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Abstract 
Achievable rate (AR) is significant to communications. As to multi-input multi-output (MIMO) dig- 
ital transmissions with finite alphabets inputs, which greatly improve the performance of commu-
nications, it seems rather difficult to calculate accurate AR. Here we propose an estimation of con-
siderable accuracy and low complexity, based on Euclidean measure matrix for given channel 
states and constellations. The main contribution is explicit expression, non-constraints to MIMO 
schemes and channel states and constellations, and controllable estimating gap. Numerical results 
show that the proposition is able to achieve enough accurate AR computation. In addition the es- 
timating gap given by theoretical deduction is well agreed. 
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1. Introduction 
Achievable rate (AR), defined as information entropy collected from receiving signals—mutual information, is a 
fundamental means to evaluate and optimize communications. It is demonstrated that AR is inputs related, and 
achieves its maximum—channel capacity with Gaussian inputs [1]. Despite optimal, Gaussian inputs are rarely 
used in practice. Instead, digital transmissions with inputs from finite-alphabet constellations, such as m-PSK 
and etc., are more common, which depart significantly from Gaussian inputs. Therefore, a considerable AR gap 
exists between the two inputs [2]. Besides, many results have shown that multi-input multi-output (MIMO) 
greatly improves the performance of digital transmissions [3]. Consequently AR computation for digital 
transmissions over MIMO channels is motivated. 

Reconsider definition of mutual information in [1]. When it comes to finite-alphabet constellations and 
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MIMO propagation matrix, it involves multi-dimensional integral to calculate AR, which leads to impractical 
implementation. And then various estimations are proposed. Monte Carlo method [4] is the most common. 
Despite accuracy, not only it is too implicit for analytical applications, but also it costs too much computational 
complexity as order of modulation and MIMO increases. Particle method [5] is proposed to reduce the 
complexity. However, it remains implicit. Aiming analytical solution, lower bounds and approximations for AR 
are proposed in [2] [6] and [7] respectively, showing validity under certain scenarios. Unfortunately, limitation 
remains. Lower bound in [2] requires unitary inputs—matrix having orthonormal columns [8]. For wireless 
MIMO channels, such assumption is rarely achieved. As to approximations in [6] [7], constellations and MIMO 
channels related tuning factor is indispensable to the estimating accuracy, which also introduces limitation. 
Moreover, gap between true AR and lower bounds/approximations is not analyzed in the mentioned work. 

Comparing to current proposals, the main contribution of this letter is to propose AR estimation of low 
complexity, analytically explicit expression and controllable gap, without constraints to inputs and MIMO 
channels. This work is organized as follows. Section 2 formulates the problem and premiss; Section 3 describes 
details of proposed solution, and analyzes estimating gap; Section 4 gives numerical results, and further discuss 
on computational complexity and estimating gap; finally conclusions are drawn in Section 5. 

2. Problem Formulation 
2.1. Notations and Definitions  
This work uses the following notations. Italic character in lower and upper case denotes variable. Bold italic 
character in lower and upper case denotes vector and matrix respectively. The superscript ( )H

  denotes 
conjugate transposition. NI  is N N×  identity matrix. [ ] ,k mA  is the element of matrix A  at thk  row and 

thm  column. [ ]ka  is the thk  element of vector a . ( )tr   denotes the trace of square matrix.   is Euclidean 
norm of matrix and vector. { }E   denotes the expectation of random variable. ( )xδ  is Dirac delta function. 

( )20,σ  is a complex Gaussian random scalar, and its real and imaginary components are independent and 
identically normal distributed with zero-mean and variance of 2 2σ . ( )20,σ  is a real Gaussian random 
scalar normal distributed with zero-mean and variance of 2σ .   is the complex space, and   is the real 
space. { }ka=  means that space—   is consisted of elements— ka . a b×  denotes a b×  tensor space 
based on  . Operation ⊗  is cartesian product of space.  

2.2. Signal Model and Premise  
Consider digital transmissions over R TN N×  MIMO channels, following assumptions are premised. 

• R TN N×∈H , is an R TN N×  complex propagation matrix, known to receiver. 
• 1TN ×∈x , is an 1TN ×  transmitted symbol vector. [ ]kx  is independently and uniformly selected from 

thk  normalized finite-alphabet constellation— ( ) { },m kk q= : 1, 2, , km N=  . Moreover, ( )k  may differ 
with k . Thus 

[ ]( ) [ ]( ),
1

1 .
kN

m kk k
mk

p q
N

δ
=

= −∑x x                               (1) 

Define ( ) ( ) ( )1 2 TN= ⊗ ⊗ ⊗    . Consequently { }k∈ =x q : 1, 2, ,k N=  , and 1
TN

kN == Π . So we 
have 

{ } ( ) ( )
T

1

1,    .
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H
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k
E p
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∈ =

= = −∑
x

xx I x x q
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                           (2) 

• 1RN ×∈w , is an 1RN ×  independent complex additional white Gaussian noise (AWGN) vector, and 

[ ] ( ) { }1

2 20, ,    .
RNR

H
Nk Eσ σ

×∈
= =

w
w ww I                         (3) 

• 1RN ×∈y , is an 1RN ×  receiving symbol vector. Hence, AR is defined as mutual information [1], 

( )
( ) ( )1 2

;
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Note that, Equation (4) is AR value for the whole transmitting and receiving vector. Considering spatial 
multiplexing mode of MIMO, AR value for each element in x  is also needed, so we formulate the problem as 
estimation of AR for both vector and each element in the vector. 

