
Citation: Neshov, N.; Tonchev, K.;

Manolova, A. LBCNIN: Local Binary

Convolution Network with

Intra-Class Normalization for Texture

Recognition with Applications in

Tactile Internet. Electronics 2024, 13,

2942. https://doi.org/10.3390/

electronics13152942

Academic Editor: Yue Wu

Received: 20 June 2024

Revised: 13 July 2024

Accepted: 24 July 2024

Published: 25 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

LBCNIN: Local Binary Convolution Network with Intra-Class
Normalization for Texture Recognition with Applications
in Tactile Internet
Nikolay Neshov *,† , Krasimir Tonchev † and Agata Manolova †

Faculty of Telecommunications, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia, Bulgaria;
k_tonchev@tu-sofia.bg (K.T.); amanolova@tu-sofia.bg (A.M.)
* Correspondence: nneshov@tu-sofia.bg
† These authors contributed equally to this work.

Abstract: Texture recognition is a pivotal task in computer vision, crucial for applications in ma-
terial sciences, medicine, and agriculture. Leveraging advancements in Deep Neural Networks
(DNNs), researchers seek robust methods to discern intricate patterns in images. In the context of the
burgeoning Tactile Internet (TI), efficient texture recognition algorithms are essential for real-time
applications. This paper introduces a method named Local Binary Convolution Network with Intra-
class Normalization (LBCNIN) for texture recognition. Incorporating features from the last layer of
the backbone, LBCNIN employs a non-trainable Local Binary Convolution (LBC) layer, inspired by
Local Binary Patterns (LBP), without fine-tuning the backbone. The encoded feature vector is fed into
a linear Support Vector Machine (SVM) for classification, serving as the only trainable component.
In the context of TI, the availability of images from multiple views, such as in 3D object semantic
segmentation, allows for more data per object. Consequently, LBCNIN processes batches where each
batch contains images from the same material class, with batch normalization employed as an intra-
class normalization method, aiming to produce better results than single images. Comprehensive
evaluations across texture benchmarks demonstrate LBCNIN’s ability to achieve very good results
under different resource constraints, attributed to the variability in backbone architectures.

Keywords: ConvNeXt; deep learning; DTD; GTOS; GTOS-Mobile; KTH-TIPS-2; local binary convolu-
tion; MobileNet; ResNet; texture recognition; tactile Internet

1. Introduction

Recognizing and understanding textures is essential in image analysis. This process
involves identifying and making sense of detailed patterns that are key to distinguishing
different items in pictures. Effective texture recognition is crucial because it enhances a
computer’s ability to notice fine details and deeply understand images, leading to more
accurate results when recognizing and classifying various materials or objects based on
their textures. The ability to accurately capture these textural nuances is what enables more
sophisticated image processing techniques, which are increasingly important in a world
where visual data is abundant and varied. Additionally, for decades, texture has been es-
sential in image recognition across various domains such as medicine [1], face analysis [2],
material sciences [3], object recognition [4], agriculture [5], and terrain recognition [6]. This
importance extends to computer vision, particularly in the emerging field of TI, where
texture recognition plays a crucial role in enhancing real-time interactive systems. Although
there is no universally accepted definition, texture in digital images can be described by
local pixel intensity variations, forming spatial patterns that are somewhat independent
across different scales [7]. Traditional Convolutional Neural Networks (CNNs) perform
well on general images but struggle with the intricate details of texture due to their sensitiv-
ity to rigid transformations. Additionally, CNNs with Fully Connected (FC) layers are not

Electronics 2024, 13, 2942. https://doi.org/10.3390/electronics13152942 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13152942
https://doi.org/10.3390/electronics13152942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9657-4847
https://orcid.org/0000-0002-3332-666X
https://orcid.org/0000-0002-8120-363X
https://doi.org/10.3390/electronics13152942
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13152942?type=check_update&version=1

