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Extending (Drábek and Takáč 2017), we investigate the Lyapunov stability of planar waves for the reaction-diffusion equation on
ℝn, n ≥ 2, with a α-H€older continuous (0 < α < 1), but not necessarily smooth reaction term. We first consider an initial value
problem for the equation and then construct sub- and supersolutions to the problem by a subtle modification of the planar
wave. Our main result states that a bounded classical solution to the problem stays near the planar wave for all time whenever
an initial data is close enough to the planar wave.

1. Introduction

We consider a reaction-diffusion equation on ℝn

ut = Δxu + f uð Þ, ð1Þ

where x = ðx1, x2,⋯,xnÞ ∈ℝn, n ≥ 2, Δx = ∂2x1 + ∂2x2 +⋯ + ∂2xn ,
t > 0, uðx, tÞ ∈ℝ, and f : ℝ⟶ℝ. In particular, we are con-
cerned with the stability of the planar wave of the form

u x, tð Þ =U x1 − ctð Þ,U −∞ð Þ = 0,U +∞ð Þ = 1, ð2Þ

which is the most widely studied type of travelling wave to (1)
with a continuously differentiable reaction term f (e.g., see
[1–3] and the references therein). However, in the present
paper, we assume the reaction term f is not necessarily
Lipschitz continuous, but only α-H€older continuous
(0 < α < 1) and one-sided Lipschitz continuous (see (H3) in
Section 1.2). A typical example for a non-Lipschitzian reaction
term f is

f uð Þ = c1u
α0 1 − uð Þα1 u − c2ð Þ, 0 ≤ u ≤ 1, ð3Þ

for some constants α0, α1 ∈ ð0, 1Þ, c1 ∈ℝ, and c2 ∈ ð0, 1Þ,
which has the singular derivatives at u = 0 and u = 1. Equation
(1) with this type of f is more realistic and has been used
extensively as biological models, in particular, Fisher’s model
for population genetics. If α0 = α1 = 1 in the reaction function
(3), the product uð1 − uÞ represents the classical logistic
growth of the population. The assumption requiring very large
birth or death rate of the population leads to the formula uα0
ð1 − uÞα1 with α0, α1 ∈ ð0, 1Þ in (3), which gives the restriction
on the differentiability of f (see the classical work of popula-
tion genetics [4, 5], or [6, 7] for the derivation of f ).

The restriction on the reaction function f makes us
unable to linearize equation (1) about the planar wave (2)
and to use the spectral analysis which is a standard method
to study of stability of travelling waves. Instead, we construct
sub- and supersolutions to (1) by an appropriate modifica-
tion of the planar wave U , and then we show that both the
planar wave U and a unique solution to a Cauchy problem
(1) with an initial data near U are trapped by the sub- and
supersolutions whose difference is sufficiently small. This
method has also been used in [3] to prove the stability of pla-
nar waves (2) in the Allen-Cahn equation on ℝn, n ≥ 2, with
the continuously differentiable reaction term (i.e., α0 = α1 = 1
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in (3)). They studied that the planar wave is asymptotically
stable under any initial perturbations that decay at space
infinity or almost periodic perturbations. In their works,
the continuous differentiability of the reaction term is neces-
sary to construct sub- and supersolutions and to obtain the
convergence rate by using the idea of mean curvature flow
on ℝn−1 (see [8] for the idea of mean curvature). The main
purpose in our project is to study the stability of the planar
wave in ℝn, n ≥ 2, without the differentiability of the reac-
tion term.

Our analysis is totally motivated by the results of Drábek
and Takáč [6], showing that the long-time asymptotic
behavior of solutions to an initial value problem of a one-
dimensional reaction-diffusion equation

ut = uxx + f uð Þ for x, tð Þ ∈ℝ ×ℝ+ ;

u x, 0ð Þ = u0 xð Þ for x ∈ℝ,

(
ð4Þ

with a non-Lipschitzian reaction term f defined by (3). By
constructing sub- and supersolutions without the differen-
tiability of f , they established the convergence of a solution
uðx, tÞ to a travelling wave solution Uðx − ctÞ, that is,

sup
x∈ℝ

u x, tð Þ −U x − ct + ζð Þj j⟶ 0 as t⟶∞, ð5Þ

for some spatial shift ζ ∈ℝ, when the initial data u0 is close
enough to U as x goes to ±∞. However, they restricted the
model to the simple case of one space variable by assuming
a habitat of a population is a one-dimensional space, for
example, a long thin strip along a straight shoreline. In order
to make the model to be more realistic, we extend their
method to a multidimensional space and prove the planar
wave is stable under small initial perturbations in L∞ðℝnÞ
with n ≥ 2.

The purpose of this introduction is to provide informa-
tion of the profile of the planar wave (2) and the precise
assumptions on the reaction term f and to state our main
result.

1.1. The Profile of Planar Waves. In order to study of stability
of the planar wave (2), we first introduce the x1-moving
coordinate with speed c by setting

u x, tð Þ = v z, tð Þ, z = z1, z2,⋯,znð Þ = x1 − ct, x2,⋯,xnð Þ, ð6Þ

so that the planar wave can be considered as a stationary
solution. In the ðz, tÞ coordinates, equation (1) reads

vt = Δzv + cvz1 + f vð Þ, ð7Þ

and the planar wave is then a stationary solution vðz, tÞ =
Uðz1Þ that satisfies the profile equation

0 =U″ z1ð Þ + cU ′ z1ð Þ + f U z1ð Þð Þ,
lim

z1⟶−∞
U z1ð Þ = 0 and lim

z1⟶∞
U z1ð Þ = 1:

ð8Þ

The existence and monotonicity of such profiles have
been studied in [1, DT2]. According to Section 2 of [6],
the assumption (H1) stated in Section 1.2 guarantees C2

-profiles U : ℝ⟶ ½0, 1� for some speed c = c∗. If Uðz1Þ sat-
isfies (8), then its translate Uðz1 − ζÞ also satisfies (8) for any
constant ζ ∈ℝ. Throughout this paper, we impose the con-
dition

U 0ð Þ = s0, ð9Þ

for some constant s0 ∈ ð0, 1Þ that appears in (H1), so that the
C2-profile U : ℝ⟶ ½0, 1� satisfying (8) is unique for some
unique speed c = c∗. Moreover, under the assumption (H1),
the profile is nondecreasing on ℝ and there is an open inter-
val ða, bÞ ⊆ℝ, −∞≤ a < 0 < b ≤∞, such that 0 ≤Uðz1Þ ≤ 1
and U ′ðz1Þ > 0 on ða, bÞ. The asymptotic behavior of the
profile is determined solely by the behavior of f ðsÞ as s
⟶ 0+ and s⟶ 1−. It is well-known that a = −∞ and b
=∞ in the classical case, i.e., f ∈ C1ðℝÞ. However, in our
case of f being non-Lipschitzian at the points s = 0 and s =
1, one has −∞ < a < 0 < b <∞. More precisely, a non-
Lipschitzian f satisfies that there exist positive constants γ0
and γ1 such that

lim
s⟶0+

f sð Þ
sα0

= −γ0 < 0 and lim
s⟶1−

f sð Þ
1 − sð Þα1

= γ1 > 0, α0, α1 ∈ 0, 1ð Þ,
ð10Þ

(see a typical example (3) of f ). It is obvious that the limits of
(10) are −∞ and ∞, respectively, in the case of f ∈ C1ðℝÞ
(see [6, 9] for further details).

In summary, the planar wave vðz, tÞ =Uðz1Þ satisfies

0 =U″ z1ð Þ + cU ′ z1ð Þ + f U z1ð Þð Þ,U 0ð Þ = s0, ð11Þ

and there is an open interval ða, bÞ ⊂ℝ, −∞ < a < 0 < b <∞,
such that

U z1ð Þ = 0 for−∞ < z1 ≤ a,

U ′ z1ð Þ > 0 for a < z1 < b,

U z1ð Þ = 1 for b ≤ z1<∞:

8>><
>>: ð12Þ

1.2. Hypotheses on the Reaction Term f . Throughout this
paper, following [6], we assume the reaction term f satisfies
the following:

(H1). f : ℝ⟶ℝ is continuous such that f ð0Þ = f ðs0Þ
= f ð1Þ = 0 for some 0 < s0 < 1. Moreover, f ðsÞ < 0 for any s
∈ ð0, s0Þ ∩ ð1,∞Þ, f ðsÞ > 0 for all s ∈ ð−∞, 0Þ ∩ ðs0, 1Þ, and
for any 0 < r ≤ 1,

F rð Þ≔
ðr
0
f sð Þds < 0: ð13Þ

(H2). f is α-H€older continuous (0 < α < 1).
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(H3). f is one-sided Lipschitz continuous, that is, there
exists a positive number L such that

f s′
� �

− f sð Þ ≤ L s′ − s
� �

 for any  s, s′ ∈ℝ with  s < s′:

ð14Þ

(H4). There exists a positive constant

η0 <
1
4
min s0, 1 − s0f g, ð15Þ

satisfying that for any η ∈ ð0, η0� there are positive constants
δ ∈ ð0, η�, μ and �μ such that

inf
0≤s≤δ

f sð Þ − f s + qð Þ½ � ≥ μq for all  q ∈ 0, s0 − 2ηð Þ, ð16Þ

inf
1−δ≤s≤1

f s − qð Þ − f sð Þ½ � ≥ �μq for all  q ∈ 0, 1 − s0 − 2ηð Þ:
ð17Þ

As mentioned in the previous subsection, the first
assumption (H1) is needed to show the existence and mono-
tonicity of the profile Uðz1Þ. The last assumption (H4),
referred to as the secant conditions, holds trivially if f ∈ C1

ðℝÞ is a classical bistable type and δ > 0 is small enough.
We can also assume (H4) even for a non-Lipschitzian reac-
tion term f . The reader can see Figure 1 in [6] for an exam-
ple satisfying (H4).

1.3. Main Result. We now state our main theorem. Theorem
1 says that if the equation (7) starts with an initial data v0ðzÞ
near the planar wave Uðz1Þ then the solution to (7) stays
near it for all time.

Theorem 1 (Lyapunov stability). Let the assumptions
(H1)–(H4) hold and n ≥ 2. Suppose that a function v0ðzÞ ∈
L∞ðℝnÞ satisfies that for all z ∈ℝn,

0 ≤ v0 zð Þ ≤ 1 and  v0 zð Þ −U z1ð Þj j < E0, ð18Þ

where E0 > 0 is sufficiently small. Then, there is a unique
bounded classical solution vðz, tÞ to (7) with an initial data
v0ðzÞ such that for all z ∈ℝn and all time t > 0,

0 ≤ v z, tð Þ ≤ 1 and  v z, tð Þ −U z1ð Þj j < CE0, ð19Þ

for some constant C > 0.

Remark 2. Theorem 1 is the extension of the one-
dimensional stability result (Proposition 4.1) of [6] to a mul-
tidimensional space. Our assumption for the profile Uð0Þ
= s0 gives ζ = 0 in their result.