3. Low-Complexity Solution  
Firstly, Equation (4) is rewritten as 

( ) ( ) ( )
( ) ( )1

2
;

lg d d .
dNR

p
I p p

p p×∈ ∈

= ∫ ∫x y

y x
x y x x y

x y x x


                        (5) 

Given H  and 2σ , the posterior probability is, 

( )
2

2

2

1 e .
R RN Np σ

σ

−
−

=
y x

y x  

Given  , we have 
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Definition: Euclidean measure matrix D  for given constellation   and H  is as 

[ ] ( ),
.k mk m = −D H q q                            (7) 

Recall Equation (3), and then Equation (6) is rewritten as 

[ ]2 ,,
2

,
2

1 1

1 1lg e ,
k mk m

k m
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N N

wk m
I E

N N
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′ ∈= =
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                              (8) 

where ,k mw′  is combination of AWGNs, 

( ) ( ){ }, tr .HH H
k m k m k mw′ = − + −H q q w w q q H                        (9) 

Then normalize ,k mw′  as 

[ ]( ) ( ), ,
2 0,1 .k m k mw w σ′= =D                           (10) 

So we rewrite Equation (8) as 

[ ] [ ]
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, ,
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Theorem 1. AR is estimated by exponentially weighted average of Euclidean measure matrix as 

[ ]
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2 24,3 e
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Proof. see Appendix 1. 
Theorem 2. AR is decomposed as 
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( ) ( ); ; ,k kI x I I= −y x y                             (13) 

where kx  denotes the sub-vector excluding kx  from x . 
Proof. see Appendix 2. 
With Theorem 1 and 2, the formulated problem in Section 2 is solved. 
Theorem 3. Gap between true and estimated AR given in proposition 1 is bounded by exponentially weighted 

average of minimum Euclidean measure as 

( )
2 2

2
2 2ˆ 42

ˆ
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2 3 e

1

1e e ,
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k dk
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d N
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I I
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−

−
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−

=

− ≤ − ∑                              (14) 

where ˆ
kd  denotes the minimum among non-zero elements in thk  column of Euclidean measure matrix. 

Proof. see Appendix 3. 
Recalling Theorem 3, the gap between true and estimated AR for kx  is 

( ) ( ) ( ) ( ); ; ; ; .k k k kI x I x I I I I− ≤ − + −  y y x y x y                      (15) 

4. Numerical Results  
To verify Theorem 1, 2 and 3, numerical results are provided. For generality, 2 3×  complex propagation 
matrixes consisted of independent Gaussian distributed elements are used as MIMO channels, 

[ ] ( )2 3
,

,    0,1 .k m
×∈ =H H                            (16) 

Also high and low correlated scenarios with correlation coefficient of 0.1 and 0.9 are considered respectively, 
1 2 1 2

corr .R T=H R HR                                  (17) 

where correlation matrices RR  and TR  are generated with spatial channel model and correlation coefficient 
[3]. 

The 3 transmitted symbols in x  are modulated by BPSK, 8PSK and 16QAM respectively. True AR is 
computed by Monte Carlo method [4]. And estimated AR is computed with Theorem 1 and 2. 

Numerical results in Figure 1 and Figure 2 show that the proposed estimation is able to achieve enough 
accurate AR over complex Gaussian random MIMO channel. And according to Equation (6) and (12), the 
calculation complexity is reduced to 22N  exponentiations and N  logarithms, instead of N  integrals. 

Despite slightness, numerical results show that the gap remains. However, such estimating gap can be 
quantized by Equation (14) and (15), and numerical results are shown in Figure 3. According to Figure 1 and 
 

 
Figure 1. AR for 2 × 3 random Gaussian distributed MIMO channels 
with transmitting and receiving correlation coefficient of 0.1.         
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Figure 2. AR for 2 × 3 random Gaussian distributed MIMO channels 
with transmitting and receiving correlation coefficient of 0.9.           

 

 
Figure 3. Gap between true and estimated AR for 2 × 3 random 
Gaussian distributed MIMO channels with transmitting and receiving 
correlation coefficient of 0.1 and 0.9, computed with Equations (14) 
and (15).                                                        

 
Figure 2, the maximum gap between estimated and true AR is lower than 0.0733 bits/symbol, which agrees well 
to theoretic bound of 0.0603 bits/symbol given in Figure 3, which is computed by Theorem 3. 