Electronics 2024, 13, 2942 2 of 21

well-suited for texture analysis [8]. The spatial correlation in convolutional feature maps,
even after passing through FC layers, poses a challenge for standard CNNs in maintaining
texture invariance to transformations like translation, rotation, and scaling. To overcome
these issues, recent advancements in DNNs have significantly improved texture analy-
sis by utilizing pre-trained models on extensive datasets through transfer learning [9–13].
These methods offer computational efficiency during inference, but retraining the back-
bone remains computationally demanding. To aggregate features, some methods have
employed Global Average Pooling (GAP), which creates robust descriptions resistant to
spatial transformations [11,14,15]. Other techniques focus on mid-level features from earlier
layers, capturing general image characteristics not specific to particular applications [16].
However, these methods require extensive texture datasets for end-to-end training with
deep CNN architectures. A promising new approach involves Local Binary Convolutional
Networks (LBCNNs) [17], inspired by traditional LBP [18] intended for texture classifica-
tion. As demonstrated in [17], LBCNNs offer a substantial reduction in training complexity,
presenting a promising and efficient alternative to Local Binary Patterns (LBP) for texture
recognition in neural networks. This suitability arises because LBCNNs, leveraging the
principles of LBP, are adept at capturing and encoding the local textural patterns within an
image, which are crucial for distinguishing between different textures in recognition tasks.

The motivation behind this work stems from the evolving field of Tactile Internet
(TI), which aims to enable real-time transmission of touch and haptic information over the
internet. One critical component of TI can be texture recognition, which allows systems
to understand and interpret the surface quality of objects, encompassing attributes like
roughness, smoothness, and patterns. Accurate texture recognition enhances the ability
of TI systems to simulate tactile sensations and provide realistic haptic feedback, thereby
improving user experience in applications such as virtual reality, robotics, and assistive
technologies. In addition to enhancing user experience, texture recognition plays a pivotal
role in determining the material type of objects. Different materials often exhibit distinct
textural properties, and identifying the texture of a surface can help distinguish whether
it is made of wood, metal, or plastic. By leveraging deep neural networks like LBCNIN
for texture recognition, systems can achieve both the identification of textures and the
inference of material types based on textural features. This dual capability is essential for
various scene understanding applications within TI, where accurate tactile perception is
crucial. In robotics, for instance, texture recognition enhances object manipulation and
handling by providing detailed information about the object’s surface and material proper-
ties. Moreover, integrating texture recognition with 3D point cloud semantic segmentation
enhances the system’s ability to create detailed reconstructions of physical objects, which
is beneficial for tasks requiring precise physical interactions. Semantic segmentation is
responsible for identifying and classifying objects, whereas texture recognition may provide
more detailed insights into the material composition of these objects, assuming that the
surface features and material composition are consistent. It should be noted that in 3D
semantic segmentation, the availability of multiview data for objects is beneficial, as it
leads to more accurate texture recognition. Instead of direct analysis of a 3D point cloud,
multiple 2D images are utilized, each captured from different views. Consequently, the
proposed LBCNIN architecture is designed to process batches of data, where each batch
is composed of images that belong to the same texture class, depicting the same object.
This approach enhances the model’s ability to learn and distinguish between different
textures, leading to improved performance in recognizing material types. By using texture
information, the system can estimate the volume and mass of objects, providing critical
data for applications requiring precise physical interactions. Furthermore, the combination
of visual and tactile data enables a more comprehensive understanding of the environment,
allowing for advanced material texture simulation and more realistic haptic feedback in
VR applications. Employing the LBCNIN architecture, therefore, allows systems to achieve
higher accuracy and efficiency in texture recognition, ultimately enhancing performance
across a wide range of TI applications.

Electronics 2024, 13, 2942 3 of 21

The main contributions of the presented work are as follows:

• Introducing a novel architecture (LBCNIN) specifically tailored for texture recognition
tasks in TI for multi-view images of the same object. This architecture encodes features
from the backbone without requiring fine-tuning, utilizing a non-trainable local binary
convolution layer inspired by LBP.