The paper is organized as follows. In Section 2, we first
consider the Cauchy problem

vt = Δzv + cvz1 + f vð Þ,
v z, 0ð Þ = v0 zð Þ,

ð20Þ

with an initial data v0ðzÞ ∈ L∞ðℝnÞ, n ≥ 2. Under the
assumption (H2), we establish regularity estimates so that a
bounded mild solution to (20) is well-defined, and it
becomes a bounded classical solution to (20). In Section 3,
we define weak sub- and supersolutions to (20) and discuss
the weak comparison principle for them under the assump-
tion (H3). This section will also show the uniqueness of the
solution to (20). Finally, in Section 4, using the assumption
(H4), we modify the planar wave U to construct L∞ sub-
and supersolutions to (20) and prove Theorem 1 by showing
both the solution to (20) and the planar wave U stay between
sub- and supersolutions when the initial data v0ðzÞ is close
enough to U .

1.4. Discussion and Open Problems. Theorem 1 does work if
E0 is sufficiently small that 0 < E0 < η0 < 1/4 min fs0, 1 − s0g.
We use the assumption (H4) to prove suitable modifications
of the planar wave Uðz1 − ξðtÞÞ − qðtÞ and Uðz1 + ξðtÞÞ + q
ðtÞ are sub- and supersolutions of (20) for some functions
ξðtÞ and qðtÞ. By setting qð0Þ = 2E0 and η = E0 in (H4), we
can apply the inequalities (16) and (17) to the proof of The-
orem 1.

The main idea of our work follows [6], but in the present
paper, we do not impose one of their assumptions, saying
(H5). The assumption (H5) in [6] means that the initial per-
turbation is small enough only at space infinity, so the
assumption (18) for an initial data implies their assumption
(H5). Indeed, they proved the travelling wave is asymptoti-
cally stable by showing the solution of (20) converges to
the travelling wave as t goes to infinity when the initial data
satisfies (H5) (see (5)). So the initial perturbation does not
need to be small in their work. However, unfortunately,
the assumption (H5) is not enough to prove the conver-
gence, even the stability, for our multidimensional case. It
seems that we need more assumptions on the initial pertur-
bation or the reaction term f to prove the asymptotic stabil-
ity of the planar wave on ℝn with n ≥ 2, which is a
interesting open problem.

Moreover, even in ℝ, the convergence rate for a non-
Lipschitzian reaction term f has not been proven yet. The
asymptotic stability with the convergence rate of the planar
wave (2) on ℝn, n ≥ 2, for a continuously differentiable f
has been studied in [3]. They also modified the planar wave
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Figure 1: Planar wave Uðx1 − ctÞ on ℝ2.
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to construct sup- and supersolutions by using more delicate
phase functions thanks to the differentiability of f . The study
of convergence rate on ℝ for a non-Lipschitzian f would be
another very interesting direction to carry out.

2. A Bounded Classical Solution

In this section, we consider the Cauchy problem on ℝn,

vt = Δzv + cvz1 + f vð Þ,
v z, 0ð Þ = v0 zð Þ,

ð21Þ

where z = ðz1, z2,⋯,znÞ, n ≥ 2, an initial data v0 : ℝ
n ⟶ℝ

is Lebesgue-measurable, and 0 ≤ v0ðzÞ ≤ 1 for all z ∈ℝn.
Especially, under the assumption (H2), we prove the exis-
tence of a bounded classical solution to (21) in the sense that
a mild solution v, defined in (25), of (21) satisfies

vt , vz1 , Δzv ∈ C
α,α/2 ℝn × τ, T½ �ð Þ, ð22Þ

for any given 0 < τ < T <∞ and the weak star limit vðz, tÞ ∗
v0ðzÞ in L∞ðℝnÞ as t⟶ 0+. Here, for any α ∈ ð0, 1Þ and T
> 0, the norm of H€older space Cα,α/2ðℝn × ½0, T�Þ is given by

gk kCα,α/2 ℝn× 0,T½ �ð Þ ≔ gk kL∞ ℝn× 0,T½ �ð Þ + g½ � α,α/2ð Þ, ð23Þ

where

g½ � α,α/2ð Þ ≔ sup
z,z′∈ℝn ,0< z−z ′j j≤1,t∈ 0,T½ �

g z, tð Þ − g z′, t
� ���� ���

z − z′
�� ��α

+ sup
z∈ℝn ,0≤t<t′≤T

g z, tð Þ − g z, t ′
� ���� ���

t − t ′
�� ��α/2 :

ð24Þ

Applying Duhamel’s principle to (21) yields an integral
equation of v:

v z, tð Þ =
ð
ℝn
G z − y, tð Þv0 yð Þdy

+
ðt
0

ð
ℝn
G z − y, t − sð Þf v y, sð Þð Þdyds

≕ G1 tð Þv0½ � zð Þ + G2 f ∘ vð Þ½ � z, tð Þ,

ð25Þ

for any ðz, tÞ ∈ℝn × ½0,∞Þ. Here, for any y = ðy1, y2,⋯,ynÞ,
the heat kernel G is defined by

G z − y, tð Þ≔ 1
4πtð Þn/2 e

− z1−y1+ctj j2+ z2−y2j j2+⋯+ zn−ynj j2/4t: ð26Þ

It is well known that if the initial value problem (21) has a
solution, this solution is given by (25), referred to as the mild
solution of (21). However, it is not trivial that every mild solu-
tion is a classical solution. So the first step is to establish the
regularity estimates (22) for any bounded mild solution and
then we will consider well-posedness of a bounded mild solu-

tion (25). The estimates of the heat potentials in H€older norm
have been established in Section 4 of [10], which lead to the
following lemma.

