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In this paper, we classify all the finite-dimensional nilpotent Lie superalgebras of multiplier-rank less than or equal to 6 over an
algebraically closed field of characteristic zero. We also determine the covers of all the nilpotent Lie superalgebras mentioned

above.

1. Introduction

The notion of the multiplier M(G) for a finite group G arose
from Schur’s work on projective representations of groups.
There are fruitful results about this topic. However, we only
mention that Green proved that |[M(G)| < p(/2"("1) for a
finite p-group G of order p” (see [1]) as well as that Berkovich
and Zhou classified all p-groups with t(G) =0, 1 and 2, where
t(G) is defined by |[M(G)| = p(/2n(n-1=4G) (see [2, 3]).

Batten initiated the theory of multipliers and covers for
Lie algebras when she studied the second cohomology
groups of Lie algebras with coefficients in a 1-dimensional
trivial module (see [4]). For a finite-dimensional Lie algebra
L, she proved that M(L) = H?*(L, F) by a free presentation of
L, where [ is the underlying field. Moneyhun gave the max-
imal dimension of M(L) (see [5]). Let t(L) = (1/2)n(n—1)
—dim M(L), which is a nonnegative integer. Batten et al.
classified all nilpotent Lie algebras with t(L) =0,1,2 (see
[6]). Hardy and Stitzinger used a different method to get
similar results for t(L) < 8 (see [7, 8]). For filiform Lie alge-
bras, Bosko classified these up to t(L) = 16 (see [9]).

The notion of the multiplier for Lie algebras may be nat-
urally generalized to the Lie superalgebra case (see [10], for
example). Let L be a finite-dimensional Lie superalgebra. A
Lie superalgebra pair (K, M) is called a defining pair for L
provided that L = K/M and M ¢ Z(K) N K?. A defining pair
(K,M) of L is said to be maximal if K is of maximal

super-dimensions. In the case of (K, M) being a maximal
defining pair of L, we also call K a cover and M a (Schur)
multiplier of L. As in the Lie algebra case, multipliers for
Lie superalgebra L are unique up to isomorphism, denoted
by M(L). Moreover, M(L) = H*(L, F) (see [11]). By Lemma
2.3 of [10], for a Lie superalgebra L of super-dimension (m
,n), we define the super-multiplier-rank of L to be

smr(L) = (;m(m -1+ %n(n +1), mn) —sdimM(L),

(1)
and the multiplier-rank of L to be
mr(L) = |smr(L)|. (2)

In particular, smr(L) = (0,0) if and only if L is abelian
(see Proposition 3.1 of [10]). Hereafter, we write sdimV for
the super-dimension of a superspace V and |(a,b)|=a+b
for a pair (a, b) of nonnegative integers.

In this paper, we classify all nilpotent Lie superalgebras
of multiplier-rank <6 by discussing whether Z(L) € L>. We
also construct the covers of all the nilpotent Lie superalge-
bras of multiplier-rank <6.
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2. Basics

We assume that all (super)spaces and (super)algebras are
over an algebraically closed field [ of characteristic zero. In
Z x Z., we define a partial order as follows:

(myn)<(k,l)om<kn<l (3)

We also view Z x Z as the additive group in the usual
way.

To classify all the nilpotent Lie superalgebras of
multiplier-rank <6, we first establish some technical lemmas.

Lemma 1. Let L be a nilpotent Lie superalgebra of super-
dimension (m, n). Then, s dim L? < smr(L).

Proof. By Theorem 3.8 of [11], M(L) = H*(L, F). It follows
that

sdimZz(L, F) < sdimCz(L, F) < (%m(m -1)+ %n(n +1), mn>,
(4)

where C*(L,F) is the superspace consisting of skew-
symmetric bilinear functions of L.

Let {x;, -, x| y;» -+ ¥,} be a homogeneous basis of L*
and extend it to a homogeneous basis of L : {x,, -+, x,, x,,;
s X | Y s Yo Ve 5 Ya ) Let x—x* be the isomor-
phism from L onto the dual space L*. For x* e L*, let X : L
x L —> [ be a bilinear mapping by X(y,z) =x*([y, z]) for
all y,z € L. Then, € B?(L, F). If X = 0, then x* i, = 0. Then,
x=0 for all x € L*. Hence, x > X is an injection from L? into
B?(L,F). Consequently, sdimM(L) < ((1/2)m(m—1) + (1/2
)n(n+ 1), mn) — sdimL?. By the definition of smr(L), we
have sdimL?* < smr(L).0J O

Let IT be the parity functor of superspaces. Note that
sdimV + sdimITV = (dim V, dim V). (5)

Lemma 2. Let L be a nilpotent Lie superalgebra. Suppose K is
a 1-dimensional central ideal of L and K € L. The following
statements hold.

(1) If sdimK = (1, 0), then smr(L/K) + sdimL? < smr(L)

(2) If sdimK = (0, 1), then smr(L/K) + sdimITL? + (0, I)
<smr(L)

Proof. By Lemma 4.9 of [11], we have an exact sequence:
0 —»Hom(%, [F) —L, Hom(L, F) - Hom(K, F) LM(%) LML) L% ®K.
(6)
Since K ¢ L?, we have R(f)(k)=fci(k) € f(L*)=0 for

all ke K and f e Hom(L, F), where i : K — L is a Lie super-
algebra monomorphism. Then, R=0 and T is an injection.
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Hence, sdim(imT) = sdimK = (1, 0) or (0, 1). Furthermore,
sdimM(L) = sdim(imI) + sdim(imd) and sdimM(L/K) =
sdim(imI) + sdim(imT).

(1) If sdim(imT) = sdimK = (1, 0), we have

sdimM(L) + (1,0) = sdimM(L) + sdim(imT)
= sdim(imI) + sdim(imd) + sdim(imT)

L
=sdimM (E) + sdim(imd)

L
< sdim (L/L2 ® K) + sdimM (E)

=sdim <£) + sdimM (£> .
L? K

By the definition of smr(L), we have smr(L/K) + sdim
L* <smr(L).