• Demonstrating the performance of LBCNIN across various texture benchmarks in
comparison with state-of-the-art methods. The evaluation assumes the use of intra-
class normalization technique. Additionally, an ablation study on different com-
ponents of the architecture (BatchNorm2d, Activation functions, LBC layer, and
GAP) highlights their respective impacts on accuracy, providing insights into the
architecture’s effectiveness.

• Conducting an extensive evaluation of different backbone architectures within the
context of texture recognition tasks, the study assessed the performance of various
backbones such as MobileNet V2 1.4, ResNet18, ResNet50, and ConvNeXt-XL, across
diverse texture datasets. The evaluation encompassed an ablation study on different
components of the proposed architecture and exploring the effectiveness of different
activation functions in the proposed feature encoding scheme. Moreover, 2D t-SNE
and GradCAM visualizations provided insights into the model’s behavior, while
confusion cases highlighted its limitations. CPU and GPU computation times for
different backbone architectures were also compared.

With the assumption that intra-class normalization is performed within a batch of
samples from the same class, the proposed architecture achieved the best results in the
presented comparison on datasets such as DTD and KTH-2b. Using the lightweight Mo-
bileNet V2 1.4 backbone, it surpassed all methods utilizing more computationally intensive
backbones like ResNet18 and ResNet50 for these datasets. However, for the other two tested
datasets, GTOS and GTOS-Mobile, the achieved accuracy with ResNet18 and ResNet50
was lower compared to other methods. Notably, the proposed architecture achieved the
best results with the ConvNeXt-XL backbone pre-trained on the ImageNet-21K dataset,
which demands more computational resources. The ability of the proposed algorithm to
attain high accuracy with small datasets and using a backbone with low computational de-
mands makes it particularly suitable for applications in texture recognition, where available
training data may be limited and devices may have constrained computational capabilities.

The rest of this paper is structured as follows: Section 2 provides an overview of related
works in the field of texture recognition. Section 3 details the proposed architecture and its
implementation. In Section 4, the datasets used, the experimental protocols, comparisons
with state-of-the-art methods, an ablation study on different architectural components, and
investigations into specific activation functions used in the LBCNIN encoding phase are
presented. This section also includes an evaluation of the stability of LBCNIN accuracy
with various random masks of LBC, as well as representations of confusion matrices, 2D
t-SNE features, GradCAM visualizations, and some incorrectly classified samples. At the
end of this section, timing performance and limitations of the presented work are provided.
Finally, Section 5 concludes the paper, summarizing key findings and contributions.

2. Related Work

Traditional methods for texture analysis and recognition usually involved a system-
atic approach highly dependent on the selected model for image representation. These
methods relied on hand-crafted features intended to be invariant to scale, illumination,
and translation. For instance, Lowe et al. [19] introduced the Scale Invariant Feature
Transform (SIFT), which operates by identifying local minimums and maximums within
a scale pyramid. Lazebnik et al. [20] present the Rotation Invariant Feature Transform
(RIFT), which achieves rotation invariance by utilizing histograms of relative gradient
orientation within rings. Two other methods, namely Histogram of textons (e.g., [21]) and
Bag-of-Visual-Words (BoVW) of texture (e.g., [20]), involve crucial steps of local patch
encoding and global feature aggregation. The Fisher Vector (FV) [20] introduces second-

Electronics 2024, 13, 2942 4 of 21

order statistics for encoding, providing an alternative approach. Another method known
as Vector of Locally Aggregated Descriptor (VLAD) [22] aggregates first-order statistics
by accumulating differences between a local descriptor and its corresponding matches.
Another simple yet powerful handcrafted descriptor is LBP [18]. It achieves grayscale
invariance by sequentially thresholding the intensity of neighboring elements to that of the
central element within the patch. Maximal circular bit-shift codes are utilized to achieve
rotational invariance.