Lemma 3 (Regularity estimates). Assume that f : ℝ⟶ℝ
satisfies the condition (H2). If vðz, tÞ is a bounded mild solu-
tion of (21), then for any given 0 < τ < T <∞

vt , vz1 , Δzv ∈ C
α,α/2 ℝn × τ, T½ �ð Þ, ð27Þ

and we have the estimates

vt , vz1 , Δzv
� �

z, tð Þ�� ��
Cα,α/2 ℝn× τ,T½ �ð Þ

≤Mτ,T vk kL∞ ℝn× 0,Tð Þð Þ + f ∘ vk kL∞ ℝn× 0,Tð Þð Þ
� �

,
ð28Þ

for some constant Mτ,T > 0, dependent upon τ and T .

Proof. We first fix any τ and T with 0 < τ < T <∞. A direct
calculation gives that for all ðz, tÞ ∈ℝn × ð0, TÞ,

∂k+m1+m2+⋯+mn

∂tk∂zm1
1 ∂zm2

2 ⋯ ∂zmn
n

G1 tð Þv0½ � zð Þ
�����

�����
≤Mk,m1,⋯,mn

t−k−m1+m2+⋯+mn/2 v0k kL∞ ℝnð Þ,
ð29Þ

and for all ðz, tÞ, ðz, t ′Þ ∈ℝn × ½0, T� with t ≠ t ′ and all i = 1
, 2,⋯, n,

∂
∂zi

G2 f ∘ vð Þ z, tð Þ
����

����, G2 f ∘ vð Þ z, t ′
� �

−G2 f ∘ vð Þ z, tð Þ
��� ���

t ′ − t
�� ��1/2

≤MT f ∘ vk kL∞ ℝn× 0,Tð Þð Þ:

ð30Þ

The second inequality of (30) is proved in Chapter 4 of
[10]. We now fix t0 with 0 < t0 < τ and replace the initial
time t = 0 by t = t0. By (29) and the H€older estimates in
[10], we have for all i = 1, 2,⋯, n,

G1 tð Þv0½ �t , G1 tð Þv0½ �z1 , G1 tð Þv0½ �zizi
� �

z, tð Þ
��� ���

Cα,α/2 ℝn× τ,T½ �ð Þ
≤Mt0,τ,T v ·, t0ð Þk kL∞ ℝnð Þ and

G2 f ∘ vð Þ½ �t , G2 f ∘ vð Þ½ �z1 , G2 f ∘ vð Þ½ �zizi
� �

z, tð Þ
��� ���

Cα,α/2 ℝn× τ,T½ �ð Þ
≤Mτ,T f ∘ vk kCα,α/2 ℝn× t0,T½ �ð Þ:

ð31Þ

Since kvð·, t0ÞkL∞ðℝnÞ ≤ kvkL∞ðℝn×ð0,TÞÞ, to obtain the esti-
mate (28), it is enough to show that

f ∘ vk kCα,α/2 ℝn× t0,T½ �ð Þ f ∘ vk kL∞ ℝn× 0,Tð Þð Þ: ð32Þ
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We notice that the inequalities (29) and (30) yield that
for all ðz, tÞ, ðz, t ′Þ ∈ℝn × ½t0, T� with t ≠ t ′,

∇v z, tð Þj j,
v z, t ′
� �

− v z, tð Þ
��� ���

t ′ − t
�� ��1/2

≤Mt0,T v ·, t0ð Þk kL∞ ℝnð Þ + f ∘ vk kL∞ ℝn× 0,Tð Þð Þ
� �

:

ð33Þ

Since f is α-H€older continuous, the estimates (32) give

sup
0< z−z ′j j≤1,t∈ t0,T½ �

f ∘ vð Þ z, tð Þ − f ∘ vð Þ z′, t
� ���� ���

z − z′
�� ��α

= sup
0<∣z−z′∣≤1,t∈ t0,T½ �

f ∘ vð Þ z, tð Þ − f ∘ vð Þ z′, t
� ���� ���

v z, tð Þ − v z′, t
� ���� ���α

·
v z, tð Þ − v z′, t

� ���� ���α
z − z′
�� ��α

≤Mτ,T vk kL∞ ℝn× 0,Tð Þð Þ + f ∘ vk kL∞ ℝn× 0,Tð Þð Þ
� �

,

ð34Þ

and similarly

sup
z∈ℝn ,t0≤t<t′≤T

f ∘ vð Þ z, tð Þ − f ∘ vð Þ z, t ′
� ���� ���

t − t ′
�� ��α/2

= sup
z∈ℝn ,t0≤t<t′≤T

f ∘ vð Þ z, tð Þ − f ∘ vð Þ z, t ′
� ���� ���

v z, tð Þ − v z, t ′
� ���� ���α

·
v z, tð Þ − v z, t ′

� ���� ���α
t − t ′
�� ��α/2

≤Mτ,T vk kL∞ ℝn× 0,Tð Þð Þ + f ∘ vk kL∞ ℝn× 0,Tð Þð Þ
� �

:

ð35Þ

Finally, we have

vt , vz1 , Δv
� �

z, tð Þ�� ��
Cα,α/2 ℝn× τ,T½ �ð Þ

≤Mτ,T vk kL∞ ℝn× 0,Tð Þð Þ + f ∘ vk kL∞ ℝn× 0,Tð Þð Þ
� �

:
ð36Þ

☐

Noting that f ∘ v is the source term of the inhomoge-
neous initial value problem (21), we now apply the regularity
estimates (28) and Tikhonov fixed point theorem to show
the well-posedness of a bounded mild solution (25).

Lemma 4. Assume that f : ℝ⟶ℝ satisfies the condition
(H2). If an initial data v0ðzÞ ∈ L∞ðℝnÞ satisfies 0 ≤ v0ðzÞ ≤
1, then the initial value problem (21) has a bounded mild
solution vðz, tÞ ∈ L∞ðℝn × ½0,∞ÞÞ such that 0 ≤ vðz, tÞ ≤ 1
for all ðz, tÞ ∈ℝn × ½0,∞Þ.