5. Conclusion  
A low-complexity AR estimation is presented in this work. Numerical results show that it is accurate enough, 
and the deductive theoretic bound of estimating gap is well matched. Moreover, the most encouraging thing is 
that, the proposed estimation is of no constraints to finite-alphabet constellations and MIMO channels. Besides, 
as shown in Equation (12), this proposition deduces integral of AR calculation into an weighted average of 
Euclidean measure matrix for given channel states and constellations, which is explicit enough for analytical 
applications. 

Acknowledgements  
We thank the Editor and the referee for their comments. This work is funded by the NSFC program (61172021 
and 61471030), the Fundamental Research Funds for the Central Universities (2014JBZ023), Beijing city 
science and technology special program (Z141101004414091), and Research on the development of science and 



J. B. Zhang et al. 
 

 
122 

technology plan Chinese Railway Corporation (2014X012-B, Z2014-X002). This support is greatly appreciated. 

References 
[1] Shannon, C.E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379-423.  

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x 
[2] Zeng, W.L., Xiao, C.S., Wang, M.X. and Lu, J.H. (2012) Linear Precoding for Finite-Alphabet Inputs Over MIMO 

Fading Channels with Statistical CSI. IEEE Transactions on Signal Processing, 60, 3134-3148.  
http://dx.doi.org/10.1109/TSP.2012.2188717 

[3] Mesleh, R.Y., Haas, H., Sinanovic, S., Ahn, C.W. and Yun, S. (2008) Spatial Modulation. IEEE Transactions on Ve-
hicular Technology, 57, 2228-2241. http://dx.doi.org/10.1109/TVT.2007.912136 

[4] Greenspan, D. and Casulli, V. (1994) Numerical Analysis for Applied Mathematics, Science, and Engineering. West-
view Press, Boulder. 

[5] Dauwels, J. and Loeliger, H.A. (2008) Computation of Information Rates by Particle Methods. IEEE Transactions on 
Information Theory, 54, 406-409. http://dx.doi.org/10.1109/TIT.2007.911181 

[6] Alvarado, A., Brannstrom, F. and Agrell, E. (2014) A Simple Approximation for the Bit-Interleaved Coded Modulation 
Capacity. IEEE Communications Letters, 18, 495-498. 

[7] Zhang, J.B., Zheng, H.M., Tan, Z.H., Chen, Y.Y. and Xiong, L. (2010) Link Evaluation for MIMO-OFDM System 
with ML Detection. 2010 IEEE International Conference on Communications, Cape Town, 23-27 May 2010, 1-6.  
http://dx.doi.org/10.1109/ICC.2010.5502079 

[8] Hassibi, B. and Marzetta, T.L. (2002) Multiple-Antennas and Isotropically Random Unitary Inputs: The Received Sig-
nal Density in Closed Form. IEEE Transactions on Information Theory, 48, 1473-1484.  
http://dx.doi.org/10.1109/TIT.2002.1003835 

 
 
 
 

Appendix 
1. Proof of Theorem 1 
Proof. Following approximations are easily achieved with numerical methods, 
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Although gap still remains, following deduction will show that such gap makes no difference on AR 
computations. Define 

[ ]2 2
, ,

.k m k mρ σ= D                                        (19) 

To prove of Equation (12) equals to prove 
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where , ,1 ,2 ,, , ,k N k k k Nρ ρ ρ =  ρ  is an 1N ×  ascending sorted vector, and 
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Use inductive reasoning, define ,k Ng  as the gap, 
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( ), , ,ˆk N k N k Ngρ= + ρ .                                      (22) 

For 1N = , recalling Equation (7), ,1kρ  constantly equals to 0, 
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This implies that, within the operative domain of 
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Recall Equation (18), for 1M + , we have 
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And the right side of Equation (22) is 
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So that 
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Using monotonic property of exponentiation and logarithm, it is demonstrated that, 
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Recalling Equation (23), (24) and (30), assigning M N= , Equation (21) is proved. And then Theorem 1 is 
proved by substituting Equation (21) in Equation (11). 
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2. Proof of Theorem 2 
Proof. Use s  and r  to denote the sub-set of all possible values of sx  and rx , and then recall Equation 
(5), using sx  to denote the targeting sub-vector of computation, and rx  to denote the sub-vector excluding 

sx  from x . We have, 
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Then designate kx  to denote the sub-vector excluding kx  from x , and Theorem 2 is proved. 

3. Proof of Theorem 3 
Proof. Recall Equation (12) and (30), the maximum gap between true and estimated AR value for x  is as 
follows, 
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Since that the sequence of kρ  is ascending sorted, and then we have, 
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Theorem 3 is proved. 
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