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In this paper, we classify all the finite-dimensional nilpotent Lie superalgebras of multiplier-rank less than or equal to 6 over an
algebraically closed field of characteristic zero. We also determine the covers of all the nilpotent Lie superalgebras mentioned
above.

1. Introduction

The notion of the multiplier MðGÞ for a finite group G arose
from Schur’s work on projective representations of groups.
There are fruitful results about this topic. However, we only
mention that Green proved that jMðGÞj ≤ pð1/2Þnðn−1Þ for a
finite p-group G of order pn (see [1]) as well as that Berkovich
and Zhou classified all p-groups with tðGÞ = 0, 1 and 2, where
tðGÞ is defined by jMðGÞj = pð1/2Þnðn−1Þ−tðGÞ (see [2, 3]).

Batten initiated the theory of multipliers and covers for
Lie algebras when she studied the second cohomology
groups of Lie algebras with coefficients in a 1-dimensional
trivial module (see [4]). For a finite-dimensional Lie algebra
L, she proved that MðLÞ ≅H2ðL, FÞ by a free presentation of
L, where F is the underlying field. Moneyhun gave the max-
imal dimension of MðLÞ (see [5]). Let tðLÞ = ð1/2Þnðn − 1Þ
− dim MðLÞ, which is a nonnegative integer. Batten et al.
classified all nilpotent Lie algebras with tðLÞ = 0, 1, 2 (see
[6]). Hardy and Stitzinger used a different method to get
similar results for tðLÞ ≤ 8 (see [7, 8]). For filiform Lie alge-
bras, Bosko classified these up to tðLÞ = 16 (see [9]).

The notion of the multiplier for Lie algebras may be nat-
urally generalized to the Lie superalgebra case (see [10], for
example). Let L be a finite-dimensional Lie superalgebra. A
Lie superalgebra pair ðK ,MÞ is called a defining pair for L
provided that L ≅ K/M and M ⊂ ZðKÞ ∩ K2. A defining pair
ðK ,MÞ of L is said to be maximal if K is of maximal

super-dimensions. In the case of ðK ,MÞ being a maximal
defining pair of L, we also call K a cover and M a (Schur)
multiplier of L. As in the Lie algebra case, multipliers for
Lie superalgebra L are unique up to isomorphism, denoted
by MðLÞ. Moreover, MðLÞ ≅H2ðL, FÞ (see [11]). By Lemma
2.3 of [10], for a Lie superalgebra L of super-dimension ðm
, nÞ, we define the super-multiplier-rank of L to be

smr Lð Þ = 1
2m m − 1ð Þ + 1

2 n n + 1ð Þ,mn
� �

− sdimM Lð Þ,

ð1Þ

and the multiplier-rank of L to be

mr Lð Þ = smr Lð Þj j: ð2Þ

In particular, smrðLÞ = ð0, 0Þ if and only if L is abelian
(see Proposition 3.1 of [10]). Hereafter, we write sdimV for
the super-dimension of a superspace V and jða, bÞj = a + b
for a pair ða, bÞ of nonnegative integers.

In this paper, we classify all nilpotent Lie superalgebras
of multiplier-rank ≤6 by discussing whether ZðLÞ ⊆ L2. We
also construct the covers of all the nilpotent Lie superalge-
bras of multiplier-rank ≤6.
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2. Basics

We assume that all (super)spaces and (super)algebras are
over an algebraically closed field F of characteristic zero. In
ℤ ×ℤ, we define a partial order as follows:

m, nð Þ ≤ k, lð Þ⇔m ≤ k, n ≤ l: ð3Þ

We also view ℤ ×ℤ as the additive group in the usual
way.

To classify all the nilpotent Lie superalgebras of
multiplier-rank ≤6, we first establish some technical lemmas.

Lemma 1. Let L be a nilpotent Lie superalgebra of super-
dimension ðm, nÞ. Then, s dim L2 ≤ smrðLÞ.

Proof. By Theorem 3.8 of [11], MðLÞ ≅H2ðL, FÞ. It follows
that

sdimZ2 L, Fð Þ ≤ sdimC2 L, Fð Þ ≤ 1
2m m − 1ð Þ + 1

2 n n + 1ð Þ,mn
� �

,

ð4Þ

where C2ðL, FÞ is the superspace consisting of skew-
symmetric bilinear functions of L.

Let fx1,⋯, xs ∣ y1,⋯, ytg be a homogeneous basis of L2

and extend it to a homogeneous basis of L : fx1,⋯, xs, xs+1
,⋯, xm ∣ y1,⋯, yt , yt+1,⋯, yng. Let x↦ x∗ be the isomor-
phism from L onto the dual space L∗. For x∗ ∈ L∗, let x̂ : L
× L⟶ F be a bilinear mapping by x̂ðy, zÞ = x∗ð½y, z�Þ for
all y, z ∈ L. Then, x̂ ∈ B2ðL, FÞ. If x̂ = 0, then x∗j½L,L� = 0. Then,
x = 0 for all x ∈ L2. Hence, x↦ x̂ is an injection from L2 into
B2ðL, FÞ. Consequently, sdimMðLÞ ≤ ðð1/2Þmðm − 1Þ + ð1/2
Þnðn + 1Þ,mnÞ − sdimL2: By the definition of smrðLÞ, we
have sdimL2 ≤ smrðLÞ.☐

Let Π be the parity functor of superspaces. Note that

sdimV + sdimΠV = dim V , dim Vð Þ: ð5Þ

Lemma 2. Let L be a nilpotent Lie superalgebra. Suppose K is
a 1-dimensional central ideal of L and K ⊆ L2. The following
statements hold.

(1) If sdimK = ð1, 0Þ, then smrðL/KÞ + sdimL2 ≤ smrðLÞ
(2) If sdimK = ð0, 1Þ, then smrðL/KÞ + sdimΠL2 + ð0, 1Þ

≤ smrðLÞ

Proof. By Lemma 4.9 of [11], we have an exact sequence:

0⟶Hom L
K
, F

� �
⟶
I Hom L, Fð Þ⟶R Hom K , Fð Þ⟶T M L

K

� �
⟶
I M Lð Þ⟶δ L

L2
⊗ K:

ð6Þ

Since K ⊆ L2, we have Rð f ÞðkÞ = f ∘ iðkÞ ∈ f ðL2Þ = 0 for
all k ∈ K and f ∈HomðL, FÞ, where i : K ⟶ L is a Lie super-
algebra monomorphism. Then, R = 0 and T is an injection.

Hence, sdimðimTÞ = sdimK = ð1, 0Þ or ð0, 1Þ: Furthermore,
sdimMðLÞ = sdimðimIÞ + sdimðimδÞ and sdimMðL/KÞ =
sdimðimIÞ + sdimðimTÞ:

(1) If sdimðimTÞ = sdimK = ð1, 0Þ, we have

sdimM Lð Þ + 1, 0ð Þ = sdimM Lð Þ + sdim imTð Þ
= sdim imIð Þ + sdim imδð Þ + sdim imTð Þ
= sdimM L

K

� �
+ sdim imδð Þ

≤ sdim L/L2 ⊗ K
� �

+ sdimM L
K

� �
= sdim L

L2

� �
+ sdimM L

K

� �
:

ð7Þ

By the definition of smrðLÞ, we have smrðL/KÞ + sdim
L2 ≤ smrðLÞ:

(2) If sdimðimTÞ = sdimK = ð0, 1Þ, we have

sdimM Lð Þ + 0, 1ð Þ ≤ sdim L

L2
⊗ K

� �
+ sdimM L

K

� �
= sdimΠ

L

L2

� �
+ sdimM L

K

� �
:

ð8Þ

Hence, smrðL/KÞ + sdimΠL2 + ð0, 1Þ ≤ smrðLÞ:☐

As in the Lie algebra case (Theorem 1 of [7]), using free
presentations of Lie superalgebras, one may prove the fol-
lowing lemma.