(7)

(2) If sdim(imT) = sdimK = (0, 1), we have

L L
sdimM(L) + (0, 1) < sdim (P ®K> + sdimM (E)

= sdimIT (%) + sdimM <£) .
L K

Hence, smr(L/K) + sdimITL* + (0, 1) < smr(L).0] O

(8)

As in the Lie algebra case (Theorem 1 of [7]), using free
presentations of Lie superalgebras, one may prove the fol-
lowing lemma.

Lemma 3. Let A and B be finite-dimensional Lie superalge-
bras. Then,

B

)

A B
sdimM(A & B) = sdimM(A) + sdimM(B) + sdim (—2 ® ) .
A

Lemma 4. Let L be a finite-dimensional nilpotent Lie super-
algebra. Suppose that Z(L)UL?. Then, there exists an ideal
A of L with dim A =1 such that L=M & A, where M is an
ideal of L.

(1) If sdimA = (1,0), then smr(L) = smr(M) + sdimM?

(2) If sdimA=(0,1), then smr(L)=smr(M)+ sdimIl
M? +(1,0)

Proof. Suppose that A is a one-dimensional subsuperspace of
L such that A € Z(L) but AUL®. Let M be a complement to A
in L such that L> € M. Then, L=M & A and M(A) = (0, 0).
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If sdimA=(1,0), then sdim(M/M?>® A)=sdimM -
sdimM?. By Lemma 3, we have

sdimM(L) = sdimM(A & M) = sdimM(A) + sdimM (M) + sdim (iz ® %)
A M

(10)
Then, smr(L) = smr(M) + sdimM>.

If sdimA=(0,1), then sdim(M/M?® A) =sdimITM —
sdimITM?*. Now ((1/2)m(m—1) + (1/2)n(n+ 1), mn) —

smr(L) = ((1/2)m(m—1) + (1/2)(n—1)n,m(n— 1)) — smr(
M) + (n—1,m) — sdimITIM?. Therefore, smr(L)=smr(M)
+sdimITM? + (1,0).00 O

For convenience, we write Ab(m, n) for the abelian Lie
superalgebra of super-dimension (m, n), H(p, q) for the (2
p + 1, q)-super-dimensional Heisenberg Lie superalgebra of
even center, and H(k) for the (k, k + 1)-super-dimensional
Heisenberg Lie superalgebra of odd center (see [12]). In
Proposition 4.4 of [10] and section 4 of [13], the authors
characterize the multipliers of H(p, q) and H(k):

1 1
(sz—p+§q2+§q—l,2pq>, p+q=2,

sdimM(H(p, q)) = (0,0),

(2,0),

p=0,g9=1
p=149=0,
(I, -1), k=2,
sdimM(H(k)) =
(1,1), k=1.
(11)

Hence,

smrH(p, q9) = (2p + 1, 9) =sdimH(p, q),p+g9>2, (12)

smrH(k) = (k+ 1,k+1),k>2,smrH(1) = (1,2). (13)

Similarly, let us give a multiplier and cover of H(p, q)
® Ab(s, t).

Case 1. Suppose that (p, q) = (1,0). Let H(1, 0) ® Ab(s, t) be
a Lie superalgebra with a homogenous basis

{x’y> 2 Ap> Yo 5, M 6, Ac,n’ Odp I bm’ Em> 9m’ Hiem }’ (14)

and multiplications

[x. y] = [ ag] =y [x, 2] =6,
= bl a = bl b Z = 6)
b =em  Drad=ne 0s)
Dj b ] = 9 [av an] = )Lc,n’ [ak’ bm] = [’lk,m’
[bd’ ] odo’
where 1<c¢ kn<sl<d m,o<t, and c<nd<o. Let

MH(1, 075 Ab(s, t) be a subsuperspace spanned by {y,, d,

nk’ 0’ Ac,n’ ad,n | Em> 1’;)m’ Auk,m}' Then’
0 — MH(1,0) ® Ab(s, t) — H(1,0) & Ab(s, t) — H(1,0) & Ab(s, t) — 0,
(16)

0) ® Ab(s, t). In partic-
ular, MH(1,0)® Ab(s,#) is a multiplier and
H(1,0) ® Ab(s, t) is a cover of H(1,0) & Ab(s, t).

is a maximal stem extension of H(1,

Case 2. Suppose that (p,q) # (1,0). Let H(p, q)/eB\Ab(s, t) be
a Lie superalgebra with even basis

{xi’ Vi» %> G ‘xe,j’ x> ﬁf,h’ Yi,k’ Ce,j’ ni,k’ /\c,w 04,05 Sm,l> Wy Pl}’

(17)
and odd basis
{wl, by Eim> €ib ‘9i,m» L B> Vk,l}’ (18)
and multiplications
2 [xe> x]] = (Xe,j’ [xi’ yl] =zZ+ a;‘)
xf’yh] = ﬁf,h’ (X ai] = Vipo
[Xi> by] = &> [xXp wy] =&
ye’yj:| = ze,j’ D/i’ ak] = qi,k’
i> b] =9, o wi] =1 (19)
[ac’ an] = /\c,n’ [ak’ bm] = n"{k,m’
[ wi] = Vi), [ba> by] =045
[bm’ wl] =Cm,> [wu’ wr] = wu,r’

where 1<ef,hij<pl<ckn<sl<dmo<t,
1<lLr,u<q, and e<jf#hc<mnd<o, and u<r. Let

MH(p, qﬁAb(s, t) be a subsuperspace spanned by

{“e,j’ Qs ﬁf,h» Yik Cc,j’ ik Aen> Tdor Sinio Pugs Pr | € Eis Vs Lis Hiem Vk,l}'
(20)
Then,

0 —> MH(p, q) ® Ab(s, £) — H(p, q) ® Ab(s, t) —> H(p, q) ® Ab(s, t) — 0,

(21)

is a maximal stem extension of H(p, q) & Ab(s, t). In partic-
ular, MH(p,q)®Ab(s,t) is a multiplier and
H(p, q) ® Ab(s, t) is a cover of H(p, q) ® Ab(s, t).