More recently, there’s been a growing use of CNNs as powerful tools for extracting
texture features, following their success in computer vision. This mirrors the overall trend
towards deep learning in texture analysis. One of the earliest breakthroughs in this field
can be credited to Bruna et al. [23]. The authors utilized convolutional layers to implement
scattering transformation for texture classification. Despite the benefits of the scattering
transform’s invariance to specific deformations, their CNN utilizes predetermined weights
(basic wavelet filters), limiting its ability to harness the full potential of Deep Learning
(DL). Introducing a learnable approach, Cimpoi et al. [24] compared two models for fea-
ture extraction. The first utilized a CNN architecture with FC layers, while the second
applied a FV as a pooling method on a pre-trained CNN. They found that the CNN with
FC layers was ineffective for texture classification, as its output was highly correlated
with the spatial order of pixels. In other research, Fujieda [15] and Andrearczyk et al. [14]
enhanced robustness by using a GAP layer. However, GAP can discard important de-
tails as it simply averages the feature map of each channel. To overcome this limitation,
Lin and Maji [25] proposed bilinear pooling to better capture the relationships between
channels. Several studies have proposed end-to-end models that allow for fine-tuning the
backbone specifically for texture classification. Zhang et al. [26] introduced a Deep Texture
Encoding Network (DeepTEN), which integrates dictionary learning and feature pooling
within a CNN architecture. This approach learns an unordered representation, yielding
strong performance in material classification. However, since textures and materials do not
always lack order, incorporating local spatial information remains crucial. Xue et al. [27]
presented a Deep Encoding Pooling Network (DEPNet), which merges features from the
texture encoding layer of DeepTEN with GAP to capture both local spatial information and
global context in images. Bu et al. [28] proposed a locality-aware coding layer for texture
classification within an end-to-end framework (LSCNet). This method uses convolutional
layer activations and complex optimization to enforce locality and sparsity, capturing class-
specific information and generating robust features. Zhai et al. [11] introduced a method
for learning visual attributes in texture recognition. Their model, MAPNet, utilizes a multi-
branch architecture to iteratively learn texture attributes. Feature aggregation is performed
using spatially-adaptive GAP on each branch. In their subsequent work [10], they proposed
DSRNet, which incorporates a dependency learning module to capture spatial relationships
among texture primitives and extract structural information. Peeples et al. [29] proposed
HistRes, a texture classification network integrating traditional histogram features into
deep learning. Replacing the GAP layer, HistRes enhances accuracy by directly extracting
histogram information from the final feature map. Chen et al. [12] proposed Cross-Layer
Aggregation of a Statistical Self-similarity Network (CLASSNet). This CNN module inte-
grates a distinctive feature aggregation method using a differential box-counting pooling
layer to describe the statistical self-similarity present in texture images. Xu et al. [30] intro-
duced FENet, which utilizes hierarchical fractal analysis to capture the fractal properties
of spatial arrangements present in CNN feature maps. Mao et al. [31] employed deep
Residual Pooling Network (RPNet) for texture recognition. It merges a residual encoding
module, which retains spatial details, with an aggregation module that produces orderless
features. Song et al. [32] presented a Multi-Scale Boosting Feature Encoding Network
(MSBFEN) for texture recognition. MSBFEN uses a prior-guided feature extraction method
to extract multi-scale features with texture priors, followed by a multiscale texture encoding
technique. A multi-scale boosting learning method is then applied to recognize the texture.
Recently, Chen et al. [33] introduced a Deep Tracing Pattern encoding Network (DTPNet),

Electronics 2024, 13, 2942 5 of 21

which processes feature maps from multiple backbone layers. It encodes local patches with
binary codes and aggregates them into a histogram-based global feature. Zhai et al. [34]
proposed Multiple Primitives and Attributes Perception (MPAP) network. MPAP extracts
features by integrating bottom-up structure and top-down attribute relations within a
unified multi-branch framework. Scabini et al. [35] proposed a new method for texture
recognition named Random encoding of Aggregated Deep Activation Maps (RADAM).
The method involves encoding the output at various depths of a pre-trained backbone
with a Randomized Autoencoder (RAE). The RAE is locally trained for each image and its
decoder weights form a feature representation fed into a linear SVM, eliminating the need
for backbone fine-tuning.