Lemma 3. Let A and B be finite-dimensional Lie superalge-
bras. Then,

sdimM A ⊕ Bð Þ = sdimM Að Þ + sdimM Bð Þ + sdim
A

A2 ⊗
B

B2

� �
:

ð9Þ

Lemma 4. Let L be a finite-dimensional nilpotent Lie super-
algebra. Suppose that ZðLÞUL2: Then, there exists an ideal
A of L with dim A = 1 such that L =M ⊕ A, where M is an
ideal of L.

(1) If sdimA = ð1, 0Þ, then smrðLÞ = smrðMÞ + sdimM2

(2) If sdimA = ð0, 1Þ, then smrðLÞ = smrðMÞ + sdimΠ
M2 + ð1, 0Þ

Proof. Suppose that A is a one-dimensional subsuperspace of
L such that A ⊆ ZðLÞ but AUL2. LetM be a complement to A
in L such that L2 ⊆M. Then, L =M ⊕ A and MðAÞ = ð0, 0Þ.
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If sdimA = ð1, 0Þ, then sdimðM/M2 ⊗ AÞ = sdimM −
sdimM2: By Lemma 3, we have

sdimM Lð Þ = sdimM A ⊕Mð Þ = sdimM Að Þ + sdimM Mð Þ + sdim A

A2 ⊗
M

M2

� �
:

ð10Þ

Then, smrðLÞ = smrðMÞ + sdimM2:
If sdimA = ð0, 1Þ, then sdimðM/M2 ⊗ AÞ = sdimΠM −

sdimΠM2: Now ðð1/2Þmðm − 1Þ + ð1/2Þnðn + 1Þ,mnÞ −
smrðLÞ = ðð1/2Þmðm − 1Þ + ð1/2Þðn − 1Þn,mðn − 1ÞÞ − smrð
MÞ + ðn − 1,mÞ − sdimΠM2: Therefore, smrðLÞ = smrðMÞ
+ sdimΠM2 + ð1, 0Þ:☐

For convenience, we write Abðm, nÞ for the abelian Lie
superalgebra of super-dimension ðm, nÞ, Hðp, qÞ for the ð2
p + 1, qÞ-super-dimensional Heisenberg Lie superalgebra of
even center, and HðkÞ for the ðk, k + 1Þ-super-dimensional
Heisenberg Lie superalgebra of odd center (see [12]). In
Proposition 4.4 of [10] and section 4 of [13], the authors
characterize the multipliers of Hðp, qÞ and HðkÞ:

sdimM H p, qð Þð Þ =
2p2 − p + 1

2 q
2 + 1

2 q − 1, 2pq
� �

, p + q ≥ 2,

0, 0ð Þ, p = 0, q = 1,
2, 0ð Þ, p = 1, q = 0,

8>>>><>>>>:
sdimM H kð Þð Þ = k2, k2 − 1

� �
, k ≥ 2,

1, 1ð Þ, k = 1:

(
ð11Þ

Hence,

smrH p, qð Þ = 2p + 1, qð Þ = sdimH p, qð Þ, p + q ≥ 2, ð12Þ

smrH kð Þ = k + 1, k + 1ð Þ, k ≥ 2, smrH 1ð Þ = 1, 2ð Þ: ð13Þ
Similarly, let us give a multiplier and cover of Hðp, qÞ

⊕Abðs, tÞ.

Case 1. Suppose that ðp, qÞ = ð1, 0Þ: Let dHð1, 0Þ ⊕Abðs, tÞ be
a Lie superalgebra with a homogenous basis

x, y, z, ak, γk, δ, ηk, θ, λc,n, σd,o ∣ bm, εm, ϑm, μk,m
� �

, ð14Þ

and multiplications

x, y½ � = z, x, ak½ � = γk, x, z½ � = δ,
x, bm½ � = εm, y, ak½ � = ηk, y, z½ � = θ,
y, bm½ � = ϑm, ac, an½ � = λc,n, ak, bm½ � = μk,m,
bd , bo½ � = σd,o,

ð15Þ

where 1 ≤ c, k, n ≤ s,1 ≤ d,m, o ≤ t, and c < n,d ≤ o: LetdMHð1, 0Þ ⊕Abðs, tÞ be a subsuperspace spanned by fγk, δ,

ηk, θ, λc,n, σd,o ∣ εm, ϑm, μk,mg: Then,

0⟶ dMH 1, 0ð Þ ⊕Ab s, tð Þ ⟶ dH 1, 0ð Þ ⊕Ab s, tð Þ ⟶H 1, 0ð Þ ⊕Ab s, tð Þ⟶ 0,

ð16Þ

is a maximal stem extension of Hð1, 0Þ ⊕Abðs, tÞ: In partic-

ular, dMHð1, 0Þ ⊕Abðs, tÞ is a multiplier anddHð1, 0Þ ⊕Abðs, tÞ is a cover of Hð1, 0Þ ⊕Abðs, tÞ:

Case 2. Suppose that ðp, qÞ ≠ ð1, 0Þ: Let dHðp, qÞ ⊕Abðs, tÞ be
a Lie superalgebra with even basis

xi, yi, z, ak, αe,j, αi, βf ,h, γi,k, ζe,j, ηi,k, λc,n, σd,o, ςm,l, ωu,r , ρl
n o

,

ð17Þ

and odd basis

wl, bm, εi,m, εi,l, ϑi,m, ιi,l, μk,m, νk,l
� �

, ð18Þ

and multiplications

2 xe, xj
� 	

= αe,j, xi, yi½ � = z + αi,

xf , yh
� 	

= βf ,h, xi, ak½ � = γi,k,
xi, bm½ � = εi,m, xi,wl½ � = εi,l,

ye, yj
h i

= ζe,j, yi, ak½ � = ηi,k,

yi, bm½ � = ϑi,m, yi,wl½ � = ιi,l,
ac, an½ � = λc,n, ak, bm½ � = μk,m,
ak,wl½ � = νk,l, bd , bo½ � = σd,o,
bm,wl½ � = ςm,l, wu,wr½ � = ωu,r ,
wl,wl½ � = z + ρl,

ð19Þ

where 1 ≤ e, f , h, i, j ≤ p,1 ≤ c, k, n ≤ s,1 ≤ d,m, o ≤ t,
1 ≤ l, r, u ≤ q, and e < j,f ≠ h,c < n,d ≤ o, and u < r: LetdMHðp, qÞ ⊕Abðs, tÞ be a subsuperspace spanned by

αe, j, αi, βf ,h, γi,k, ζe,j, ηi,k, λc,n, σd,o, ςm,l, ωu,r , ρl ∣ εi,m, εi,l, ϑi,m, ιi,l , μk,m, νk,l
n o

:

ð20Þ

Then,

0⟶ dMH p, qð Þ ⊕Ab s, tð Þ ⟶ dH p, qð Þ ⊕Ab s, tð Þ ⟶H p, qð Þ ⊕Ab s, tð Þ⟶ 0,

ð21Þ

is a maximal stem extension of Hðp, qÞ ⊕Abðs, tÞ: In partic-

ular, dMHðp, qÞ ⊕Abðs, tÞ is a multiplier anddHðp, qÞ ⊕Abðs, tÞ is a cover of Hðp, qÞ ⊕Abðs, tÞ:

Summarizing, we have the following.
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Lemma 5. Let p, q, s, t be positive integers. Then,

0⟶ dMH p, qð Þ ⊕ Ab s, tð Þ ⟶ dH p, qð Þ ⊕ Ab s, tð Þ ⟶H p, qð Þ ⊕ Ab s, tð Þ⟶ 0,

ð22Þ

is a maximal stem extension of Hðp, qÞ ⊕ Abðs, tÞ. In particu-

lar, dHðp, qÞ ⊕ Abðs, tÞ is the cover of Hðp, qÞ ⊕ Abðs, tÞ and
the super-dimension of MðHðp, qÞ ⊕ Abðs, tÞÞ as follows:

12s2 + 12t2 + 32s + 12t + 2, st + 2t, p, q = 1, 0,
~p + ~q +~s +~t − 1, 2pq + 2pt + st + sq
� �

, p, qð Þ ≠ 1, 0ð Þ,
ð23Þ

where ~p = 2p2 − p + 2ps, ~q = ð1/2Þq2 + ð1/2Þq,~s = ð1/2Þs2 − ð1/
2Þs,~t = ð1/2Þt2 + ð1/2Þt + tq:

3. Multiplier-Rank 3 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras ofmrðLÞ = 3: The following theorem is analogous to
the one in the Lie algebra case [7], yet it contains more infor-
mation in our super-case.

