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Abstract

High frequency financial data is characterized by non-normality: asymmetric,
leptokurtic and fat-tailed behaviour. The normal distribution is therefore in-
adequate in capturing these characteristics. To this end, various flexible dis-
tributions have been proposed. It is well known that mixture distributions
produce flexible models with good statistical and probabilistic properties. In
this work, a finite mixture of two special cases of Generalized Inverse Gaus-
sian distribution has been constructed. Using this finite mixture as a mixing
distribution to the Normal Variance Mean Mixture we get a Normal Weighted
Inverse Gaussian (NWIG) distribution. The second objective, therefore, is to
construct and obtain properties of the NWIG distribution. The maximum li-
kelihood parameter estimates of the proposed model are estimated via EM
algorithm and three data sets are used for application. The result shows that
the proposed model is flexible and fits the data well.

Keywords

Inverse Gaussian, Finite Mixture, Weighted Distribution, Mixed Model,
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1. Introduction

It is well known that mixture distributions produce flexible models with good
statistical and probabilistic properties. Our first objective, therefore, is to construct
and obtain properties of a finite mixture of two special cases of Generalized In-
verse Gaussian distribution. These two special cases are related to the inverse
Gaussian distribution which is also a special case of Generalised Inverse Gaus-

sian distribution.

The Generalized Hyperbolic Distribution (GHD) introduced by Barndorff-
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Nielsen [1] as a Normal Variance-Mean Mixture is obtained when the Genera-
lized Inverse Gaussian (GIG) distribution is the mixing distribution. Barndorff-

Nielsen [2] introduced the Normal Inverse Gaussian (NIG) distribution obtained
when the mixing distribution is Inverse Gaussian (IG). The IG is obtained as a

1
special case of GIG when the index parameter A = 5

The two special cases and their finite mixture are weighted Inverse Gaussian
distributions. Using this finite mixture as a mixing distribution to the Normal
Variance Mean Mixture we get a Normal Weighted Inverse Gaussian (NWIG)
distribution. The second objective, therefore, is to construct and obtain proper-
ties of the NWIG distribution.

The maximum likelihood parameter estimates of the proposed model are es-
timated via EM algorithm and three data sets are used for application.

In literature, the Normal Inverse Gaussian (NIG) distribution has been used
repeatedly for financial data which are skewed, leptokurtic and heavy-tailed be-
cause they are collected over short-time intervals, such as daily or weekly. Our
third objective is to compare the log-likelihood functions of NWIG and NIG

distributions.
Generalized Inverse Gaussian distribution has three parameters 4,9,y . The

distribution is denoted by GIG(/Lé‘,;/) .When A= —% , we have

1
GIG(—%,&,)/) which is an Inverse Gaussian (IG) distribution. If A =E, we
have GIG(%,&‘, }/j which is Reciprocal Inverse Gaussian distribution. The
. . . 3
third special case is G]G(—E,5,}/j .

GIG(%,E,;/} and GIG(—%,&,}/) are expressed in terms of GIG(—%, o, 7}
and are weighted IG distributions. Their finite mixture; Ze.,
pGlG(%,é‘,}/j+(l—p)GlG(—%,&yj is also WIG.

The concept of weighted distribution was introduced by Fisher [3] and elabo-
rated by Patil and Rao [4]. Gupta and Kundu [5] considered the finite mixture of
the IG and the length biased IG distributions. Generalized Hyperbolic Distribu-

tion (GHD) is a normal variance mean mixture with GIG mixing distribution. It
1

is a five parameter distribution denoted by GH(/LO(,[)’, 5,;1) .For A= Y we

3

1
have a normal Inverse Gaussian (NIG) distribution. For A =5 and A=-
we have normal weighted Inverse Gaussian (NWIG) distributions.
The rest of the paper is organised as follows: section 2 deals with the proposed
mixing distributions. Section 3 is on the proposed mixed model, posterior dis-
tribution and posterior expectations. Section 4 is on the EM algorithm estima-

tion procedure. Application and Conclusion are in section 5 and 6 respectively.
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2. Proposed Mixing Distribution

We show that two special cases of Generalised Inverse Gaussian (GIG) distribu-
tion can be expressed as Weighted Inverse Gaussian (WIG) distribution. A finite
mixture of these cases can also be expressed as WIG distribution. The Genera-

lized Inverse Gaussian (GIG) distribution is given by
A A-1 2
1% z (o 2
z)=| = | ———=expy——| —+yz 1
et 5) 2K, (37) p{ 2(2 ’ ]} v

z>0;—0<A<0,6>0,y>0

where

and K, (®) isthe Modified Bessel function of the third kind of order 1 eva-
luated at point .