Despite incorporating certain elements and ideas from the previously mentioned
approaches, such as the utilization of a pre-trained backbone without fine-tuning, the
proposed LBCNIN method significantly diverges in its approach to encode the final texture
representation. While some of the aforementioned methods employ end-to-end training,
LBCNIN shares similarities with the RADAM method. However, unlike RADAM, LBCNIN
does not utilize an autoencoder. Instead, it employs a simple LBC layer to encode the
feature maps from the backbone’s final layer and intra-class normalization technique true
batch normalization. The inspiration for the LBC layer originates from the research outlined
in [17]. This approach provides an alternative to the convolutional layers commonly found
in standard CNN architectures.

3. Proposed Method
3.1. LBCNIN Architecture

The proposed LBCNIN architecture for classifying texture images is illustrated in
Figure 1. It operates in three distinct phases: Feature Extraction, Feature Encoding,
and Classification.

Backbone Sigmoid

LBC layer

Sigmoid

GAP+ Predicted
Classes

Input Images
(224 x 224)

BatchNorm2d

Generate binary random weights
from a Bernoulli distribution, p = 0.5

Generate sparsity binary mask from
a uniform distribution, p = 0.5

Apply sparsity
mask

Assign freezed
weights

(−1 or 1)

(0 or 1) (−1, 0, or 1)

Conv2d
weights
shape

Conv2d weights (−1, 0, or 1)

SVM classifier

Feature
Extraction

Feature
Encoding Classification

MxNxC

MxNxC C

MxNxC

Figure 1. The proposed architecture of LBCNIN for texture recognition. The feature tensor dimension
is (M × N ×C), where M and N are fixed at 28 for all tested backbones, while the number of channels
C varies depending on the investigated backbone (see step Feature Extraction).

Electronics 2024, 13, 2942 6 of 21

This standard structured approach ensures a systematic handling of texture recognition
tasks, starting with the extraction of essential image features using a pre-trained backbone.
Fine-tuning the backbone is avoided due to the limited dataset, which could lead to
overfitting and requires significant computational resources. Feature Encoding is essential
to enhance the representation of texture features, leveraging techniques like LBC to refine
and extract discriminative information. Finally, the classifier employs SVM rather than
FC layers due to the effectiveness of SVM in handling high-dimensional data. Here are
detailed descriptions of each step:

Feature Extraction: This phase involves extracting high-level features from the input
image. Motivated by the need for varying trade-offs between computational efficiency and
effectiveness, the LBCNIN architecture has been investigated with different backbones: Mo-
bileNet V2 1.4 [36] (1.4 channel multiplier), ResNets [37] (18 or 50), and ConvNeXt-XL [38]
pre-trained on ImageNet-21K. These pre-trained networks have been shown effective in
capturing essential patterns and representations from images.

Let x ∈ RM×N×C denote the feature tensor outputted by the backbone, where M × N
is the spatial resolution, and C is the number of tensor’s channels. To ensure higher spatial
resolution, which is critical for capturing detailed texture information, the spatial down-
sampling rate of the backbone network was adjusted, resulting in a consistent resolution
(M × N) of 28 × 28 for all backbones. However, the number of channels C of each back-
bone’s feature tensor differs, reflecting their varying capacities to capture and represent
features. Specifically:

• MobileNet V2 1.4: x ∈ R28×28×448,
• ResNet18: x ∈ R28×28×512,
• ResNet50 and ConvNeXt-XL on ImageNet-21K: x ∈ R28×28×2048.

Feature Encoding: In this phase of the LBCNIN architecture, the incorporation of a
LBC layer stands out as a key innovation. Drawing inspiration from the effectiveness of
LBP in texture classification, this phase leverages the distinct characteristics of the LBC
layer outlined in [17]. The LBC layer in [17] consists of fixed sparse pre-defined binary
convolutional filters that are not updated during the training process, a non-linear activation
function, and a set of learnable linear weights 1 × 1. However, in LBCNIN encoding, the
last 1 × 1 convolutional layer is avoided to exclude the trainable part, simplify the model
and further reduce the number of parameters.