Theorem 6. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mrðLÞ = 3: Then,

(1) smrðLÞ ≠ ð0, 3Þ
(2) smrðLÞ = ð1, 2Þ if and only if L ≅Hð0, 2Þ
(3) smrðLÞ = ð3, 0Þ if and only if L ≅Hð1, 0Þ ⊕ Abð2, 0Þ
(4) smrðLÞ = ð2, 1Þ if and only if L is isomorphic to one of

the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð1, 1Þ
(b) Hð0, 1Þ ⊕ Abð1, 0Þ
(c) Hð1Þ

Proof. Let us characterize L by discussing whether ZðLÞ ⊆ L2:

(1) Suppose that ZðLÞ ⊆ L2. Let K be an ideal contained
in ZðLÞ with dim K = 1. Take H = L/K

(a) If sdimK = ð1, 0Þ, then one may check that smrð
LÞ = ð1, 2Þ and sdimL2 = ð1, 0Þ by Lemma 2. In
this case, by (12), we have

L ≅H 0, 2ð Þ: ð24Þ

(b) If sdimK = ð0, 1Þ, then Lemma 2 yields that smrðLÞ
= ð2, 1Þ. Hence, smrðHÞ + sdimΠL2 ≤ ð2, 0Þ. Since

L is not abelian, we have sdimΠL2 ≠ ð0, 0Þ. If sdim
ΠL2 = ð2, 0Þ, then sdimH2 = ð0, 1Þ and smrðHÞ = ð0
, 0Þ, an impossibility. Therefore, sdimΠL2 ≠ ð2, 0Þ:
It remains to consider the case sdimΠL2 = ð1, 0Þ. In
this case, we have L ≅HðkÞ for some k. By (13), we
have L ≅Hð1Þ

(2) Suppose that ZðLÞUL2. By Lemma 4, we have
L =M ⊕ A, where A and M are ideals of L with dim
A = 1

(a) If sdimA = ð0, 1Þ, then one may check that there
are no algebras satisfying Lemma 2 (2) for smrð
LÞ = ð3, 0Þ, ð2, 1Þ, ð1, 2Þ, and ð0, 3Þ

(b) If sdimA = ð1, 0Þ, one has to discuss the cases
smrðLÞ = ð3, 0Þ, ð0, 3Þ, ð2, 1Þ, and ð1, 2Þ
(i) Assume that smrðLÞ = ð3, 0Þ: We obtain that

smrðMÞ = ð2, 0Þ and sdimM2 = ð1, 0Þ by
Lemmas 1 and 4 (1). It follows that M ≅Hð1,
0Þ ⊕Abð1, 0Þ by Theorem 5.8 of [10]. Hence,

L ≅H 1, 0ð Þ ⊕Ab 2, 0ð Þ: ð25Þ

By Lemma 5, (3) is proven.

(ii) Assume that smrðLÞ = ð0, 3Þ: We have smrðMÞ = ð
0, 2Þ and sdimM2 = ð0, 1Þ by Lemmas 1 and 4 (1).
There are no such algebras for smrðMÞ = ð0, 2Þ, by
Proposition 5.22 of [10]. Therefore, (1) is proven

(iii) Assume that smrðLÞ = ð2, 1Þ: By Lemmas 1 and 4
(1), we have smrðMÞ = ð1, 1Þ, which yields sdimM2

= ð1, 0Þ. It follows that M ≅Hð1, 0Þ ⊕Abð0, 1Þ or
Hð0, 1Þ: Hence,

L ≅H 1, 0ð Þ ⊕Ab 1, 1ð Þ orH 0, 1ð Þ ⊕Ab 1, 0ð Þ: ð26Þ

Then, (4) holds by Lemma 5.

(iv) Assume that smrðLÞ = ð1, 2Þ: We have either smrð
MÞ = ð1, 2Þ or smrðMÞ = ð1, 1Þ by Lemmas 1 and 4
(1). If smrðMÞ = ð1, 2Þ, we have sdimM2 = ð0, 0Þ,
an impossibility. If smrðMÞ = ð1, 1Þ, then we have
sdimM2 = ð0, 1Þ: This is impossible, because smrð
MÞ = ð1, 1Þ yields sdimM2 = ð1, 0Þ by Theorem 5.8
of [10]. Then the, proof is complete

☐

4. Multiplier-Rank 4 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mrðLÞ = 4: We recall that Lð3, 4, 1, 4Þ is a Lie
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algebra with basis fx, y, z, rg and nonzero multiplication ½x
, y� = z, ½x, z� = r and that Lð4, 5, 2, 4Þ is a Lie algebra with
basis fx, y, z, r, cg and nonzero multiplication ½x, y� = z, ½x, c
� = r (see [7]).

Theorem 7. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mrðLÞ = 4: Then,

(1) smrðLÞ ≠ ð0, 4Þ
(2) smrðLÞ = ð1, 3Þ if and only if L ≅Hð0, 3Þ
(3) smrðLÞ = ð2, 2Þ if and only if L is isomorphic to one of

the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð0, 2Þ
(b) Hð0, 1Þ ⊕ Abð0, 1Þ
(c) Hð1Þ ⊕ Abð1, 0Þ

(4) smrðLÞ = ð4, 0Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð3, 0Þ
(b) Lð3, 4, 1, 4Þ
(c) Lð4, 5, 2, 4Þ

(5) smrðLÞ = ð3, 1Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð2, 1Þ
(b) Hð0, 1Þ ⊕ Abð2, 0Þ
(c) Hð1, 1Þ

Proof. Let us characterize L by discussing whether ZðLÞ ⊆ L2:

(1) Suppose that ZðLÞ ⊆ L2. We may assume that K ⊆ Z
ðLÞ, where dim K = 1 and H ≅ L/K

(a) If sdimðKÞ = ð0, 1Þ, one may check that smrðLÞ
= ð2, 2Þ by Lemma 2. Now assume that smrðLÞ
= ð2, 2Þ: Then, sdimΠL2 + smrðHÞ ≤ ð2, 1Þ:
Since sdimH2 ≤ smrðHÞ, hence sdimL2 = ð1, 1Þ
or ð0, 1Þ: In the first case sdimL2 = ð1, 1Þ, we
obtain that sdimH2 = ð1, 0Þ and smrðHÞ = ð1, 0Þ
. Hence, H ≅Hð1, 0Þ. Then, L can be described
generally by basis fx, y, z ∣ kg with multiplication
given by ½x, y� = z. To compute the multiplier
start with

x, y½ � = z + s1, x, z½ � = s2, x, k½ � = s3,
y, z½ � = s4, y, k½ � = s5, z, k½ � = s6,

k, k½ � = s7,
ð27Þ

where s1, s2,⋯, s7 generate the multiplier. A change of vari-

ables allows that s1 = 0. Use of the Jacobi identity on all pos-
sible triples shows that s6 = 0 and MðLÞ = hs2, s4, s7 ∣ s3, s5i.
Hence, smrðLÞ = ð1, 1Þ, contradicting the assumption smrð
LÞ = ð2, 2Þ: In the other case sdimL2 = ð0, 1Þ, we obtain that
L2 = ZðLÞ. Then, L ≅HðkÞ for some k. There are no such
algebras by (13) for smrðLÞ = ð2, 2Þ