In short form, it is stated as

Z ~GIG(2,6,7).

The moments around the origin of the GIG(4,8,7) distribution are given
by

s()-[2) S &

Remark: This expectation formula works when r is also a negative integer.

Special Cases

When A= —l
2

sy 3 2
g(2)= j‘;—n z? exp{—%[%wzz} 3)

This is an Inverse Gaussian (IG) distribution.

When A= l
2

Sy 1 2
_ye” - 1{ o6 :
z)= z 2eXpy—| —+yz 4
gz( ) \/ﬁ p{ 2[ B Y ]} (4)
This is a Reciprocal Inverse Gaussian (RIG) distribution.

When A= —E
2

5e” =2 1( 82
S | _1 = 2 5
&(2) r(1+07) eXp{ 2[2 14 Z]} (%)

which is the GIG(—%,(Y,;/] .

Using the concept of weighted distribution introduced by Fisher (1934) it can
be shown that the two special cases are weighted inverse Gaussian distribution.

More specifically, we express g, and g, intermsof g, asfollows:
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Se” 2 1(s*
&> (Z):gz{\/z—nz 23XP{‘E(7+7 Zj}:|=§2gl (2) (6)

and

5t | se” = 16> 5
= expl——| —+ =2 7
&)= 7 L/%Z P T Tt 8 @)

A finite mixture of the two cases is given by

()= (4 1-2)6,2) = L) o)

Put
53

= 8
p 51y (8)

'.g4(z)=[ A l}gl(2)= " (z ! 1]&() ©)

S+y S+yz S +y 1+0y z

3. Proposed Model

Construction of the Mixed Model
Suppose the conditional of x given zis N (u+ fz,z). If zfollows itself distribu-
tion defined by formula (9). The mixed model is constructed as follows

[(n)-p:T

w1
:LEG Tog(z)d

309 Blx-p) -
_;/5e . J- z+ ! z7 |z 7%
2 (5% +7) 1+ 6y
52¢(¥)] (10)

o? b
},53 ¥ o Blx-p) o 52 —7[24— o
_T Ty )
n( +7)

307 Plen ot Ko|ad\g(x)
5— Ko(aﬁm)+5z¢(x) ( \/_)

(53 +y) 1+ oy
N a’K, (as4(x
f(x>—jjT53+;) 5% (x) Ky (as\Jp(x) )+ (MW)

(11)

Sy JB(x-p)

__ y5ee ){(]+§y )5%g( (a5\/_)+a (aﬁm)}

np(x )(53 +7)(1+57/

where
2
X—pu
() =1+24)
and
CC2 :ﬂ2+}/2
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The log-likelihood function

I=logL =zn:10gf(x,)

Se¥ ) R
_Zlog{ o })/(53+;/)(1+57){(1+57 )52 (a5\/7)

+a’K, (as ¢(x))}}

- Zn:{log(é')/)+5;/ + B~ pu=log((1+67)n(8° + 7))~ log(x,)

(a5J_)+aK(a5J_)}}

= nlog(&y)+n5)/+ﬁ2x. —nﬁ,u—nlog((l+5y)n(5 +)/))—ilog¢(xl.)

%) K, (a0 (x))+ @K, (a6 3 (+) )|

+10g{(1+5}/ 5*p(
(12)

+Zlog{(1+5}/ 5*9(

Posterior Expectation

K (a5m) (13)
o[ )|

1+ 0y

K (@0 s (x))
D)

25\/7} (as\J8(x))
5\/7)+a31( (aé'\/i)

)
K@)
{(1+§7)53(\/7)
(1+7)8°6(x) K,

a(1+8y)5%¢

Similarly,
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(14)

(o) x <asr> ) a9
_ as® (1+6y) ¢ (aér)+a K, (aér)
(1+67) (5\/_) 0(a5J_)+a5J_K2(a5J_))

-1 é[z 624}(“{)}
o0 2
J. 2| z +27 2% ? “F dz
0 1+ oy
a2 +52¢(X)]

® z! 5 77{2 25
I z+ ze
0 1+ oy
2

— z+
2

E(2*/x)=

&

ﬁ
(%
2
hB=y
Ny
=
=

lJ.(:Q((l + (3’}/)22_1 + )e

(15)

—j (l+57/)20]+22]) e

(100 P k(50 K, a51)
(1+87) Ky (a8 Jp(x) )+ K, (@0 o (x))
_(1+57 )5 (x) K, (a8\[p(x) ) + 2K, (5[ () |
o’ (1487 K, (@o 4 (x) )+ &’ K, (a5 f4 ()

4. EM Algorithm
4.1. Introduction

EM algorithm is a powerful technique for maximum likelihood estimation for
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data containing missing values or data that can be considered as containing
missing values. It was introduced by Dempster et al. [6].

