R Ri K=   

If at the service centers customers are delayed independently ( )D  of other customers, then we have the fol-
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lowing steps, 

( )
( )

( )

, ,

, ,

if ervice_Center

 1, 2, ,
else

r l r l r

r l r l l r

S D

T i
r R

T N i e

δ

== 


′ = ϒ  ∀ =

′ ′= ϒ − 

                          (13) 

Then we have a little’s equation for chains and service centers as, 

( )
,

,     1, ,r
r

r l
l S r

l r R
T

α

∈

= ∀ =
′∑

                                   (14) 

( )
( )

,1 ,   1, 2, ,l r r l
r R l

T I T l Lα
∈

′ ′= + ∀ =∑                             (15) 

The operations count for this algorithm is bounded by 2RL R−  additions and 2RL R+  multiplication/ 
divisions. This is the same as the convolution algorithm in its most efficient. However, Algorithm 1 completely 
avoids a genuine problem of the convolution algorithm, namely, that the floating point range of many computers 
may be easily exceeded. Scaling, as discussed in [8], may partially alleviate the problem. Yet the scaling algo-
rithm is complex and does not always work. The authors have seen several well-posed modeling problems in-
volving relatively large populations (e.g., >100) and type D service centers which were not solvable in the range 
of floating point numbers 1E ± 75, despite scaling. The storage requirement is of the order 1 2 RLK K K  as 
compared to 22 i RK K K  for the convolution algorithm. 

We now proceed to extend the computational procedure to handle FCFS service centers with multiple con-
stant unit rate servers. The mean value Equation (14) for such a center can be written as 

( ) ( ) ( )
2

,
0

1 1 ,
lM

l
r l l r l l r

ll

T T k e M i p i k e
M
π −

=

 
= + − + − − − 

 
∑                     (16) 

where ( )lπ  is the mean service demand, which is assumed to be independent of the chain. The calculation is 
complicated by the marginal queue size probabilities, which we have to carry along in the recursive scheme. 
This can be done by means of Lemma 1, which allows calculation of ( ),tp i K , 1, 2, , 1i M= −  from pre-
viously computed values. In order to keep the recursion going, we need an independent equation for ( )0,tp K , 
which is obtained from the following relations 

( ) ( )
0

,
lM

l l l l
l

M i P i k M τ
=

− = −∑                               (17) 

where 

,
1

R

l l r l
r

τ π α
=

= ∑                                     (18) 

From Equations (17) & (18) we can have the mean number of idle servers as l lM τ− , which is just like a lit-
tle’s equation implemented to the set of servers. 

b) MULTISERVER CASE 
Step 1: Parameters Initialization 

( )
( )
( )

0 1,

0,0 1,

,0 0,     1, 2,3, , .

l

l

l

N

P

P l l L

=

=

= ∀ = 

 

Step 2: Main Loop, same as in single server case. 
Step 3: Additional Corollary for Multi-servers. 
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( ) ( ) ( )
2

,
,

0
1 ,1

lM
r l

r l l r l l r
jl

p
T N i k M j p j k

M

−

=

 
′ = − + − − − 

 
∑                      (19) 

For 1, 2, ,r R=   and each FCFS multi server center ( )l S r∈ , while for other service centers use the equa-
tion of step 3 in single server case. 

Step 4: Little’s equation for chains having rα , same as in single server case. 
Step 5: Little’s equation for service centers having ( )lN i′ , same as in single server case. 
Step 6: Additional step for calculating marginal queue size under main loop for each multi FCFS service cen-

ter l  and 1,2, , 1lj M= − . 

( ) ( )
( )

,
1, 1,l r r l l r

r R l
P j i p p J i e

J
α

∈

= − −∑                              (20) 

( )
,l r r l

r R l
pτ α

∈

= ∑                                                (21) 

( ) ( ) ( )
1

1

10, 1 ,
lM

l l l l
Jl

P i M j p j i
M

τ
−

=

 
= − + − 

 
∑                         (22) 

The process evaluate per multi service center and per recursive step of the order ( )2 1M R+  additions and 
3 2MR M+  multiplications. We observe that it grows linearly with M. 

c) Queuing Theory Limitations 
The assumptions of classical queuing theory may be too restrictive to be able to model real-world situations 

exactly. The complexity of production lines with product-specific characteristics cannot be handled with those 
models. Therefore specialized tools have been developed to simulate, analyze, visualize and optimize time dy-
namic queuing line behavior. 

For example; the mathematical models often assume infinite numbers of customers, infinite queue capacity, 
or no bounds on inter-arrival or service times, when it is quite apparent that these bounds must exist in reality. 
Often, although the bounds do exist, they can be safely ignored because the differences between the real-world 
and theory is not statistically significant, as the probability that such boundary situations might occur is remote 
compared to the expected normal situation. Furthermore, several studies [9] [10] show the robustness of queuing 
models outside their assumptions. In other cases the theoretical solution may either prove intractable or insuffi-
ciently informative to be useful. 

Alternative means of analysis have thus been devised in order to provide some insight into problems that do 
not fall under the scope of queuing theory, although they are often scenario-specific because they generally con-
sist of computer simulations or analysis of experimental data. 

4. Simulation Results & Discussion 

The network bottleneck is the fast server. For 0.7β >  the fast server is also the network bottleneck, but when 
0.7β < , the network bottleneck is the slow server. 

The determination of network throughput for different values of β is calculated recursively. Every job arrives 
at server serve immediately (FCFS). Figure 2 shows the plot between β and network throughput and clearly 
shows the difference between two schemes with consistence behavior. 

Figure 3 describes value by value β  performance with rival scheme. Markov Chain scheme started very 
confidently achieving 35 Mbps at 0.1β =  but later at 0.5β =  our proposed scheme performance increases in 
terms of Mbps which remain consistent. So in multi-server case for every value of 0.5β ≥  the queuing sys-
tems performs well. After deep analysis on other resulted files created after simulation, we have seen that size of 
packet is also increases as throughput increase which also help in improving system overall performance. 

Figure 4 shows queuing system mean waiting time which increases as usual as the number of customer in 
chain increases. But still our proposed model is somehow better while comparing with other. 

This means waiting time also one of the main objectives of my future work. To define and construct a model 
in which mean waiting system decreases as the number of customers increases by implementing some grid  
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Figure 2. Throughput and consistency behavior between two schemes 
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Figure 3. Throughput and consistency behavior (Multi-Server Scenario). 
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Figure 4. Queuing mean waiting time. 

 
computing functionalities. Also developing a queuing network model for multi-hop wireless ad hoc networks 
keeping same objectives, used diffusion approximation to evaluate average delay and maximum achievable 
per-node throughput. Extend analysis to many to one case, taking deterministic routing into account. 
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