Summarizing, we have the following.



Lemma 5. Let p, g, s, t be positive integers. Then,

0— MH(p,q) ® Ab(s, t) —> H(p, q) ® Ab(s, t) —> H(p, q) & Ab(s, t) — 0,
(22)

is a maximal stem extension of H(p, q) ® Ab(s, t). In particu-

—

lar, H(p, q) ® Ab(s, t) is the cover of H(p,q) ® Ab(s, t) and
the super-dimension of M(H(p, q) ® Ab(s, t)) as follows:

12s2+ 12t2+ 325+ 12t + 2, st + 2t, p,q = 1, 0,

(P+q+5+t—1,2pq +2pt +st+sq), (p,q) # (1,0),
(23)

where p=2p° —p+2ps, q=(1/12)q° + (1/2)q,5 = (1/12)s* - (1/
2)s,t=(1/2)t2 + (1/2)t + tq.

3. Multiplier-Rank 3 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mr(L) = 3. The following theorem is analogous to
the one in the Lie algebra case [7], yet it contains more infor-
mation in our super-case.

Theorem 6. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mr(L) = 3. Then,

(1) smr(L) # (0, 3)

(2) smr(L) = (1, 2) if and only if L=H(0, 2)

(3) smr(L) =(3,0) if and only if L= H(1,0) ® Ab(2,0)
(4) smr(L) = (2, 1) if and only if L is isomorphic to one of

the following Lie superalgebras:
(a) H(1,0)® Ab(1, 1)

(
(b) H(0,1) ® Ab(1, 0)
(c) H(1)

Proof. Let us characterize L by discussing whether Z(L) € L*.

(1) Suppose that Z(L) € L. Let K be an ideal contained
in Z(L) with dim K = 1. Take H =L/K

(a) If sdimK = (1, 0), then one may check that smr(

L)=(1,2) and sdimL? = (1,0) by Lemma 2. In
this case, by (12), we have

L=H(0,2). (24)

(b) If sdimK = (0, 1), then Lemma 2 yields that smr(L)
=(2,1). Hence, smr(H) +sdimITL* <(2,0). Since
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L is not abelian, we have sdimITL? # (0,0). If sdim
ITL* = (2,0), then sdimH? = (0, 1) and smr(H) = (0
,0), an impossibility. Therefore, sdimITL* # (2,0).
It remains to consider the case sdimITL? = (1,0). In
this case, we have L = H(k) for some k. By (13), we
have L=H(1)

(2) Suppose that Z(L)UL?>. By Lemma 4, we have
L=M®a A, where A and M are ideals of L with dim
A=1

(a) If sdimA = (0, 1), then one may check that there
are no algebras satisfying Lemma 2 (2) for smr(
L)=(3,0),(2,1),(1,2), and (0, 3)

(b) If sdimA =(1,0), one has to discuss the cases

smr(L) =(3,0),(0,3),(2,1), and (1, 2)

(i) Assume that smr(L) = (3,0). We obtain that
smr(M)=(2,0) and sdimM?=(1,0) by
Lemmas 1 and 4 (1). It follows that M = H(1,
0) @ Ab(1, 0) by Theorem 5.8 of [10]. Hence,

L=H(1,0) ® Ab(2,0). (25)

By Lemma 5, (3) is proven.

(i) Assume that smr(L) =(0,3). We have smr(M) = (
0,2) and sdimM? = (0, 1) by Lemmas 1 and 4 (1).
There are no such algebras for smr(M) = (0, 2), by
Proposition 5.22 of [10]. Therefore, (1) is proven

(iii) Assume that smr(L)=(2,1). By Lemmas 1 and 4
(1), we have smr(M) = (1, 1), which yields sdimM?
=(1,0). It follows that M =H(1,0)® Ab(0,1) or
H(0, 1). Hence,

L=H(1,0)®Ab(1,1)or H(0, 1) ® Ab(1,0).  (26)
Then, (4) holds by Lemma 5.

(iv) Assume that smr(L) = (1,2). We have either smr(
M)=(1,2) or smr(M)=(1,1) by Lemmas 1 and 4
(1). If smr(M)=(1,2), we have sdimM? = (0,0),
an impossibility. If smr(M)=(1,1), then we have
sdimM? = (0,1). This is impossible, because smr(
M) =(1,1) yields sdimM? = (1,0) by Theorem 5.8
of [10]. Then the, proof is complete

d O

4, Multiplier-Rank 4 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mr(L) =4. We recall that L(3,4,1,4) is a Lie
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algebra with basis {x, y, z, r} and nonzero multiplication [x
,¥] =2z, [x,2z] =r and that L(4,5,2,4) is a Lie algebra with
basis {x, y,z, 7, ¢} and nonzero multiplication [x, y] =z, [x, ¢

| =r (see [7]).

Theorem 7. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mr(L) = 4. Then,

(2) smr(L) = (1, 3) if and only if L=H(0, 3)

(3) smr(L) = (2, 2) if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) H(1,0) ® Ab(0, 2)
(b) H(0,1) ® Ab(0,1)
(c) H(1) ® Ab(1,0)
(4) smr(L) = (4, 0) if and only if L is isomorphic to one of
the following Lie superalgebras:
(a) H(1,0) ® Ab(3,0)
(b) L(3,4,1,4)
(c) L(4,5,2,4)

(5) smr(L) = (3, 1) if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) H(1,0) ® Ab(2, 1)
(b) H(0, 1) ® Ab(2,0)
(c) H(1,1)

Proof. Let us characterize L by discussing whether Z(L) € L*.