Karlis [7] considers the mixing operation responsible for producing missing
data.

Assume that the true data are made of an observed part X and unobserved
part Z Kosta [8] observes the log likelihood of the complete data (x;,z,) for

i=1,2,3,---,n factorizes into two parts. This implies that the joint density of X
and Zis given by

f(x,z) = f(x/z)g(z) .
The likelihood function is

n n

L:ljf(x,-/zl-)g(z,-)ZHf(xi/Zi)Hg(Zi)

i1 i1
slogL=log]]f(x/z)+log]]g(z)
i=1 i=1

=Y log f(x,/z)+ > logg(z)
io1 i1
=L+,

where

A =ilogf(x[/zi)

and

L=>logg(z)-

i=1

4.2. M-Step for the Conditional Probability
Since
| _bspe)

e 2z
\2nz

S (5/2)=

then

N 1 _(xi_#_ﬂzi)z
L(w,B)=> lo e

N 1 1 (xi_;u_ﬁzi)z
= ——log(2n)——logz, - ————
R

i

1 n n xi_/’l_ﬂzi 2
l] (ﬂaﬁ):_glog(2ﬂ)—zglogzi—;%
=2 (- u-pz)
op T :

0

%l‘ =0:§(xl-—ﬂ—,32,~)=0
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Le, Zn:xi —n,[z—ﬂAZn:zi =0
i=1

i=1

x-p7 (16)

ll—Ozzz—’—yZ——nﬂzo
i=l 4; i=l 4;
n X _ ~ n 1
> (¥ pz) Y ——np=0
i=1 Z; i=1 Z;
Zﬁ—fzi+ﬁzz——nﬁ—0
i=1 Z,‘ i=1 Z,‘ i=l 4
n 1 _ n xl _ 1
et peg
n X _—on 1
. Zi:lz_szfl;
ES ! 1 ! (17)
n-z 7:17
Zl'
4.3. M-Step for the Mixing Distribution
From formula (9)
75’ |
= +
¢(2) 53+y[z 1+oy jgl(z)
5 1 S 2 %[‘}*7]
= 73/ zZ+ z™! z 2 \F (18)
S +y 1+ oy 2n

N 1fs? 2,
S
Jan(8 )\ 1y
Therefore
=Y logg(z)
im1
:Zn:{logy+3log5+5y—%log(2n)—log(§3+7/)—10g(1+5)/)
i=1
og() =L LT tog (1467)z, 4 (19)
2 g i 2 Zl. 2 i g 7 i Zi

- nlog;/+3nlogé‘+n5y—glog(2n)—nlog(53 +)-nlog(1+7)

n 2 n 2 p "
_iZlog(zi)—izi_LzZi+Zlog[(1+5y)zi+i]
23 2 2 o = z,

i=1 Zl'

Differentiating w.r.t y we obtain
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P no 9 oz
—12_—+n5———__722i+z l
7/ 7/ 53 +7/ 1+§7/ i=1 i=1 (1+57)Zl+7
n n 1 N N 9z,
Z_ +n5(1— ]—VZZ,-"'Z—I
(}/ S5’ +7J 1+ 0y i=1 [:1(1+5},)Zi+l
Z;
ns’ nys*
= + -
i=0 implies that
oy
nd’
_ =0 (20)
7/(53+)/) 1+57/ 7,2;‘ 21:1+(1+57/)
Similarly
0 3n 3ns? ny -1 < vz
== —_— =) — —
s’ s +ny 53+7/ 1+ 6y = Zi+fz=1:1+(1+57/)zi2
3}’[7/ ’157/2 n l n ]/ZZ
_ _é‘ — P A ——
5(53+y)+1+5y gz,-+§1+(1+57)2f2
i=0 implies that
00
3ny noy’ 13 77
+ P ) S S e 21
o) 1o 0% H o -
4.4. E-Step

. 1 .
Values of random variables Z,, — and Z are not known. So we estimate
i

them by considering posterior expectations

E(Z,/X,), E(ZI/X] and E(Z}/X,)

i

as given in formulae (12), (13) and (14) respectively. Let
=E(Z,/X,), w, :E(ZI/XJ and v, =E(Z,/X,).