(b) If sdimK = ð1, 0Þ, then Lemmas 1 and 2 yield smrð
LÞ = ð4, 0Þ,ð3, 1Þ and ð1, 3Þ

(i) Assume that smrðLÞ = ð4, 0Þ. As in Lie algebra
case (Theorem 2 of [7]), one can determine that

L ≅ L 3, 4, 1, 4ð Þ or L 4, 5, 2, 4ð Þ: ð28Þ

(ii) Assume that smrðLÞ = ð3, 1Þ and ð1, 3Þ. The possible
case for sdimL2 is ð1, 0Þ. It follows that L2 = ZðLÞ
and L ≅Hðp, qÞ for some p, q. By (12), we have

L ≅H 1, 1ð Þ, H 0, 3ð Þ, ð29Þ

respectively

(2) Suppose that ZðLÞUL2. By Lemma 4, we have L = A
⊕M, where A and M are ideals of L with dim A =
1

(a) If sdimA = ð0, 1Þ, then Lemmas 1 and 4 (2) yield
that smrðLÞ = ð2, 2Þ. Therefore, smrðMÞ = ð1, 1Þ
and sdimM2 = ð1, 0Þ: Hence,

L ≅H 1, 0ð Þ ⊕Ab 0, 2ð Þ orH 0, 1ð Þ ⊕Ab 0, 1ð Þ: ð30Þ

(b) If sdimA = ð1, 0Þ, then Lemmas 1 and 4 (1) yield that
smrðLÞ = ð4, 0Þ, ð2, 2Þ or ð3, 1Þ. As a result of the
above, we have proven (1) and (2). To prove (3),
(4), and (5), one has to discuss the cases smrðLÞ = ð
4, 0Þ, ð2, 2Þ, and ð3, 1Þ

(i) Assume that smrðLÞ = ð4, 0Þ. It is easily checked
that there are no such algebras except for sdim
M2 = ð1, 0Þ and smrðMÞ = ð3, 0Þ. By Theorem 6,
we have M ≅Hð1, 0Þ ⊕Abð2, 0Þ and

L ≅H 1, 0ð Þ ⊕Ab 3, 0ð Þ: ð31Þ

By Lemma 5, (4) is proven.
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(ii) Assume that smrðLÞ = ð2, 2Þ. We may check that
smrðMÞ = ð2, 1Þ and sdimM2 = ð0, 1Þ. Then, M ≅H
ð1Þ by Theorem 6. Hence,

L ≅H 1ð Þ ⊕Ab 1, 0ð Þ: ð32Þ

Then, (3) holds by Lemma 5

(iii) Assume that smrðLÞ = ð3, 1Þ. We have smrðMÞ = ð
2, 1Þ and sdimM2 = ð1, 0Þ. By Theorem 6, we have
M ≅Hð1, 0Þ ⊕Abð1, 1Þ or Hð0, 1Þ ⊕Abð1, 0Þ. Then,

L ≅H 1, 0ð Þ ⊕Ab 2, 1ð Þ orH 0, 1ð Þ ⊕Ab 2, 0ð Þ: ð33Þ

The proof is complete.☐

5. Multiplier-Rank 5 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mrðLÞ = 5: For convenience, let L1 denote a Lie
superalgebra with a homogeneous basis fx, k ∣ z, yg and
nonzero multiplication ½x, y� = z, ½z, y� = k:

Theorem 8. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mrðLÞ = 5: Then,

(1) smrðLÞ ≠ ð0, 5Þ and ð2, 3Þ
(2) smrðLÞ = ð1, 4Þ if and only if L ≅Hð0, 4Þ
(3) smrðLÞ = ð5, 0Þ if and only if L is isomorphic to one of

the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð4, 0Þ
(b) Hð2, 0Þ

(4) smrðLÞ = ð4, 1Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð3, 1Þ
(b) Hð0, 1Þ ⊕ Abð3, 0Þ
(c) Hð1, 1Þ ⊕ Abð1, 0Þ

(5) smrðLÞ = ð3, 2Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð1, 2Þ
(b) Hð0, 1Þ ⊕ Abð1, 1Þ
(c) Hð1, 2Þ
(d) L1

Proof. Let us characterize L by discussing whether ZðLÞ ⊆ L2:

(1) Suppose that ZðLÞ ⊆ L2. We may assume that K ⊆ Z
ðLÞ, where dim K = 1 and H ≅ L/K

(a) If sdimK = ð1, 0Þ, then Lemma 2 readily yields
smrðLÞ = ð5, 0Þ, ð3, 2Þ or ð1, 4Þ

(i) Assume that smrðLÞ = ð5, 0Þ: Then, from the
proof of Theorem 3 of [3], we have

L ≅H 2, 0ð Þ: ð34Þ

(ii) Assume that smrðLÞ = ð3, 2Þ. This readily yields
sdimL2 = ð1, 0Þ, ð2, 0Þ, or ð1, 1Þ. In the first case
sdimL2 = ð1, 0Þ, then L2 = ZðLÞ and L ≅Hðp, qÞ for
some p, q. By (12), we have

L ≅H 1, 2ð Þ: ð35Þ

Consider the second case sdimL2 = ð2, 0Þ. If smrðHÞ = ð
0, 2Þ and ð0, 1Þ, then there are no such algebras by the previ-
ous work. If smrðHÞ = ð1, 1Þ, then H ≅Hð1, 0Þ ⊕Abð0, 1Þ or
Hð0, 1Þ. IfH ≅Hð1, 0Þ ⊕Abð0, 1Þ, then a computation shows
that smrðLÞ = ð5, 2Þ, contradicting the assumption smrðLÞ
= ð3, 2Þ. If H ≅Hð0, 1Þ, we have smrðLÞ = ð2, 1Þ by a direct
computation, also contradicting the assumption smrðLÞ = ð
3, 2Þ. If smrðHÞ = ð1, 0Þ, then H ≅Hð1, 0Þ. By the proof of
Theorem 1 of [7], we have L ≅ Lð3, 4, 1, 4Þ and smrðLÞ = ð4
, 0Þ. This contradicts the assumption on smrðLÞ: If smrðHÞ
= ð1, 2Þ, then H ≅Hð0, 2Þ, which contradicts the assump-
tion smrðLÞ = ð3, 2Þ. In the third case sdimL2 = ð1, 1Þ, we
have sdimH2 = ð0, 1Þ. By the previous work, we have smrð
HÞ = ð2, 1Þ and H ≅Hð1Þ. Then, L has a homogeneous basis
fx, k ∣ z, yg with multiplication given by ½x, y� = z, ½z, z� = a1
k, ½y, y� = a2k, ½z, y� = a3k, where a1, a2, a3 ∈ F, k ∈ ZðLÞ. The
Jacobi identity shows that a1 = 0. Since sdimL2 = ð1, 1Þ, we
have that either a2 or a3 is not zero. Without loss of gener-
ality, assume that a3 ≠ 0. Replacing z by −ð1/2a3Þz and y
by −2y + ða2/a3Þz and relabeling, we get a simple multiplica-
tion table:

x, y½ � = z, z, y½ � = k: ð36Þ

To compute the multiplier, we start with

x, k½ � = s1, x, z½ � = s2, x, y½ � = z + s3,
k, z½ � = s4, k, y½ � = s5, z, z½ � = s6,

z, y½ � = k + s7, y, y½ � = s8,
ð37Þ

where s1, s2,⋯, s8 generate the multiplier. By relabeling, we
get s3 = s7 = 0. Using the Jacobi identity gives s1 = s4 = s6 = 0
. Hence, the multiplier has a homogeneous basis fs8 ∣ s2, s5
g, and then, sdimMðLÞ = ð1, 2Þ and smrðLÞ = ð3, 2Þ. This
superalgebra satisfies the requirements. As mentioned above,
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we have