(1) Suppose that Z(L) € L*. We may assume that K € Z
(L), where dim K =1 and H =L/K

(a) If sdim(K) = (0,1), one may check that smr(L)
=(2,2) by Lemma 2. Now assume that smr(L)
=(2,2). Then, sdimITL?+smr(H)<(2,1).
Since sdimH? < smr(H), hence sdimL?=(1,1)
or (0,1). In the first case sdimL?=(1,1), we
obtain that sdimH? = (1, 0) and smr(H) = (1, 0)
. Hence, H=H(1,0). Then, L can be described
generally by basis {x, y, z | k} with multiplication
given by [x,y] =z. To compute the multiplier
start with

oy =2 451 [0 2] =5 [0, k] = 55,

> 2] =545 [y, K| = 55, [2, K] = 56, (27)
[k, k] = s,

where s, s,, -+, s, generate the multiplier. A change of vari-

ables allows that s; = 0. Use of the Jacobi identity on all pos-
sible triples shows that s; =0 and M(L) = (s,, sy, S; | 53, S5).
Hence, smr(L) = (1, 1), contradicting the assumption smr(
L) =(2,2). In the other case sdimL* = (0, 1), we obtain that
L*=7Z(L). Then, L=H(k) for some k. There are no such
algebras by (13) for smr(L) = (2,2)

(b) If sdimK = (1,0), then Lemmas 1 and 2 yield smr(
L)=(4,0),(3,1) and (1, 3)

(i) Assume that smr(L)=(4,0). As in Lie algebra
case (Theorem 2 of [7]), one can determine that

L=L(3,4,1,4)orL(4,5,2,4). (28)

(i) Assume that smr(L) =(3,1) and (1, 3). The possible
case for sdimL? is (1,0). It follows that L?> =Z(L)
and L=H(p, q) for some p, g. By (12), we have

L=H(1,1),H(0,3), (29)

respectively

(2) Suppose that Z(L)UL?. By Lemma 4, we have L= A
® M, where A and M are ideals of L with dim A =
1

(a) If sdimA = (0, 1), then Lemmas 1 and 4 (2) yield
that smr(L) = (2,2). Therefore, smr(M) = (1,1)
and sdimM? = (1, 0). Hence,

L=H(1,0) ® Ab(0,2) or H(0, 1) ® Ab(0, 1). (30)

(b) If sdimA = (1,0), then Lemmas 1 and 4 (1) yield that
smr(L) = (4,0),(2,2) or (3,1). As a result of the
above, we have proven (1) and (2). To prove (3),
(4), and (5), one has to discuss the cases smr(L) = (
4,0),(2,2), and (3,1)

(i) Assume that smr(L) = (4,0). It is easily checked
that there are no such algebras except for sdim
M?=(1,0) and smr(M) = (3,0). By Theorem 6,
we have M =H(1,0) ® Ab(2,0) and

L=H(1,0) @ Ab(3,0). (31)

By Lemma 5, (4) is proven.



(i) Assume that smr(L)=(2,2). We may check that
smr(M) =(2,1) and sdimM? = (0,1). Then, M =H
(1) by Theorem 6. Hence,

L=H(1) ® Ab(1,0). (32)

Then, (3) holds by Lemma 5

(iii) Assume that smr(L) = (3,1). We have smr(M) = (
2,1) and sdimM? = (1,0). By Theorem 6, we have
M =H(1,0) ® Ab(1, 1) or H(0,1) ® Ab(1,0). Then,

L=H(1,0) ® Ab(2,1) or H(0, 1) & Ab(2, 0). (33)

The proof is complete.(] O

5. Multiplier-Rank 5 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mr(L) =5. For convenience, let L, denote a Lie
superalgebra with a homogeneous basis {x,k|z, y} and
nonzero multiplication [x, y] =z, [z, y] = k.

Theorem 8. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mr(L) = 5. Then,

(1) smr(L) # (0,5) and (2, 3)
(2) smr(L) = (1,4) if and only if L= H(0,4)

(3) smr(L) = (5, 0) if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) H(1,0)® Ab(4,0)
(b) H(2,0)

(4) smr(L) = (4, 1) if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) H(1,0)® Ab(3, 1)
(b) H(0,1) ® Ab(3,0)
(c) H(1,1) ® Ab(1,0)

(5) smr(L) = (3, 2) if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) H(1,0)® Ab(1,2)
(b) H(0, 1) ® Ab(1, 1)
(c) H(1,2)

(d) L,

Proof. Let us characterize L by discussing whether Z(L) € L*.
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(1) Suppose that Z(L) € L>. We may assume that K € Z
(L), where dim K =1 and H=L/K

(a) If sdimK = (1,0), then Lemma 2 readily yields
smr(L) = (5,0), (3,2) or (1,4)

(i) Assume that smr(L) = (5,0). Then, from the
proof of Theorem 3 of [3], we have

L=H(2,0). (34)

(i) Assume that smr(L)=(3,2). This readily yields
sdimL?=(1,0), (2,0), or (1,1). In the first case
sdimL? = (1,0), then L*=Z(L) and L=H(p,q) for
some p, q. By (12), we have

L=H(1,2). (35)

Consider the second case sdimL? = (2,0). If smr(H) = (
0,2) and (0, 1), then there are no such algebras by the previ-
ous work. If smr(H) =(1,1), then H=H(1,0) ® Ab(0, 1) or
H(0,1). If H=H(1,0) @ Ab(0, 1), then a computation shows
that smr(L) = (5,2), contradicting the assumption smr(L)
=(3,2). If H=H(0, 1), we have smr(L) = (2,1) by a direct
computation, also contradicting the assumption smr(L) = (
3,2). If smr(H) = (1,0), then H=H(1,0). By the proof of
Theorem 1 of [7], we have L=L(3,4,1,4) and smr(L) = (4
,0). This contradicts the assumption on smr(L). If smr(H)
=(1,2), then H=H(0,2), which contradicts the assump-
tion smr(L) =(3,2). In the third case sdimL*=(1,1), we
have sdimH? = (0, 1). By the previous work, we have smr(
H)=(2,1) and H = H(1). Then, L has a homogeneous basis
{x,k|z,y} with multiplication given by [x,y] =z, [z,2] =q,
k, [y, y] = ayk, [z, y] = a;k, where a,,a,,a; € F, ke Z(L). The
Jacobi identity shows that a; = 0. Since sdimL*= (1, 1), we
have that either a, or a; is not zero. Without loss of gener-
ality, assume that a; # 0. Replacing z by —(1/2a;)z and y
by —2y + (a,/a;)z and relabeling, we get a simple multiplica-
tion table:

[x.y] =2 [z y] =k (36)

To compute the multiplier, we start with

k=5, =5 [y]=zts,
kz]=s;  [oy]=ss  [z2] =5 (37)
[yl =kt [1ny]=ss
where s, s,, -+, sy generate the multiplier. By relabeling, we

get s; =s, = 0. Using the Jacobi identity gives s; =s, =5,=0
. Hence, the multiplier has a homogeneous basis {s | s, s5
}, and then, sdimM(L)=(1,2) and smr(L) = (3,2). This
superalgebra satisfies the requirements. As mentioned above,
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we have

L=L,. (38)

(iii) Assume that smr(L) = (1, 4). If sdimL? > (1, 0), then
smr(H) < (0, 3). There are no such algebras by the
previous work. Then, sdimL*=(1,0). It follows
from Proposition 4.11 of [10] that

L=H(0,4). (39)

(b) If sdim(K)=(0,1), then Lemma 2 (2) yields that
smr(L)=(3,2) or (2,3)

(i) Assume that smr(L) = (3,2). Then, sdimITL* +
smr(H) < (3,1). It follows that sdimL? = (1, 1)
and smr(H) < (2,0). If smr(H) = (2,0), then H
=H(1,0) ® Ab(1,0). Computing the multiplier
as before yields sdimM(L) = (5,3) and smr(L)
=(2,1), contradicting the assumption smr(L)
=(3,2). If smr(H) = (1,0), then H=H(1,0). It
is also a contradiction by the previous work

(ii) Assume that smr(L) = (2,3). We have sdimITL?
+smr(H) < (2,2). It follows that sdimL?* = (1,1
) and smr(H) = (1,1). Then, H = H(1,0) & Ab(
0,1) or H(0,1). If H=H(1,0) ® Ab(0, 1), then
sdimM(L) = (4,2) and smr(L) = (2,4) by com-
puting M(L) as above, contradicting the
assumption smr(L) = (2, 3). If H=H(0, 1), then
L has a homogeneous basis {z | x, k} with mul-
tiplication given by [x,x] =z. Computing the
multiplier as before yields sdimM(L)=(1,1)
and smr(L)=(2,1), also contradicting the
assumption smr(L) = (2,3)

(2) Suppose that Z(L)UL*. By Lemma 4, we have L = A
® M, where A and M are ideals of L with dim A =
1

(a) If sdimA = (0, 1), then Lemma 4(2) yields that
smr(L)=(3,2) and smr(M)=(2,1). Then by
Theorem 6, we have

L=H(1,0) ® Ab(1,2) or H(0, 1) ® Ab(1, 1). (40)

(b) If sdimA = (1,0), then Lemmas 1 and 4 yield that
smr(L) = (5,0),(4,1) or (3,2). As a result of the
above, we have proven (1) and (2). To prove (3),

(4), and (5), one has to discuss the cases smr(L) = (
5,0),(4,1), and (3,2)

(i) Assume that smr(L) = (5, 0). Then, sdimM?* < (2
,0). If sdimM? = (2,0), then smr(M) = (3,0). By
Theorem 6, we have M = H(1,0) & Ab(2, 0). This
yields sdimM? = (1, 0), contradicting the assump-
tion sdimM? = (2,0). If sdimM? = (0, 0), then M
is abelian and smr(M) = (5,0), an impossibility.
If sdimM? = (1,0). Then, smr(M)=(4,0). By
Theorem 7 (4), we have M = H(1,0) & Ab(3,0),
L(3,4,1,4) or L(4,5,2,4). Since sdimM?* = (1,0)
, we have M = H(1,0) @ Ab(3,0). Then,

L=H(1,0) ® Ab(4,0). (41)

By Lemma 5, (3) holds.

(ii) Assume that smr(L) = (4,1). Then, (0, 0) < sdimM?
<(2,0). If sdimM? = (2,0), computing the multi-
plier as before yields smr(L) =(2,1). This contra-
dicts the assumption on smr(L). Therefore,
sdimM? = (1,0) and smr(M)=(3,1). Then, M is
one of the Lie superalgebras listed in Theorem 7
(5). Therefore, L is isomorphic to one of the follow-
ing Lie superalgebras:

H(1,0) ® Ab(3, 1), H(0, 1) ® Ab(3,0), H(1,1) & Ab(1, 0).
(42)

Then, (4) holds by Lemma 5.

(iii) Assume that smr(L)=(3,2). Then, (0,0) < sdim
M? < (1,1). If sdimM? = (0, 1), then smr(M) = (3,
1). This is impossible, because the super-
dimension of the derived superalgebra of M when
smr(M) = (3,1) is not (0,1). Similarly, if sdimM?
=(1,1), then smr(M)=(2,1), a contradiction.
Now consider sdimM? = (1, 0); we have smr(M) =
(2,2). By Theorem 7 (3), we have

L=H(1,0) ® Ab(1,2) or H(0, 1) ® Ab(1, 1). (43)

The proof is complete.[] O

6. Multiplier-Rank 6 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mr(L) = 6. Let us recall that L(4,5,1,6) is a Lie
algebra with basis {x, y,z,7, ¢} and nonzero multiplication
[x,y] =z, |x,2] =1, [y, ] =r. For convenience, let L, denote
a Lie superalgebra with a homogeneous basis {a,z|x, k}
and nonzero multiplication [x, x] =z, [, x] = k.
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Theorem 9. Let L be a finite-dimensional, nonabelian, and L=L(4,51,6). (44)
nilpotent Lie superalgebra of mr(L) = 6. Then,

In the remaining cases smr(L) = (5,1), (3, 3), and (1,5),

(1) smr(L) # (0, 6) we obtain that the possible super-dimension of L2 is (1,0). It
(2) smr(L) = (1,5) if and only if L= H(0, 5) follows that L> = Z(L) and L = H(p, q) for some p, . By (12),
(3) smr(L) = (2,4) if and only if L=H(0,4) ® Ab(1,0) we have
(4) smr(L) = (6, 0) if and only if L is isomorphic to one of L=H(2,1),H(1,3),H(0,5), (45)
the following Lie superalgebras:
(a) H(1,0) ® Ab(5,0) respectively.