The k-th iterations are as follows
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Vi

(1 +5<k>y<k>)(5<k>)2 M (x) Kz(a(k)5(k) ¢(")(x,~)) +(a(k))2 Ko(a(k)é‘(k) ¢“‘)(x,~))

(24)

2 2
(au)) (1 +5(k>7<k>) Ko(a(k)é(k> ¢(")(xi)) +(a(k)) Kz(a(k)E(k) ¢(k)(x[))

For the log-likelihood, the 4-th iteration is given as

- nlog(5(k)7(k))+n5(k)}/(k) +ﬂ(k)zxi —nﬁ(k),u(k)
i=1

—nlog ((1 +8), M )n((é‘“‘) )3 + 7(1‘))] - ilog ") (x,)
io1

(25)
2
+Zlog{(l+5 )(5 ) (x 0(a<k>5<k) ¢(k)(x))
o o 5
4.5. Iterative Scheme
From Equations (19) and (20), we obtain the following iterative scheme
3 2
A B
W0V 2 0] 1460 "2 (k) (k) ;2
¥ )((5 ) +y j +6y 1+(1+5 y )zl.
(k+1)
zn (k) (26)
i=1 ’
2
3n7/(k+l) not (},(k‘fl) ) . y(k+1)Z_z
3 + (k) (k+1) +Zf:1 (k), (k+1)) _2
5(k>((5<k)) +y<k+1)) 146"y 1 (168 ) 2
5(k+l) (27)
i= 1W
From Equations (15) and (16) we also obtain
=N\ (k)
pk+1) _ Z,l XiWi _xZi:IWi
=11
A (k+1) :E_IB"(IHI)E(I() (29)
1
&(kﬂ) _ |:(7;(k+1) )2 +(ﬁ‘(k+1) )2:|2 (30)

5. Application

Let ( P ) denote the price process of a security at time £ in particular of a stock.
In order to allow comparison of investments in different securities we shall in-

vestigate the rates of return defined by
=logF, —logF_,.

In this section, we consider three data sets for data analysis. They include:
Range Resource Corporation (RRC), Shares of Chevron Corporation (CVX) and
s&p500 index. The histogram for the weekly log-returns in Figure 1 for RRC il-
lustrates that the data is negatively skewed and exhibits heavy tails. The Q-Q plot
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Density

0.15

0.10

0.05

0.00

shows that the normal distribution is not a good fit for the data, especially at the
tails. This is also similar for the other data sets.

Table 1 provides descriptive statistics for the return series in consideration.
We observe that the data sets experience excess kurtosis indicates the leptokurtic
behaviour of the returns. The log-returns have distributions with relatively heavier
tails than the normal distribution. The skewness indicates that the two tails of
the returns behave differently.

Table 2 below gives the method of moment estimates of NIG for the three
data sets. The estimates will be used as initial values for the EM-algorithm.

The stopping criterion is when

J) _ gk

l(—k)<tol (31)

where tol is the tolerance level chosen; e.g 107 and 1" as given in Equation
(11). We now wish to obtain the maximum likelihood parameter estimates of the
data sets for the proposed model via the EM algorithm. Tables 3-5 illustrate
monotonic convergence at different levels. The loglikelihood and AIC for each

data set are also provided.

Histogram of data Normal Q-Q Plot
wn
— (o)
L o |
00
&
&
o
1%
2
€
[
=)
g o o
@
— Q
£
©
n
o _
1
o
T oCP
(o)
P = o |o
\ T T T T T 1 ! T T T T T T \
-15 -10 -5 0 5 10 15 -3 -2 -1 0 1 2 3

Theoretical Quantiles

RRC weekly returns
2.824736

Figure 1. Histogram and Q-Q plot for RRC weekly log-returns.

Table 1. Summary statistics for the data sets.

dataset Minimum Standard.dev skewness exc.kurtosis Maximum Mean N
RRC —14.4465 2.824736 —0.1886714 2.768252 13.9830 0.2333 702
CVX -13.76112 1.480436 -1.297339 11.10113 6.71410 0.08711 702

s&p500 —8.722261 1.157893 -0.7851156  6.408709  4.931805 0.006697 702
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Table 2. NIG method of moment estimates for the data sets.