L ≅ L1: ð38Þ

(iii) Assume that smrðLÞ = ð1, 4Þ. If sdimL2 ≥ ð1, 0Þ, then
smrðHÞ ≤ ð0, 3Þ. There are no such algebras by the
previous work. Then, sdimL2 = ð1, 0Þ: It follows
from Proposition 4.11 of [10] that

L ≅H 0, 4ð Þ: ð39Þ

(b) If sdimðKÞ = ð0, 1Þ, then Lemma 2 (2) yields that
smrðLÞ = ð3, 2Þ or ð2, 3Þ

(i) Assume that smrðLÞ = ð3, 2Þ: Then, sdimΠL2 +
smrðHÞ ≤ ð3, 1Þ. It follows that sdimL2 = ð1, 1Þ
and smrðHÞ ≤ ð2, 0Þ: If smrðHÞ = ð2, 0Þ, then H
≅Hð1, 0Þ ⊕Abð1, 0Þ: Computing the multiplier
as before yields sdimMðLÞ = ð5, 3Þ and smrðLÞ
= ð2, 1Þ, contradicting the assumption smrðLÞ
= ð3, 2Þ: If smrðHÞ = ð1, 0Þ, then H ≅Hð1, 0Þ: It
is also a contradiction by the previous work

(ii) Assume that smrðLÞ = ð2, 3Þ: We have sdimΠL2

+ smrðHÞ ≤ ð2, 2Þ: It follows that sdimL2 = ð1, 1
Þ and smrðHÞ = ð1, 1Þ: Then, H ≅Hð1, 0Þ ⊕Abð
0, 1Þ or Hð0, 1Þ. If H ≅Hð1, 0Þ ⊕Abð0, 1Þ, then
sdimMðLÞ = ð4, 2Þ and smrðLÞ = ð2, 4Þ by com-
puting MðLÞ as above, contradicting the
assumption smrðLÞ = ð2, 3Þ: If H ≅Hð0, 1Þ, then
L has a homogeneous basis fz ∣ x, kg with mul-
tiplication given by ½x, x� = z. Computing the
multiplier as before yields sdimMðLÞ = ð1, 1Þ
and smrðLÞ = ð2, 1Þ, also contradicting the
assumption smrðLÞ = ð2, 3Þ

(2) Suppose that ZðLÞUL2. By Lemma 4, we have L = A
⊕M, where A and M are ideals of L with dim A =
1

(a) If sdimA = ð0, 1Þ, then Lemma 4(2) yields that
smrðLÞ = ð3, 2Þ and smrðMÞ = ð2, 1Þ. Then by
Theorem 6, we have

L ≅H 1, 0ð Þ ⊕Ab 1, 2ð Þ orH 0, 1ð Þ ⊕Ab 1, 1ð Þ: ð40Þ

(b) If sdimA = ð1, 0Þ, then Lemmas 1 and 4 yield that
smrðLÞ = ð5, 0Þ, ð4, 1Þ or ð3, 2Þ. As a result of the
above, we have proven (1) and (2). To prove (3),

(4), and (5), one has to discuss the cases smrðLÞ = ð
5, 0Þ, ð4, 1Þ, and ð3, 2Þ

(i) Assume that smrðLÞ = ð5, 0Þ. Then, sdimM2 ≤ ð2
, 0Þ. If sdimM2 = ð2, 0Þ, then smrðMÞ = ð3, 0Þ. By
Theorem 6, we have M ≅Hð1, 0Þ ⊕Abð2, 0Þ. This
yields sdimM2 = ð1, 0Þ, contradicting the assump-
tion sdimM2 = ð2, 0Þ. If sdimM2 = ð0, 0Þ, then M
is abelian and smrðMÞ = ð5, 0Þ, an impossibility.
If sdimM2 = ð1, 0Þ. Then, smrðMÞ = ð4, 0Þ. By
Theorem 7 (4), we have M ≅Hð1, 0Þ ⊕Abð3, 0Þ,
Lð3, 4, 1, 4Þ or Lð4, 5, 2, 4Þ. Since sdimM2 = ð1, 0Þ
, we have M ≅Hð1, 0Þ ⊕Abð3, 0Þ. Then,

L ≅H 1, 0ð Þ ⊕Ab 4, 0ð Þ: ð41Þ

By Lemma 5, (3) holds.

(ii) Assume that smrðLÞ = ð4, 1Þ. Then, ð0, 0Þ < sdimM2

≤ ð2, 0Þ: If sdimM2 = ð2, 0Þ, computing the multi-
plier as before yields smrðLÞ = ð2, 1Þ: This contra-
dicts the assumption on smrðLÞ: Therefore,
sdimM2 = ð1, 0Þ and smrðMÞ = ð3, 1Þ: Then, M is
one of the Lie superalgebras listed in Theorem 7
(5). Therefore, L is isomorphic to one of the follow-
ing Lie superalgebras:

H 1, 0ð Þ ⊕Ab 3, 1ð Þ, H 0, 1ð Þ ⊕Ab 3, 0ð Þ, H 1, 1ð Þ ⊕Ab 1, 0ð Þ:
ð42Þ

Then, (4) holds by Lemma 5.

(iii) Assume that smrðLÞ = ð3, 2Þ: Then, ð0, 0Þ < sdim
M2 ≤ ð1, 1Þ: If sdimM2 = ð0, 1Þ, then smrðMÞ = ð3,
1Þ: This is impossible, because the super-
dimension of the derived superalgebra of M when
smrðMÞ = ð3, 1Þ is not ð0, 1Þ: Similarly, if sdimM2

= ð1, 1Þ, then smrðMÞ = ð2, 1Þ, a contradiction.
Now consider sdimM2 = ð1, 0Þ; we have smrðMÞ =
ð2, 2Þ. By Theorem 7 (3), we have

L ≅H 1, 0ð Þ ⊕Ab 1, 2ð Þ orH 0, 1ð Þ ⊕Ab 1, 1ð Þ: ð43Þ

The proof is complete.☐

6. Multiplier-Rank 6 Nilpotent
Lie Superalgebras

In this section, we will determine all the nilpotent Lie super-
algebras of mrðLÞ = 6: Let us recall that Lð4, 5, 1, 6Þ is a Lie
algebra with basis fx, y, z, r, cg and nonzero multiplication
½x, y� = z, ½x, z� = r, ½y, c� = r: For convenience, let L2 denote
a Lie superalgebra with a homogeneous basis fa, z ∣ x, kg
and nonzero multiplication ½x, x� = z, ½a, x� = k:
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Theorem 9. Let L be a finite-dimensional, nonabelian, and
nilpotent Lie superalgebra of mrðLÞ = 6. Then,

(1) smrðLÞ ≠ ð0, 6Þ
(2) smrðLÞ = ð1, 5Þ if and only if L ≅Hð0, 5Þ
(3) smrðLÞ = ð2, 4Þ if and only if L ≅Hð0, 4Þ ⊕ Abð1, 0Þ
(4) smrðLÞ = ð6, 0Þ if and only if L is isomorphic to one of

the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð5, 0Þ
(b) Hð2, 0Þ ⊕ Abð1, 0Þ
(c) Lð3, 4, 1, 4Þ ⊕ Abð1, 0Þ
(d) Lð4, 5, 2, 4Þ ⊕ Abð1, 0Þ
(e) Lð4, 5, 1, 6Þ

(5) smrðLÞ = ð5, 1Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð4, 1Þ
(b) Hð0, 1Þ ⊕ Abð4, 0Þ
(c) Hð1, 1Þ ⊕ Abð2, 0Þ
(d) Hð2, 1Þ