(b) H(2,0) & Ab(1,0)

() L(3.4,1,4) ® Ab(1, 0)
(d) L(4,5,2,4) ® Ab(1, 0)
(e) L(4, 51, 6)

(b) If sdim(K) = (0, 1), then Lemma 2 yields that smr(
L)=(3,3) or (2,4)

(i) Assume that smr(L) = (3,3). Then, sdimITL? +
smr(H) < (3,2). It follows that the only possible

(5) smr(L) = (5, 1) if and only if L is isomorphic to one of super-dimension of L? is (1,1). Hence, we have
the following Lie superalgebras: sdimH? = (1,0) and smr(H) < (2,1). There are
no such algebras for smr(H) < (2, 1) by the previ-
(a) H(1,0) ® Ab(4,1) ous work. If smr(H)=(2,1), then H=H(1,0)
®Ab(1,1) or H(0,1) @ Ab(1,0). In the first case
(b) H(0, 1) ® Ab(4,0) H=H(1,0)®Ab(1,1), then L has a homoge-
(c) H(1,1)® Ab(2,0) neous basis {x, y,z,a|b, k} with multiplication [
x, 9] =z, [x, b] = ayk, [y, b] = a;k, [z, b] = a,k, [a, b]
(d) H(2,1) =azk. The Jacobi 1dent1ty shows that a, =0.

Since a ¢ L* and Z(L) € L%, we have a5 # 0. Take
(1/ag)a for a.If a, = a; = 0, then we obtain a sim-
ple multiplication [, y| = z, [a, b] = k. Computing
the multiplier as before yields sdimM(L) = (5, 3)

(6) smr(L) = (4, 2) if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) H(1,0) @ Ab(2,2) and smr(L) = (4, 5), contradicting the assump-

(b) H(0, 1) ® Ab(2,1) tion smr(L) = (3, 3). If a, or a, is not zero, then

without loss of generality, assume that a, #0.

(c) H(1,2) @ Ab(1, 0) Replacing x by (lg/az)x anyd y by —asx + azjf and

(d) H(1,1)® Ab(0, 1) relabeling, we obtain a simple multiplication [x,

y] =2z, [x,b] =k, [a,b] =k. Computing the multi-

(7) smr(L) = (3, 3) if and only if L is isomorphic to one of plier as before yields sdimM(L) = (6, 1) and smr

the following Lie superalgebras: (L)=(3,7), also contradicting the assumption

smr(L) =(3,3). In the other case H=H(0,1) ®

(a) H(1,0) ® Ab(0, 3) Ab(1,0), one may obtain that L can be described

by a homogeneous basis {a, z | x, k} with multi-

(b) H(0, 1) 4b(0.2) plication [x,x] =z, [a, x] = a,k, [z, x] =a;k. The
(c) H(1,3) Jacobi identity shows that a; =0. Take (1/a,)a

L for a, relabel and get [x, x| =z, [a,x] =k. Then,

2 sdimM(L) = (1,1) and smr(L) = (3, 3). This alge-

(e) H(2) bra satisfies the requirements. As mentioned

above, we have

Proof. Let us characterize L by discussing whether Z(L) € L%.

L=1L,. (46)
(1) Suppose that Z(L) € L?>. We may assume that K € Z
(L), where dim K =1 and H=L/K
(a) If sdimK = (1,0), then Lemma 2 readily yields (i) Assume that smr(L) = (2, 4). Then, sdimITL* + smr
smr(L) = (6,0), (5,1),(3,3), or (1,5). In the first (H) <(2,3) and sdimL* = (0, 1) by a direct compu-
case smr(L) = (6,0), by Theorem 4 of [7], one tation. Hence, L?=Z(L). It follows that L=H(k)

can determine for some k. By (12), we have
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L=H(2). (47)

(2) Suppose that Z(L)UL?. By Lemma 4, we have L = A
® M, where A and M are ideals of L with dim A =
1

that smr(L) = (5, 1), (4,2), or (3, 3). Then, sdim
1

(a) If sdimA = (0, 1), then Lemmas 1 and 4 (2) yield
IIM? = (0, 1) by the previous work

(i) Assume that smr(L) = (5, 1). Then, smr(M)
= (4,0) and Theorem 7 reveals three candi-
dates, only one of which satisfies sdimM? =
(1,0). Therefore, L=H(1,0)® Ab(3,1). It
yields smr(L)=(4,1) and contradicts the
assumption that smr(L) = (5, 1)

=

(ii) Assume that smr(L) =(4,2). Then, smr(M)
=(3,1) and M =H(1,0) ® Ab(2, 1), H(0, 1)
®Ab(2,0), or H(1,1). Therefore, L is iso-
morphic to one of the following Lie

superalgebras:

H(1,0) ® Ab(2,2), H(0, 1) ® Ab(2, 1), H(1,1) ® Ab(0, 1).
(48)

(ili) Assume that smr(L) = (3,3). Then, smr(M) = (2,2)
and M =H(1,0)®Ab(0,2) or H(0,1)® Ab(0,1).
Hence,

L=H(1,0) ® Ab(0, 3) or H(0, 1) ® Ab(0, 2). (49)

(b) If sdimA = (1, 0), then Lemmas 1 and 4 (1) yield that
the possible super-multiplier-rank of L is (2,4), (6,
0),(5,1), or (4,2). By the above work, we have
proven (1), (2), and (7). To prove (3), (4), (5), and
(6), one has to discuss the cases smr(L) = (2, 4), (6,
0),(5,1), and (4,2)

(i) Assume that smr(L)=(2,4). One may obtain
that smr(M)=(1,4) and sdimM?=(1,0). By
Theorem 8, we have M = H(0,4) and

L=H(0,4) ® Ab(1,0). (50)

Then, (3) holds by Lemma 5.