Proof. We first consider the existence of a bounded mild
solution vðz, tÞ on ℝn × ½0, T�, where

T ≔
1

sup
−1≤r≤2

f rð Þj j > 0: ð37Þ

We define the locally convex vector space

X ≔ L∞ ℝn × 0, T½ �ð Þ ∩ C ℝn × 0, T½ �ð Þ, ð38Þ

and the closed convex subset of X

C ≔ w ∈X : w z, tð Þj j ≤ 1 for all z, tð Þ ∈ℝn × 0, T½ �f g: ð39Þ

By recalling a mild solution (25), let us consider an oper-
ator F : X ⟶X defined by

Fwð Þ z, tð Þ≔
ðt
0

ð
ℝn
G z − y, t − sð Þf v y, sð Þð Þdyds,∀ z, tð Þ

∈ℝn × 0, T½ �,
ð40Þ

where

v z, tð Þ =
ð
ℝn
G z − y, tð Þv0 yð Þdy +w z, tð Þ: ð41Þ

We first prove FðCÞ ⊂ C. For any given w ∈C , sinceÐ
ℝnGðz − y, tÞdy = 1, v0ðzÞ ∈ ½0, 1�, and jwðz, tÞj ≤ 1 for all

ðz, tÞ ∈ℝn × ½0, T�, it follows

−1 ≤ v z, tð Þ ≤
ð
ℝn
G z − y, tð Þ v0 yð Þj jdy + w z, tð Þj j ≤ 2: ð42Þ

Thus, for any ðz, tÞ ∈ℝn × ½0, T�

Fwð Þ z, tð Þj j ≤
ðt
0

ð
ℝn
G z − y, t − sð Þ f v y, sð Þð Þj jdyds

≤ sup
−1≤v≤2

f vð Þj jT = 1,
ð43Þ

which implies F maps C into itself. We now notice that
for any w1, w2 ∈C ,

Fw1ð Þ z, tð Þ − Fw2ð Þ z, tð Þj j
≤M

ðt
0

ð
ℝn

G z − y, t − sð Þj j w1 y, sð Þ −w2 y, sð Þj jαdyds

≤MT sup
z∈ℝn ,t∈ 0,T½ �

w1 x, tð Þ −w2 x, tð Þj jα,

ð44Þ

for some constant M > 0 satisfying j f ðrÞ − fðr′Þj ≤M
jr − r′jα for any r, r′ ∈ℝ, which means that the operator
F is continuous from C into itself. Moreover, the image
FðCÞ is relatively compact because FðCÞ is uniformly
bounded for all w ∈C and FðCÞ is equicontinuous by
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the estimates (30). Hence, by Tikhonov’s fixed point theo-
rem, there is ŵðz, tÞ ∈C such that Fŵ = ŵ. Recalling (39)
and (40) gives that for all ðz, tÞ ∈ℝn × ½0, T�,

v̂ z, tð Þ≔
ð
ℝn
G z − y, tð Þv0 yð Þdy + ŵ z, tð Þ

=
ð
ℝn
G z − y, tð Þv0 yð Þdy

+
ðt
0

ð
ℝn
G z − y, t − sð Þf v̂ y, sð Þð Þdyds,

ð45Þ

which is a bounded mild solution to (21). Therefore, we
obtain the existence of a bounded mild solution v : ℝn ×
½0,∞Þ⟶ℝ by replacing the initial time t = 0 by t = t0
for any t0 > 0 and repeating the above procedure in each
time interval ½t0, t0 + T�.☐

3. A Bounded Weak Solution and a Weak
Comparison Principle

In the previous section, we have proved that a mild solution
to (21) enjoys regularity estimates for a classical solution.
We now prove the uniqueness of the classical solution by
showing that (21) possesses at most one weak solution. As
a starting point, we define a weak L∞ sub- and supersolution
of (21), and we then establish a comparison principle for
them. The weak comparison principle concludes the unique-
ness of a weak solution and plays an important role in the
proof of stability in the next section.

Definition 5 (Weak L∞ sub- and supersolution). Let v0ðzÞ
∈ L∞ðℝnÞ. By a weak L∞ supersolution of (21), we mean a
function �vðz, tÞ ∈ L∞ðℝn × ½0,∞ÞÞ satisfying the following
three conditions:

(i) For all nonnegative test function ϕðzÞ ∈W1,1
0 ðℝnÞ,

limsup
t⟶0+

ð
ℝn

�v z, tð Þ − v0 zð Þ½ �ϕ zð Þdz ≥ 0: ð46Þ

(ii) �v is Lipschitz-continuous in every set ℝn × ½τ, T�
whenever 0 < τ < T <∞, that is, ∂�v/∂zi, ∂�v/∂t ∈ L∞
ðℝn × ½τ, T�Þ for all i = 1,⋯, n

(iii) For all nonnegative test function ϕðzÞ ∈W1,1
0 ðℝnÞ,

ð
ℝn

�vt z, tð Þϕ zð Þdz +
ð
ℝn
∇�v zð Þ · ∇ϕ zð Þdz

− c
ð
ℝn
�vz1 z, tð Þϕ zð Þdz ≥

ð
ℝn
f �v z, tð Þð Þϕ zð Þdz:

ð47Þ

By a weak L∞ subsolution of (21), we mean a function
vðx, tÞ ∈ L∞ðℝn × ½0,∞ÞÞ satisfying the above three condi-
tions (i), (ii), and (iii) replaced the reverse inequality in
(45) and (46). We say that a function v ∈ L∞ðℝn × ½0,∞ÞÞ

is a weak L∞ solution of (21) if v is a weak L∞ sub- and
supersolution to (21).