(6) smrðLÞ = ð4, 2Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð2, 2Þ
(b) Hð0, 1Þ ⊕ Abð2, 1Þ
(c) Hð1, 2Þ ⊕ Abð1, 0Þ
(d) Hð1, 1Þ ⊕ Abð0, 1Þ

(7) smrðLÞ = ð3, 3Þ if and only if L is isomorphic to one of
the following Lie superalgebras:

(a) Hð1, 0Þ ⊕ Abð0, 3Þ
(b) Hð0, 1Þ ⊕ Abð0, 2Þ
(c) Hð1, 3Þ
(d) L2

(e) Hð2Þ

Proof. Let us characterize L by discussing whether ZðLÞ ⊆ L2:

(1) Suppose that ZðLÞ ⊆ L2. We may assume that K ⊆ Z
ðLÞ, where dim K = 1 and H ≅ L/K

(a) If sdimK = ð1, 0Þ, then Lemma 2 readily yields
smrðLÞ = ð6, 0Þ, ð5, 1Þ, ð3, 3Þ, or ð1, 5Þ: In the first
case smrðLÞ = ð6, 0Þ, by Theorem 4 of [7], one
can determine

L ≅ L 4, 5, 1, 6ð Þ: ð44Þ

In the remaining cases smrðLÞ = ð5, 1Þ, ð3, 3Þ, and ð1, 5Þ,
we obtain that the possible super-dimension of L2 is ð1, 0Þ. It
follows that L2 = ZðLÞ and L ≅Hðp, qÞ for some p, q. By (12),
we have

L ≅H 2, 1ð Þ, H 1, 3ð Þ, H 0, 5ð Þ, ð45Þ

respectively.

(b) If sdimðKÞ = ð0, 1Þ, then Lemma 2 yields that smrð
LÞ = ð3, 3Þ or ð2, 4Þ

(i) Assume that smrðLÞ = ð3, 3Þ: Then, sdimΠL2 +
smrðHÞ ≤ ð3, 2Þ. It follows that the only possible
super-dimension of L2 is ð1, 1Þ. Hence, we have
sdimH2 = ð1, 0Þ and smrðHÞ ≤ ð2, 1Þ. There are
no such algebras for smrðHÞ < ð2, 1Þ by the previ-
ous work. If smrðHÞ = ð2, 1Þ, then H ≅Hð1, 0Þ
⊕Abð1, 1Þ or Hð0, 1Þ ⊕Abð1, 0Þ. In the first case
H ≅Hð1, 0Þ ⊕Abð1, 1Þ, then L has a homoge-
neous basis fx, y, z, a ∣ b, kg with multiplication ½
x, y� = z, ½x, b� = a2k, ½y, b� = a3k, ½z, b� = a4k, ½a, b�
= a5k. The Jacobi identity shows that a4 = 0.
Since a ∉ L2 and ZðLÞ ⊆ L2, we have a5 ≠ 0. Take
ð1/a5Þa for a. If a2 = a3 = 0, then we obtain a sim-
ple multiplication ½x, y� = z, ½a, b� = k. Computing
the multiplier as before yields sdimMðLÞ = ð5, 3Þ
and smrðLÞ = ð4, 5Þ, contradicting the assump-
tion smrðLÞ = ð3, 3Þ: If a2 or a3 is not zero, then
without loss of generality, assume that a2 ≠ 0.
Replacing x by ð1/a2Þx and y by −a3x + a2y and
relabeling, we obtain a simple multiplication ½x,
y� = z, ½x, b� = k, ½a, b� = k. Computing the multi-
plier as before yields sdimMðLÞ = ð6, 1Þ and smr
ðLÞ = ð3, 7Þ, also contradicting the assumption
smrðLÞ = ð3, 3Þ: In the other case H ≅Hð0, 1Þ ⊕
Abð1, 0Þ, one may obtain that L can be described
by a homogeneous basis fa, z ∣ x, kg with multi-
plication ½x, x� = z, ½a, x� = a2k, ½z, x� = a3k. The
Jacobi identity shows that a3 = 0. Take ð1/a2Þa
for a, relabel and get ½x, x� = z, ½a, x� = k. Then,
sdimMðLÞ = ð1, 1Þ and smrðLÞ = ð3, 3Þ: This alge-
bra satisfies the requirements. As mentioned
above, we have

L ≅ L2: ð46Þ

(ii) Assume that smrðLÞ = ð2, 4Þ. Then, sdimΠL2 + smr
ðHÞ ≤ ð2, 3Þ and sdimL2 = ð0, 1Þ by a direct compu-
tation. Hence, L2 = ZðLÞ. It follows that L ≅HðkÞ
for some k. By (12), we have
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L ≅H 2ð Þ: ð47Þ

(2) Suppose that ZðLÞUL2. By Lemma 4, we have L = A
⊕M, where A and M are ideals of L with dim A =
1

(a) If sdimA = ð0, 1Þ, then Lemmas 1 and 4 (2) yield
that smrðLÞ = ð5, 1Þ, ð4, 2Þ, or ð3, 3Þ. Then, sdim
ΠM2 = ð0, 1Þ by the previous work

(i) Assume that smrðLÞ = ð5, 1Þ. Then, smrðMÞ
= ð4, 0Þ and Theorem 7 reveals three candi-
dates, only one of which satisfies sdimM2 =
ð1, 0Þ. Therefore, L ≅Hð1, 0Þ ⊕Abð3, 1Þ: It
yields smrðLÞ = ð4, 1Þ and contradicts the
assumption that smrðLÞ = ð5, 1Þ

(ii) Assume that smrðLÞ = ð4, 2Þ: Then, smrðMÞ
= ð3, 1Þ and M ≅Hð1, 0Þ ⊕Abð2, 1Þ, Hð0, 1Þ
⊕Abð2, 0Þ, or Hð1, 1Þ. Therefore, L is iso-
morphic to one of the following Lie
superalgebras:

H 1, 0ð Þ ⊕Ab 2, 2ð Þ, H 0, 1ð Þ ⊕Ab 2, 1ð Þ, H 1, 1ð Þ ⊕Ab 0, 1ð Þ:
ð48Þ

(iii) Assume that smrðLÞ = ð3, 3Þ: Then, smrðMÞ = ð2, 2Þ
and M ≅Hð1, 0Þ ⊕Abð0, 2Þ or Hð0, 1Þ ⊕Abð0, 1Þ.
Hence,

L ≅H 1, 0ð Þ ⊕Ab 0, 3ð Þ orH 0, 1ð Þ ⊕Ab 0, 2ð Þ: ð49Þ

(b) If sdimA = ð1, 0Þ, then Lemmas 1 and 4 (1) yield that
the possible super-multiplier-rank of L is ð2, 4Þ, ð6,
0Þ, ð5, 1Þ, or ð4, 2Þ: By the above work, we have
proven (1), (2), and (7). To prove (3), (4), (5), and
(6), one has to discuss the cases smrðLÞ = ð2, 4Þ, ð6,
0Þ, ð5, 1Þ, and ð4, 2Þ

(i) Assume that smrðLÞ = ð2, 4Þ: One may obtain
that smrðMÞ = ð1, 4Þ and sdimM2 = ð1, 0Þ. By
Theorem 8, we have M ≅Hð0, 4Þ and

L ≅H 0, 4ð Þ ⊕Ab 1, 0ð Þ: ð50Þ

Then, (3) holds by Lemma 5.

(ii) Assume that smrðLÞ = ð6, 0Þ: By Theorem 4 of [7],
we have L is isomorphic to one of the following Lie
superalgebras:

L 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ, H 1, 0ð Þ ⊕Ab 5, 0ð Þ,
L 4, 5, 2, 4ð Þ ⊕Ab 1, 0ð Þ, H 2, 0ð Þ ⊕Ab 1, 0ð Þ:

ð51Þ

By Lemma 5, (4) is proven.