(i) Assume that smr(L) = (6,0). By Theorem 4 of [7],
we have L is isomorphic to one of the following Lie
superalgebras:

L(3,4,1,4) ® Ab(1,0), H(1,0) ® Ab(5, 0),

(51)
L(4,5,2,4) ® Ab(1,0), H(2,0) ® Ab(1, 0).

By Lemma 5, (4) is proven.

(iii) Assume that smr(L) = (5, 1). Since sdimM? < smr(
M), it follows that smr(M) > (3,1). If smr(M) = (5
,1), then M is abelian and sdimM? = (0,0), an
impossibility. Therefore, smr(M) # (5,1). If smr(
M) = (4,1), then M =H(1,0)® Ab(3,1), H(0,1) ®
ADb(3,0), or H(1,1)®Ab(1,0) by Theorem 8.
Therefore L is isomorphic to one of the following
Lie superalgebras:

H(1,0) ® Ab(4, 1), H(0, 1) ® Ab(4, 0), H(1, 1) ® Ab(2, 0).
(52)

If smr(M)=(3,1), then M =H(1,0) ® Ab(2,1),H(0, 1)
®Ab(2,0), or H(1,1) and sdimM?=(2,0). These are
impossible, because the super-dimension of the derived
superalgebras of H(1,0) @ Ab(2,1),H(0,1) ® Ab(2,0), and
H(1,1) are (1,0). Hence, (5) holds by Lemma 5.

(iv) Assume that smr(L) = (4, 2). The only possibility of
super-multiplier-rank of M is (3, 2). Then, Theorem
7 reveals four candidates, only three of which satisfy
sdimM? = (1,0). Therefore, L is isomorphic to one
of the following Lie superalgebras:

H(1,0) ® Ab(2,2), H(0, 1) ® Ab(2, 1), H(1, 2) ® Ab(1, 0).
(53)

The proof is complete.(] O

7. Covers

By Theorem 3.3 of [13], we obtain that any two covers of a
finite-dimensional Lie superalgebra are isomorphic as ordi-
nary Lie superalgebras. In this section, we will describe the
covers of all the nilpotent Lie superalgebras of multiplier-
rank <6.

First, we compute the cover for L(3,4,1,4) @ Ab(1,0).
Let {x, x5, X3, x4, u | |x;| = |u| =0,i=1,2, 3,4} be a homoge-
neous basis of L(3,4,1,4) ® Ab(1,0), where x,,x,,x;,x, €
L(3,4,1,4) and u € Ab(1,0). The multiplication is given by
[x1,%,] = x5, [x,, X3] = x,, the other brackets of basis elements
vanishing. Suppose that

0—M-—K-—L(3,4,1,4)®Ab(1,0) — 0,  (54)

is a stem extension of L(3,4,1,4) ® Ab(1,0). Then, M
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TaBLE 1: The classification and covers.

smr(L) L Cover
(0,0) Any abelian Lie superalgebra Ab(s, t), s, t € N Ab(s, 1)
(1,0) H(1,0) [(1,0)
(2,0) H(1,0) @ Ab(1,0) H(1,0) ® Ab(1,0)
w H(1,0) ® Ab(0, 1) H(l,OA)Ea\Ab(l,O)
H(0,1) f(0,1)
(1,2) H(0,2) H(0,2)
(3,0) H(1,0) ® Ab(2, 0) H(1,0) @ Ab(2, 0)
H(1,0) ® Ab(1, 1) H(1,0)® Ab(1,1)
2,1 H(0, 1) ® Ab(1,0) H(0, 1) ® Ab(1,0)
H(1) H(1)
(1,3) H(0,3) H(0,3)
H(1,0) @ Ab(0, 2) H(1,0) ® Ab(0, 2)
22) H(0,1) ® Ab(0, 1) H(0,1)® Ab(0, 1)
H(1,0) ® Ab(3, 0) H(1,0) @ Ab(3,0)
(4,0) L(3,4,1,4) L(3,4,1,4)
L(4,5,2,4) L(4,5,2,4)
H(1,0) ® Ab(2, 1) H(1,0) ® Ab(2, 1)
G,1) H(0, 1) ® Ab(2, 0) H(0,1) ® Ab(2, 0)
H(1,1) H(1,1)
(1,4) H(0,4) H(0,4)
0 H(1,0) ® Ab(4, 0) H(1, 0357%(4, 0)
H(2,0) H(2,0)
H(1,0) ® Ab(3, 1) H(1,0)® Ab(3,1)
(4.1) H(0,1) ® Ab(3,0) H(0, 1) ® Ab(3,0)
H(1, 1) ® Ab(1,0) H(1,1) ® Ab(1,0)
H(1,0) ® Ab(1, 2) H(1,0) ® Ab(1, 2)
H(0, 1) ® Ab(1, 1 H(0,1) @ Ab(1, 1
-2 | })1(1 2)( | | F)I(1,2)( )
L, L
(2,4) H(0, 4) ® Ab(1,0) H(0, 4) ® Ab(1,0)
H(1,0) @ Ab(5, 0) H(1,0) ® Ab(5,0)
H(2,0) ® Ab(1,0) H(2,0) ® Ab(1,0)
(6,0) L(3,4,1,4) ® Ab(1,0) L(3,4,1,4) ® Ab(1,0)
L(4,5,2,4) ® Ab(1,0) L(4,5,2,4) ® Ab(1,0)
L(4,5,1,6) L(4,5,1,6)
. H(1,0) ® Ab(4, 1) H(1,0) ® Ab(5,0)

H(0, 1) ® Ab(4, 0)
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TaBLE 1: Continued.

smr(L) L Cover
H(0, 1) ® Ab(4, 0)
H(1, 1) ® Ab(2,0) H(1,1) ® Ab(2,0)

H(2,1) H(2,1)
H(1,0) ® Ab(2, 2) H(1,0) ® Ab(2, 2)
H(0,1) ® Ab(2,1) H(0,1)® Ab(2,1)
*2) H(1,2) ® Ab(1,0) H(1,2) ® Ab(1,0)
H(1, 1) ® Ab(0, 1) H(1,1)® Ab(0, 1)
H(1,0) ® Ab(0, 3) H(1,0) ® Ab(0, 3)
H(0,1) ® Ab(0, 2) H(0, 1) ® Ab(0, 2)