We now establish a weak comparison principle for a
weak L∞ sub- and supersolution under the crucial hypothe-
sis (H3) which is one-sided Lipschitz continuity of f .

Theorem 6 (Weak comparison principle). Let f : ℝ⟶ℝ
be continuous with the one-sided Lipschitz condition (H3).
Assume that v , �v ∈ L∞ðℝn × ½0,∞ÞÞ are weak L∞ sub-
and supersolutions to (21), respectively, such that vðz, 0Þ
≤ �vðz, 0Þ a.e. in ℝn. Then, we have vðz, tÞ ≤ �vðz, tÞ a.e. in
ℝn × ð0,∞Þ.

Proof. Subtracting (46) from the reverse inequality of (46)
for a subsolution yields

ð
ℝn

v − �vð Þtϕdz +
ð
ℝn
∇ v − �vð Þ · ∇ϕdz − c

ð
ℝn

v − �vð Þz1ϕdz

≤
ð
ℝn

f vð Þ − f �vð Þ½ �ϕdz,

ð48Þ

for any nonnegative function ϕ ∈W1,1
0 ðℝnÞ. Let ðv − �vÞ+ ≔

max fðv − �vÞ, 0g, and we then prove that ðv − �vÞ+ = 0 a.e.
in ℝn × ð0,∞Þ. For any given nonnegative ϕ ∈W1,1

0 ðℝnÞ,
since ðv − �vÞ+ϕ is also a nonnegative test function, replacing
ϕ by ðv − �vÞ+ϕ in (47) gives

ð
ℝn

v − �vð Þt v − �vð Þ+ϕdz +
ð
ℝn
∇ v − �vð Þ · ∇ v − �vð Þ+ϕ½ �dz

− c
ð
ℝn

v − �vð Þz1 v − �vð Þ+ϕdz ≤
ð
ℝn

f vð Þ − f �vð Þ½ � v − �vð Þ+ϕdz:

ð49Þ

From a simple calculation, we evaluate that

ð
ℝn

v − �vð Þt v − �vð Þ+ϕdz = 1
2
d
dt

ð
ℝn

v − �vð Þ+½ �2ϕdz, ð50Þ

ð
ℝn
∇ v − �vð Þ · ∇ v − �vð Þ+ϕ½ �dz

=
ð
ℝn

∇ v − �vð Þ+�� ��2ϕdz + 1
2

ð
ℝn
∇ v − �vð Þ+ð Þ2 · ∇ϕdz,

ð51Þ
ð
ℝn

v − �vð Þz1 v − �vð Þ+ϕdz = 1
2

d
dz1

ð
ℝn

v − �vð Þ+½ �2ϕdz,

ð52Þ
and

ð
ℝn

f vð Þ − f �vð Þ½ � v − �vð Þ+ϕdz ≤ L
ð
ℝn

v − �vð Þ+½ �2ϕdz, ð53Þ
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where the last inequality is from the one-sided Lipschitz
condition (H3). Hence, we find

1
2
d
dt

ð
ℝn

v − �vð Þ+½ �2ϕdz + 1
2

ð
ℝn
∇ v − �vð Þ+½ �2
� �

· ∇ϕdz +
ð
ℝn

∇ v − �vð Þ+�� ��2ϕdz − c
2

d
dz1

ð
ℝn

v − �vð Þ+½ �2ϕdz

≤ L
ð
ℝn

v − �vð Þ+½ �2ϕdz:

ð54Þ

By multiplying each term of (50) by 2e−2Lt and rearran-
ging, we obtain

e−2Lt
d
dt

ð
ℝn

v − �vð Þ+½ �2ϕdz − 2Le−2Lt
ð
ℝn

v − �vð Þ+½ �2ϕdz

+ e−2Lt
ð
ℝn
∇ v − �vð Þ+½ �2
� �

· ∇ϕdz

− ce−2Lt
d
dz1

ð
ℝn

v − �vð Þ+½ �2ϕdz

+ 2e−2Lt
ð
ℝn

∇ v − �vð Þ+�� ��2ϕdz ≤ 0:

ð55Þ

By setting Wðz, tÞ = e−2Lt½ðv − �vÞ+�2, it follows that
ð
ℝn
Wtϕdz +

ð
ℝn
∇W · ∇ϕdz − c

ð
ℝn
Wz1

ϕdz

+ 2
ð
ℝn

∇Wj j2ϕdz ≤ 0:
ð56Þ

Since
Ð
ℝn∇W · ∇ϕdz = −

Ð
ℝnΔWϕdz and

Ð
ℝn j∇Wj2ϕdz

≥ 0, we find

ð
ℝn
Wtϕdz −

ð
ℝn
ΔWϕdz − c

ð
ℝn
Wz1

ϕdz ≤ 0, ð57Þ

for all nonnegative ϕ ∈W1,1
0 ðℝnÞ. As vðz, 0Þ ≤ �vðz, 0Þ a.e. in

ℝn, Wðz, 0Þ = 0 a.e. in ℝn and thus Wðz, tÞ satisfies the ini-
tial value problem

Wt − ΔzW − cWz1
≤ 0,

W z, 0ð Þ = 0:

(
ð58Þ

By setting Vðz1, z2,⋯,zn, tÞ =Wðz1 − ct, z2,⋯,zn, tÞ,

Vt − ΔV ≤ 0,

V z, 0ð Þ = 0:

(
ð59Þ

The weak maximum principle for the heat equation con-
cludes that Wðz, tÞ ≤ 0 a.e. in ℝn × ð0,∞Þ, which implies

ðv − �vÞ+ ≡ 0 a.e. in ℝn × ð0,∞Þ. Therefore,

v z, tð Þ ≤ �v z, tð Þ a:e:inℝn × 0,∞ð Þ: ð60Þ

☐

Since any bounded weak solution is a bounded sub- and
supersolution simultaneously, as a consequence of the weak
comparison principle together with Lemmas 3 and 4, we
obtain the following corollary.