(iii) Assume that smrðLÞ = ð5, 1Þ. Since sdimM2 ≤ smrð
MÞ, it follows that smrðMÞ ≥ ð3, 1Þ. If smrðMÞ = ð5
, 1Þ, then M is abelian and sdimM2 = ð0, 0Þ, an
impossibility. Therefore, smrðMÞ ≠ ð5, 1Þ: If smrð
MÞ = ð4, 1Þ, then M ≅Hð1, 0Þ ⊕Abð3, 1Þ, Hð0, 1Þ ⊕
Abð3, 0Þ, or Hð1, 1Þ ⊕Abð1, 0Þ by Theorem 8.
Therefore L is isomorphic to one of the following
Lie superalgebras:

H 1, 0ð Þ ⊕Ab 4, 1ð Þ, H 0, 1ð Þ ⊕Ab 4, 0ð Þ, H 1, 1ð Þ ⊕Ab 2, 0ð Þ:
ð52Þ

If smrðMÞ = ð3, 1Þ, then M ≅Hð1, 0Þ ⊕Abð2, 1Þ, Hð0, 1Þ
⊕Abð2, 0Þ, or Hð1, 1Þ and sdimM2 = ð2, 0Þ. These are
impossible, because the super-dimension of the derived
superalgebras of Hð1, 0Þ ⊕Abð2, 1Þ, Hð0, 1Þ ⊕Abð2, 0Þ, and
Hð1, 1Þ are ð1, 0Þ. Hence, (5) holds by Lemma 5.

(iv) Assume that smrðLÞ = ð4, 2Þ. The only possibility of
super-multiplier-rank ofM is ð3, 2Þ. Then, Theorem
7 reveals four candidates, only three of which satisfy
sdimM2 = ð1, 0Þ. Therefore, L is isomorphic to one
of the following Lie superalgebras:

H 1, 0ð Þ ⊕Ab 2, 2ð Þ, H 0, 1ð Þ ⊕Ab 2, 1ð Þ, H 1, 2ð Þ ⊕Ab 1, 0ð Þ:
ð53Þ

The proof is complete.☐

7. Covers

By Theorem 3.3 of [13], we obtain that any two covers of a
finite-dimensional Lie superalgebra are isomorphic as ordi-
nary Lie superalgebras. In this section, we will describe the
covers of all the nilpotent Lie superalgebras of multiplier-
rank ≤6.

First, we compute the cover for Lð3, 4, 1, 4Þ ⊕Abð1, 0Þ:
Let fx1, x2, x3, x4, u ∣ jxij = juj = �0, i = 1, 2, 3, 4g be a homoge-
neous basis of Lð3, 4, 1, 4Þ ⊕Abð1, 0Þ, where x1, x2, x3, x4 ∈
Lð3, 4, 1, 4Þ and u ∈Abð1, 0Þ: The multiplication is given by
½x1, x2� = x3, ½x1, x3� = x4, the other brackets of basis elements
vanishing. Suppose that

0⟶M⟶ K ⟶ L 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ⟶ 0, ð54Þ

is a stem extension of Lð3, 4, 1, 4Þ ⊕Abð1, 0Þ. Then, M
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Table 1: The classification and covers.

smr Lð Þ L Cover

0, 0ð Þ Any abelian Lie superalgebra Ab s, tð Þ, s, t ∈ℕ cAb s, tð Þ
1, 0ð Þ H 1, 0ð Þ Ĥ 1, 0ð Þ
2, 0ð Þ H 1, 0ð Þ ⊕Ab 1, 0ð Þ dH 1, 0ð Þ ⊕Ab 1, 0ð Þ

(1, 1)
H 1, 0ð Þ ⊕Ab 0, 1ð Þ dH 1, 0ð Þ ⊕Ab 1, 0ð Þ

H 0, 1ð Þ Ĥ 0, 1ð Þ
1, 2ð Þ H 0, 2ð Þ Ĥ 0, 2ð Þ
3, 0ð Þ H 1, 0ð Þ ⊕Ab 2, 0ð Þ dH 1, 0ð Þ ⊕Ab 2, 0ð Þ

(2,1)

H 1, 0ð Þ ⊕Ab 1, 1ð Þ dH 1, 0ð Þ ⊕Ab 1, 1ð Þ
H 0, 1ð Þ ⊕Ab 1, 0ð Þ dH 0, 1ð Þ ⊕Ab 1, 0ð Þ

H 1ð Þ Ĥ 1ð Þ
1, 3ð Þ H 0, 3ð Þ Ĥ 0, 3ð Þ

(2,2)
H 1, 0ð Þ ⊕Ab 0, 2ð Þ dH 1, 0ð Þ ⊕Ab 0, 2ð Þ
H 0, 1ð Þ ⊕Ab 0, 1ð Þ dH 0, 1ð Þ ⊕Ab 0, 1ð Þ

(4,0)

H 1, 0ð Þ ⊕Ab 3, 0ð Þ dH 1, 0ð Þ ⊕Ab 3, 0ð Þ
L 3, 4, 1, 4ð Þ dL 3, 4, 1, 4ð Þ
L 4, 5, 2, 4ð Þ dL 4, 5, 2, 4ð Þ

(3,1)

H 1, 0ð Þ ⊕Ab 2, 1ð Þ dH 1, 0ð Þ ⊕Ab 2, 1ð Þ
H 0, 1ð Þ ⊕Ab 2, 0ð Þ dH 0, 1ð Þ ⊕Ab 2, 0ð Þ

H 1, 1ð Þ Ĥ 1, 1ð Þ
1, 4ð Þ H 0, 4ð Þ Ĥ 0, 4ð Þ

(5,0)
H 1, 0ð Þ ⊕Ab 4, 0ð Þ dH 1, 0ð Þ ⊕Ab 4, 0ð Þ

H 2, 0ð Þ Ĥ 2, 0ð Þ

(4,1)

H 1, 0ð Þ ⊕Ab 3, 1ð Þ dH 1, 0ð Þ ⊕Ab 3, 1ð Þ
H 0, 1ð Þ ⊕Ab 3, 0ð Þ dH 0, 1ð Þ ⊕Ab 3, 0ð Þ
H 1, 1ð Þ ⊕Ab 1, 0ð Þ dH 1, 1ð Þ ⊕Ab 1, 0ð Þ

(3,2)

H 1, 0ð Þ ⊕Ab 1, 2ð Þ dH 1, 0ð Þ ⊕Ab 1, 2ð Þ
H 0, 1ð Þ ⊕Ab 1, 1ð Þ dH 0, 1ð Þ ⊕Ab 1, 1ð Þ

H 1, 2ð Þ Ĥ 1, 2ð Þ
L1 cL1

2, 4ð Þ H 0, 4ð Þ ⊕Ab 1, 0ð Þ dH 0, 4ð Þ ⊕Ab 1, 0ð Þ

(6,0)

H 1, 0ð Þ ⊕Ab 5, 0ð Þ dH 1, 0ð Þ ⊕Ab 5, 0ð Þ
H 2, 0ð Þ ⊕Ab 1, 0ð Þ dH 2, 0ð Þ ⊕Ab 1, 0ð Þ

L 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ dL 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ
L 4, 5, 2, 4ð Þ ⊕Ab 1, 0ð Þ dL 4, 5, 2, 4ð Þ ⊕Ab 1, 0ð Þ

L 4, 5, 1, 6ð Þ dL 4, 5, 1, 6ð Þ

(5,1)
H 1, 0ð Þ ⊕Ab 4, 1ð Þ dH 1, 0ð Þ ⊕Ab 5, 0ð Þ
H 0, 1ð Þ ⊕Ab 4, 0ð Þ
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⊂ K2 ∩ ZðKÞ and K/M ≅ Lð3, 4, 1, 4Þ ⊕Abð1, 0Þ. Then, K/M
has a homogeneous basis fx1 +M, x2 +M, x3 +M, x4 +M,
u +Mg. We may assume that

x1, x2½ � = x3 + a1, x1, x3½ � = x4 + a2, x1, x4½ � = a3,
x2, x3½ � = a4, x2, x4½ � = a5, x3, x4½ � = a6,
x1, u½ � = a7, x2, u½ � = a8, x3, u½ � = a9,
x4, u½ � = a10,