A A ~

dataset a s ) H
RRC 0.3722511 —0.02456226 2.950864 0.4284473
CVX 0.4190067 —0.1054991 0.8324058 0.3036691

s&p500 0.6556607 —0.1257455 0.8310044 0.1690855

Table 3. Maximum likelihood estimates of the proposed model for RRC.

Parameter  Starting Values EM (tol =107 ) EM (tol = 10’6) EM (tol = 10’8)

a 0.3722511 0.5144623 0.5144017 0.5144511

ﬁ —-0.02456226 —-0.03578978 —-0.0357382 -0.03571578

5 2.950864 2.26434 2.264649 2.265279

)i 0.4284473 0.5176135 0.5172807 0.5171165
Loglikelihood -1696.862 -1696.873 -1696.844
No. iteration 43 47 78

AIC 3401.724 3401.746 3401.688

Table 4. Maximum likelihood estimates of the proposed model for CVX.

Parameter ~ Starting Values EM (tol = 10’5) EM (tol = 10’6) EM (tol = 10’8)

a 0.4190067 1.167283 1.167218 1.167188
[} —0.1054991 —-0.2492112 —-0.2491672 —-0.2491203
5 0.8324058 1.631138 1.631156 1.631209
i 0.3036691 0.5692185 0.5691717 0.5691122
Loglikelihood —-1222.955 -1222.962 -1222.956
No. iteration 37 41 66
AIC 245391 2453.924 2453.912

Table 5. Maximum likelihood estimates of the proposed model for s&p500 index.

Parameter Starting Values EM (tol = 10’5) EM (tol = 10’6) EM (tol = 10’8)

a 0.6556607 1.569046 1.568931 1.568897
B —0.1257455 —-0.2078989 -0.20787 —-0.2078466
S 0.8 1.466964 1.466918 1.466935
)i 0.3036691 0.2425692 0.2425475 0.2425306
Loglikelihood -1042.372 —-1042.386 —1042.385
No. iteration 36 42 65
AIC 2092.744 2092.772 2092.77

Figures 2-4 show that the proposed models is a good fit the data sets.

Remark:
Expressing the proposed model in terms of its components we have
f(x)= 0 NRIG+—T xGHD(—§ a,s,p yj (32)
Sy Sty 277
174 Applied Mathematics
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Using the estimates we obtain the estimates of p for the data sets as shown in
Table 6 below:
The finite mixture for these data sets is more weighted to the NRIG than the

3
other special case of the GHD when A= 5

Proposed Model & Normal

—— Proposed Model
—— Normal

0
© _
o
o
e |

2 s

[72]

c

[

(=]
v
Q_
o
o
Q_
o

-15 -10 -5 0 5 10 15

RRC weekly log-returns

Figure 2. Fitting the proposed model to RRC log weekly returns.

Proposed Model & Normal

0.35

1 — Proposed Model
~ Normal —

Density
0.20 0.25
| |

0.15
|

0.10
|

[ T T 1
-10 -5 0 5

CVX weekly log-returns

Figure 3. Fitting the proposed model to CVX log weekly returns.
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Proposed Model & Normal

—— Proposed Model M
~ Normal
<
[S]
(32}
P
2
‘»
C
7}
SN
g
S
o =
g
T T T T T T 1
-8 -6 -4 -2 0 2 4

s&p500 index weekly log-returns

Figure 4. Fitting the proposed model to s&p500 index log weekly returns.

Table 6. Estimates of p for the data sets.

dataset 2
RRC 0.95772
CVvX 0.79194

s&p500 0.66996

6. Conclusions

Two special cases of the Generalized Inverse Gaussian have been shown to be
Weighted Inverse Gaussian distributions. Their mixture has been used as a mix-
ing distribution for Normal Variance-Mean mixture to a Normal Weighted In-
verse Gaussian Model. The mean and variance of the proposed model have been
obtained.

Three data sets: Range Resource Corporation (RRC), Shares of Chevron Cor-
poration (CVX) and s&p500 index for the period 3/01/2000 to 1/07/2013 with
702 observations have been used for data analysis. An iterative scheme has been
presented for parameter estimation by the EM algorithm. The iterative scheme
demonstrates a monotonic convergence. The method of moment estimates for
NIG worked well for the three data sets. The model fits the data sets well.
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