Corollary 7. Let f : ℝ⟶ℝ be continuous satisfying (H2)
and (H3). Then the initial value problem (21) has a unique
bounded classical solution.

4. Lyapunov Stability of the Planar Wave U

In this section, we give a proof of Theorem 1. We prove the
planar wave U is stable in the sense that the unique solution
vðz, tÞ to the initial value problem (21) stays near U for all
time t > 0 when the initial data v0ðzÞ at t = 0 is close enough
to U .

We first construct, by an appropriate modification of the
planer wave Uðz1Þ, weak sub- and supersolutions vðz, tÞ and
�vðz, tÞ, respectively, to (21) satisfying

v z, 0ð Þ ≤ v0 zð Þ ≤ �v z, 0ð Þ and 0 ≤ v z, tð Þ ≤ �v z, tð Þ ≤ 1, ð61Þ

for all ðz, tÞ ∈ℝn × ð0,∞Þ. The assumption (H4) plays a sig-
nificant role in the construction of the sub- and supersolu-
tion. We notice that the constant functions vðz, tÞ = 0 and
vðz, tÞ = 1 are sub- and supersolutions, respectively, to (21)
because the initial data v0ðzÞ satisfies 0 ≤ v0ðzÞ ≤ 1 for all z
∈ℝn.

Lemma 8. Suppose that f satisfies the assumptions
(H1)–(H4) and the initial data v0ðzÞ of (21) satisfies for all
z ∈ℝn,

0 ≤ v0 zð Þ ≤ 1 and  v0 zð Þ −U z1ð Þj j < E0, ð62Þ

where E0 > 0 is sufficiently small. Then, there exists a constant
ν > 0 such that the functions defined by

v z, tð Þ =max U z1 − ξ tð Þð Þ − q tð Þ, 0f g and
�v z, tð Þ =min U z1 + ξ tð Þð Þ + q tð Þ, 1f g,

ð63Þ

where

q tð Þ = 2E0e
−μt , μ =min μ, �μ

n o
  and  ξ tð Þ = 2νE0 1 − e−μt

� �
ð64Þ

are sub- and supersolutions, respectively, to (21) satisfying
(60) (see Figure 2).
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Proof. To begin, we recall the profile Uðz1Þ in (12) and let E0
be sufficiently small that

0 < E0 < η0 <
1
4
min s0, 1 − s0f g, ð65Þ

where s0 is a constant such that Uð0Þ = s0. Then, by the
assumption (61) for an initial data v0, one can say that for
all z ∈ℝn,

0 ≤max U z1ð Þ − 2E0, 0f g ≤ v0 zð Þ ≤min U z1ð Þ + 2E0, 1f g ≤ 1,
ð66Þ

which implies that

v z, 0ð Þ ≤ v0 zð Þ ≤ �v z, 0ð Þ: ð67Þ

We notice that qðtÞ is decreasing to 0 and ξðtÞ is increas-
ing to 2νE0 as t⟶∞, where the positive constant ν will be
determined later. Moreover, by the monotonicity of the pro-
file Uðz1Þ and the inequality (66), the functions v and �v sat-
isfy (60).

By setting η≔ E0 < η0 in the assumption (H4), we prove
�vðz, tÞ is a supersolution to (21). In order to prove �vðz, tÞ:
ℝn × ½0,∞Þ⟶ℝ is a supersolution to (21), we decompose
its domain as

ℝn × 0,∞½ Þ = �Ω1 ∪ �Ω2 ∪ �Ω3, ð68Þ

where

�Ω1 = z, tð Þ ∈ℝn × 0,∞½ Þ ∣ 0 ≤U z1 + ξ tð Þð Þ ≤ δf g,
�Ω2 = z, tð Þ ∈ℝn × 0,∞½ Þ ∣ 1 − δ ≤U z1 + ξ tð Þð Þ ≤ 1f g,
�Ω3 = z, tð Þ ∈ℝn × 0,∞½ Þ ∣ δ ≤U z1 + ξ tð Þð Þ ≤ 1 − δf g,

ð69Þ

with the positive constant δ ≤ E0 in the assumption (H4). That
is, the decomposition is depending only on the z1-coordinate
and t.

For the region �Ω1, since qðtÞ is decreasing and by (64),

U z1 + ξ tð Þð Þ + q tð Þ ≤U z1 + ξ tð Þð Þ + q 0ð Þ ≤ δ + 2E0 ≤ 3E0 < 1,
ð70Þ

and the profile equation U″ + cU ′ + f ðUÞ = 0 gives

�vt − Δ�v − c�vz1 − f �vð Þ =U ′ z1 + ξ tð Þð Þνq′ tð Þ + q′ tð Þ
−U″ z1 + ξ tð Þð Þ − cU ′ z1 + ξ tð Þð Þ
− f U z1 + ξ tð Þð Þ + q tð Þð Þ

=U ′ z1 + ξ tð Þð Þνq′ tð Þ + q′ tð Þ
+ f U z1 + ξ tð Þð Þð Þ
− f U z1 + ξ tð Þð Þ + q tð Þð Þ:

ð71Þ

Since 0 ≤U ≤ δ and 0 < qðtÞ ≤ qð0Þ = 2E0 < s0 − 2E0 = s0
− 2η for all ðz, tÞ ∈ �Ω1, applying the inequality (16) to the
last two terms on the right-hand side of (73) and recalling
U ′ ≥ 0 and μ =min fμ, �μg yield

�vt − Δ�v − c�vz1 − f �vð Þ ≥U ′ z1 + ξ tð Þð Þνq′ tð Þ + q′ tð Þ + μq tð Þ
=U ′ z1 + ξ tð Þð Þνμq tð Þ − μq tð Þ + μq tð Þ
= q tð Þ νμU ′ − μ + �μ

h i
≥ 0,

ð72Þ

which implies �vðz, tÞ is a supersolution to (21) on �Ω1.
For the region �Ω2 ∪ �Ω3, by the definition of �v and the

fact that v ≡ 1 is a supersolution to (21), it is enough to prove
�v is a supersolution only when Uðz1 + ξðtÞÞ + qðtÞ < 1. Since
0 < qðtÞ ≤ qð0Þ = 2E0 < 1 − s0 − 2E0 = 1 − s0 − 2η for all ðz, tÞ
∈ �Ω2, applying (17) to the last two terms on the right-
hand side of (73) gives

�vt − Δ�v − c�vz1 − f �vð Þ ≥U ′ z1 + ξ tð Þð Þνq′ tð Þ + q′ tð Þ + �μq tð Þ
= q tð Þ νμU ′ − μ + �μ

h i
≥ 0:

ð73Þ

For all ðz, tÞ ∈ �Ω3, applying the assumption (H3) to the
last two terms on the right-hand side of (73) yields

(a) t = 0 (b) t > 0

Figure 2: The subsolutions (red) and supersolutions (green) given in (62)–(63) by a modification of the planar wave U (yellow) in ℝ2. If the
initial data v0ðzÞ is close enough to U so that v0ðzÞ is between sub- and supersolutions at t = 0, the solution vðz, tÞ stays between them for all
t > 0. The fact that both v and U are trapped by the sub- and supersolutions whose difference is sufficiently small for all time t > 0 guarantees
the stability of U .
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�vt − Δ�v − c�vz1 − f �vð Þ ≥U ′ z1 + ξ tð Þð Þνq′ tð Þ + q′ tð Þ − Lq tð Þ
= q tð Þ νμU ′ − μ − L

h i
:

ð74Þ

Since the profile U is a strictly increasing C2-function for
δ ≤U ≤ 1 − δ, there exists some ω > 0 such that U ′ ≥ ω for
all ðz, tÞ ∈ �Ω3. If we choose ν satisfying ν ≥ μ + L/μω, we
obtain

�vt − Δ�v − c�vz1 − f �vð Þ ≥ q tð Þ νμω − μ − L½ � ≥ 0, ð75Þ

which implies �v is a supersolution to (21). The proof of the
subsolution vðz, tÞ follows similarly by decomposing ℝn × ½
0,∞Þ as

ℝn × 0,∞½ Þ =Ω1 ∪Ω2 ∪Ω3, ð76Þ

where

Ω1 = z, tð Þ ∈ℝn × 0,∞½ Þ ∣ 1 − δ ≤U z1 − ξ tð Þð Þ ≤ 1f g,
Ω2 = z, tð Þ ∈ℝn × 0,∞½ Þ ∣ 0 ≤U z1 − ξ tð Þð Þ ≤ δf g,
Ω3 = z, tð Þ ∈ℝn × 0,∞½ Þ ∣ δ ≤U z1 − ξ tð Þð Þ ≤ 1 − δf g,

ð77Þ

and using (17), (16), and (H3) for Ω1, Ω2, and Ω3, respec-
tively.☐

Remark 9. Similarly as in [6], one can also construct sub-
and supersolutions satisfying (60) even if the initial data is
close enough to U only at space infinity in ℝn (possibly large
initial perturbations). In that case, ξð0Þmight be strictly pos-
itive, while ξð0Þ = 0 in our case. However, the initial pertur-
bation in [6] is not enough to obtain stability results of the
planar wave in ℝn. Thus, we prove the stability under small
initial perturbations (61) and so simply set ξð0Þ = 0.

We now prove the main theorem.

Proof of Theorem 1. Let E0 be sufficiently small that

0 < E0 < η0 <
1
4
min s0, 1 − s0f g: ð78Þ

By Lemma 8, the sub- and supersolutions vðz, tÞ and
�vðz, tÞ to (21) defined by (62)–(63) satisfy

v z, tð Þ ≤U z1ð Þ ≤ �v z, tð Þ: ð79Þ

Moreover, since the initial data v0 satisfies vðz, 0Þ ≤ v0
ðzÞ ≤ �vðz, 0Þ, by the weak comparison principle in the pre-
vious section, the unique bounded classical solution vðz, tÞ
to (21) also satisfies

v z, tð Þ ≤ v z, tð Þ ≤ �v z, tð Þ: ð80Þ

Therefore, recalling (63) and U is a C2-profile satisfy-
ing (12), the inequalities (78) and (79) yield that for all
ðz, tÞ ∈ℝn × ð0,∞Þ,

v z, tð Þ −U z1ð Þj j ≤ �v z, tð Þ − v z, tð Þj j
= U z1 + ξ tð Þð Þ + q tð Þ −U z1 − ξ tð Þð Þ + q tð Þj j
≤ 2ξ tð Þ sup

z1∈ℝ
U ′ z1ð Þ�� �� + 2q tð Þ

≤ 4νE0 1 − e−μt
� �

sup
z1∈ℝ

U ′ z1ð Þ�� �� + 4E0e
−μt

≤ CE0,
ð81Þ

for some constant C > 0.
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