ð55Þ

where a1,⋯, a10 ∈M1: Without loss of generality, we may
suppose that a1 = a2 = 0. By the Jacobi identity of Lie superal-
gebras, we have a5 = a6 = a9 = a10 = 0: Then,M is spanned by
a3, a4, a7, a8 andK is spanned by x1, x2, x3, x4, u, a3, a4, a7, a8:
Hence, sdimM ≤ ð4, 0Þ: Now let dLð3, 4, 1, 4Þ ⊕Abð1, 0Þ be a
Lie superalgebra with a homogenous basis fx, y, z, r, u, a, b, c
, dg and multiplication ½x, y� = z, ½x, z� = r, ½x, r� = a, ½y, z� = b

, ½x, u� = c, ½y, u� = d: Let dMLð3, 4, 1, 4Þ ⊕Abð1, 0Þ be a subsu-
perspace of dLð3, 4, 1, 4Þ ⊕Abð1, 0Þ spanned by a, b, c, d:
Then,

dML 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ ⊆ Z L d3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ

 �

∩ dL 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þð Þ2 ,
L 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ
ML 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ ≅ L 3, 4, 1, 4ð Þ ⊕Ab 1, 0ð Þ:

ð56Þ

Since sdimð dMLð3, 4, 1, 4Þ ⊕Abð1, 0ÞÞ = ð4, 0Þ, we obtain

that dMLð3, 4, 1, 4Þ ⊕Abð1, 0Þ is a multiplier anddLð3, 4, 1, 4Þ ⊕Abð1, 0Þ is a cover of Lð3, 4, 1, 4Þ ⊕Abð1, 0Þ:

Then, we compute the cover for Lð3, 4, 1, 4Þ: LetdLð3, 4, 1, 4Þ be a Lie superalgebra with a homogenous basis
fx, y, z, r, a, bg and multiplication ½x, y� = z, ½x, z� = r, ½x, r�
= a, ½y, z� = b: Since, Lð3, 4, 1, 4Þ is a subalgebra of Lð3, 4, 1
, 4Þ ⊕Abð1, 0Þ, one may check that dLð3, 4, 1, 4Þ is a cover
of Lð3, 4, 1, 4Þ:

Now we compute the cover for Lð4, 5, 2, 4Þ ⊕Abð1, 0Þ:
Let fx, y, z, c, r, v ∣ jxj = jyj = jzj = jcj = jrj = jvj = �0g be a
homogeneous basis of Lð4, 5, 2, 4Þ ⊕Abð1, 0Þ, where x, y, z,
c, r ∈ Lð4, 5, 2, 4Þ and v ∈Abð1, 0Þ: The multiplication is
given by ½x, y� = z, ½x, c� = r, the other brackets of basis ele-
ments vanishing. Similarly, one may check that the Lie
superalgebra with a homogeneous basis fx, y, z, c, r, v, a1, a2
, a3, a4, a5, a6, a7, a8g and multiplication

x, y½ � = z, x, z½ � = a1, x, c½ � = r

x, r½ � = a2, y, z½ � = a3, y, c½ � = a4,
c, r½ � = a5, x, v½ � = a6, y, v½ � = a7,
c, v½ � = a8

ð57Þ

is a cover of Lð4, 5, 2, 4Þ ⊕Abð1, 0Þ, which is denoted bydLð4, 5, 2, 4Þ ⊕Abð1, 0Þ:
Then, we compute the cover for Lð4, 5, 2, 4Þ: Since Lð4,

5, 2, 4Þ is a subalgebra of Lð4, 5, 2, 4Þ ⊕Abð1, 0Þ, one may
check that the Lie superalgebra with a homogeneous basis
fx, y, z, c, r, a1, a2, a3, a4, a5g and multiplication ½x, y� = z, ½x
, z� = a1, ½x, c� = r, ½x, r� = a2, ½y, z� = a3, ½y, c� = a4, ½c, r� = a5 is

a cover of Lð4, 5, 2, 4Þ, which is denoted by dLð4, 5, 2, 4Þ:
When smrðLÞ = ð6, 0Þ, we also obtain a coverdLð4, 5, 1, 6Þ for Lð4, 5, 1, 6Þ, which has a homogenous basis

Table 1: Continued.

smr Lð Þ L CoverdH 0, 1ð Þ ⊕Ab 4, 0ð Þ
H 1, 1ð Þ ⊕Ab 2, 0ð Þ dH 1, 1ð Þ ⊕Ab 2, 0ð Þ

H 2, 1ð Þ Ĥ 2, 1ð Þ

(4,2)

H 1, 0ð Þ ⊕Ab 2, 2ð Þ dH 1, 0ð Þ ⊕Ab 2, 2ð Þ
H 0, 1ð Þ ⊕Ab 2, 1ð Þ dH 0, 1ð Þ ⊕Ab 2, 1ð Þ
H 1, 2ð Þ ⊕Ab 1, 0ð Þ dH 1, 2ð Þ ⊕Ab 1, 0ð Þ
H 1, 1ð Þ ⊕Ab 0, 1ð Þ dH 1, 1ð Þ ⊕Ab 0, 1ð Þ

(3,3)

H 1, 0ð Þ ⊕Ab 0, 3ð Þ dH 1, 0ð Þ ⊕Ab 0, 3ð Þ
H 0, 1ð Þ ⊕Ab 0, 2ð Þ dH 0, 1ð Þ ⊕Ab 0, 2ð Þ

H 1, 3ð Þ Ĥ 1, 3ð Þ
L2 cL2

H 2ð Þ Ĥ 2ð Þ
1, 5ð Þ H 0, 5ð Þ Ĥ 0, 5ð Þ
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fx, y, z, r, c, a1, a2, a3, a4g and multiplication

x, y½ � = z, x, z½ � = r, x, r½ � = a1,
x, c½ � = a2, y, z½ � = a3, y, c½ � = r + a4:

ð58Þ

By the previous work, we may obtain a cover cL1 for L1,
which has a homogenous basis fx, k, s8 ∣ z, y, s2, s5g and mul-
tiplication ½x, y� = z, ½z, y� = k, ½x, z� = s2, ½k, y� = s5, ½y, y� = s8:
When smrðLÞ = ð3, 3Þ, we may obtain a cover cL2 for L2,
which has a homogenous basis fa, z, b ∣ c, x, kg and multipli-
cation ½a, x� = k, ½a, k� = c, ½x, x� = z, ½x, k� = b:

8. Main Result

Theorem 10. The classification and covers of all the finite-
dimensional nilpotent Lie superalgebras L of multiplier-rank
≤6 are listed as follows:

where L1 is a (2, 2)-superdimensional Lie superalgebra
with a homogeneous basis fx, k ∣ z, yg and nonzero multipli-
cation ½x, y� = z, ½z, y� = k,L2 is a (2, 2)-superdimensional Lie
superalgebra with a homogeneous basis fa, z ∣ x, kg and non-
zero multiplication ½x, x� = z, ½a, x� = k:

Proof. By Theorem 5.8 of [10], we obtain all the finite-
dimensional nilpotent Lie superalgebras L of mrðLÞ ≤ 2. In
Theorems 6, 7, 8, and 9, all the nilpotent Lie superalgebras
of mrðLÞ = 3, 4, 5, 6 are determined. We only need to
describe the covers of all Lie superalgebras of mrðLÞ ≤ 6. By
Theorem 4.1 of [13], Lemma 5, and Section 7, we may obtain
the covers of all the nilpotent Lie superalgebras ofmrðLÞ ≤ 6.
In summary, we obtain Table 1.☐
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