(3.3) H(1,3) A(1,3)

L, L
H(2) H(2)
(1,5) H(0,5) H(0,5)

CK?*NZ(K) and K/M =1(3,4,1,4) ® Ab(1,0). Then, K/M
has a homogeneous basis {x; + M, x, + M, x; + M, x, + M,
u+ M}. We may assume that

e X =x3 +ay, [xx5] =%+ a5 [x), %] =as,
[x2, X3] = ay, [x2, %] = a5, [x3, %] = a6
[y u] = az, o uj=as,  [x5u]=a,,
[xg u] = ayp,
(55)
where a,, ---, a;, € M,. Without loss of generality, we may

suppose that a, = a, = 0. By the Jacobi identity of Lie superal-
gebras, we have a; = a; = a4 = a,; = 0. Then, M is spanned by
as, a4, d;, ag and K is spanned by x,, x,, X3, X,, 4, a5, dy, a;, ag.

Hence, sdimM < (4,0). Now let L(3,4, 1, AI/)EaAb(l, 0) be a
Lie superalgebra with a homogenous basis {x, y,z, 7, u,a, b, c
,d} and multiplication [x,y] =z, [x,z] =1, [x,r]=a,[y,2] =]
L ul=c [y, ul =d. Let ML(3,4,1,4) @ Ab(1, 0) be a subsu-

perspace of L(3,4,1,4)® Ab(1,0) spanned by a,b,c,d.
Then,

ML(3,4,1,4) ® Ab(1,0) gZ(L(S, 4, 1,4T§Ab(1,o>) N (L(3,4,1,4) ® Ab(1,0))?,

L(3,4,1,4) ® Ab(1,0)

2D 2T T ) (3, 4,1,4) @ Ab(1, 0).
ML(3, 4, 1,4) ® Ab(1, 0) ( )@ 4b(1,0)

(56)

—

Since sdim(ML(3,4,1,4) @ Ab(1,0)) = (4,0), we obtain

—

that ML(3,4,1,4)®Ab(1,0) is a multiplier and

L(3,4,1,4) @ Ab(1,0) is a cover of L(3,4,1,4) ® Ab(1,0).

Then, we compute the cover for L(3,4,1,4). Let

L(3,71,\1, 4) be a Lie superalgebra with a homogenous basis
{x,y,2,7,a,b} and multiplication [x,y] =2z, [x,z] =1, [x, 7]
=a,[y,z]=b. Since, L(3,4,1,4) is a subalgebra of L(3,4, 1

,4) ® Ab(1,0), one may check that L(3,4,1,4) is a cover
of L(3,4,1,4).

Now we compute the cover for L(4,5,2,4) ® Ab(1,0).
Let {x,y,z,c.r,v||x|=|y|=|z| =|c|=|r| =|v|=0} be a
homogeneous basis of L(4, 5,2,4) ® Ab(1,0), where x, y, z,
c,r€L(4,52,4) and ve Ab(1,0). The multiplication is
given by [x,y] =z, [x, c] =1, the other brackets of basis ele-
ments vanishing. Similarly, one may check that the Lie
superalgebra with a homogeneous basis {x, y,z,¢,7,v, a4, a,
, a3, Ay, ds, Ag, Ay, ag } and multiplication

[xy]=2 [xz]=a, [xd=r

mrd=ay (d=a [nd=a, o)
erl=a k]=ap vi=a,

(e V] = ag

is a cover of L(4,5,2,4)® Ab(1,0), which is denoted by

L(4,5,2,4) ® Ab(1,0).

Then, we compute the cover for L(4, 5,2,4). Since L(4,
5,2,4) is a subalgebra of L(4,5,2,4)® Ab(1,0), one may
check that the Lie superalgebra with a homogeneous basis
{x,y,2,¢,1,ay,a,, a5, a4, a5} and multiplication [x, y] =z, [x
2 =apnd=rixr=aylyz=a;lyd=aycr]=as is
a cover of L(4, 5, 2,4), which is denoted by L(4,5,2,4).

When smr(L)=(6,0), we also obtain a cover

L(4,5/,\1, 6) for L(4,5,1,6), which has a homogenous basis
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{x%,y,2,1,¢ a,,a,,a,,a,} and multiplication

[x,2] =,

2] = as,

[x,r]=a,,

[y, c]=r1+ay.

[x.y] =2

(58)
[x, ] = ay,

By the previous work, we may obtain a cover f; for L,,
which has a homogenous basis {x, k, s4 | z, 7, s,, $s} and mul-
tiplication [x,y] =z, [z,y] =k, [x, 2] =s,, [k, y] = s5, [, ¥] = 5.
When smr(L) = (3,3), we may obtain a cover L, for L,,
which has a homogenous basis {a, z, b | ¢, x, k} and multipli-
cation [a, x| =k, [a, k] = ¢, [x, x] =z, [x, k] = b.

8. Main Result

Theorem 10. The classification and covers of all the finite-
dimensional nilpotent Lie superalgebras L of multiplier-rank
<6 are listed as follows:

where L, is a (2, 2)-superdimensional Lie superalgebra
with a homogeneous basis {x,k|z,y} and nonzero multipli-
cation [x,y] =z, [z,y] =k,L, is a (2, 2)-superdimensional Lie
superalgebra with a homogeneous basis {a, z | x, k} and non-
zero multiplication [x, x| = z, [a, x] = k.

Proof. By Theorem 5.8 of [10], we obtain all the finite-
dimensional nilpotent Lie superalgebras L of mr(L) <2. In
Theorems 6, 7, 8, and 9, all the nilpotent Lie superalgebras
of mr(L)=3,4,56 are determined. We only need to
describe the covers of all Lie superalgebras of mr(L) < 6. By
Theorem 4.1 of [13], Lemma 5, and Section 7, we may obtain
the covers of all the nilpotent Lie superalgebras of mr(L) <6.
In summary, we obtain Table 1.0 |
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