The intuition behind using the LBC layer is rooted in its design principles, which
are motivated by LBP. LBP is a robust hand-crafted descriptor that extracts local texture
information by comparing the intensity of neighboring pixels to a central pixel within an
image patch, generating a binary string that encodes these texture patterns. Similarly, the
LBC layer employs binary convolutional filters to effectively capture local texture features.
This method provides substantial parameter savings compared to standard convolutional
layers, leading to smaller model sizes and lower computational costs. By capitalizing on
the sparse and binary characteristics of these filters, the LBC layer closely approximates the
performance of standard convolutional layers while maintaining computational efficiency.
This innovation significantly enhances the LBCNIN architecture’s ability to achieve high
accuracy in texture classification tasks, as evidenced by empirical results.

The process can be detailed as follows:

1. Sigmoid Activation: The feature tensor x undergo normalization and introduction of
non-linearity through a Sigmoid function, ensuring all features are scaled between 0
and 1, which stabilizes the feature values for subsequent processing:

σ(x) =
1

1 + exp(−x)
. (1)

2. LBC Layer [17]: The LBC layer introduces sparsity by generating binary random
weights Wb (−1 or 1) through a Bernoulli distribution with a probability of 0.5.
Additionally, a binary mask M (0 or 1) is created from a uniform distribution. The

Electronics 2024, 13, 2942 7 of 21

binary mask is applied element-wise to the weights, resulting in final weight values
of −1, 0, or 1:

WL = Wb ◦ M, (2)

where ◦ denotes element-wise multiplication (the efficacy of the LBC layer is fur-
ther demonstrated through the ablation study presented in Section 4.3). The sparse
weights are then used in a 2D convolution operation on the features extracted by the
backbone network:

y = x ∗ WL, (3)

where ∗ denotes the convolution operation. This step mimics the effect of learnable
parameters while keeping the layer non-trainable, reducing computational complexity
and retaining essential texture patterns. In the convolution operation a kernel size
of 3 × 3 is selected for its computational efficiency. Further testing indicates that an
increase in kernel size does not yield an improvement in performance.

3. Batch Normalization: The convolved feature tensor is normalized using Batch-
Norm2d, which standardizes the data and ensures consistent feature distribution
among the samples within the same class:

ynorm = BatchNorm2d(y). (4)

The use of the BatchNorm2d layer serves also as an intra-class normalization tech-
nique, which can significantly improves performance by ensuring that the input to
activation functions in neural networks is normalized, thus reducing internal covariate
shift [39]. This normalization process is beneficial within batches of images from the
same class, as it helps the architecture learn more efficiently. By conducting additional
testing, it has been determined that the optimal batch size for the process is 32. This
size is also chosen to ensure the stability and consistency of the normalization process
during inference.

4. Second Sigmoid Activation: A Sigmoid activation is applied to the convolved normal-
ized feature tensor to further refine the features and intensify non-linear transformations:

σ(ynorm) =
1

1 + exp(−ynorm)
. (5)

The effectiveness of using these activation functions is further emphasized in Sec-
tions 4.3 and 4.4.

5. Feature Summation: The initial Sigmoid-transformed features and the processed
features are summed, retaining both the original and enhanced information:

z = σ(x) + σ(ynorm). (6)

This combination leads to a more comprehensive feature representation.
6. GAP: Finally, a GAP layer is employed to reduce the dimensionality of the combined

features. GAP summarizes each encoded feature tensor into a single value by aver-
aging, effectively capturing the most important texture features while reducing the
computational load:

zGAP =
1

M × N

M

∑
i=1

N

∑
j=1

zi,j. (7)

This process ensures that the features undergo a distinct encoding procedure, captur-
ing intricate patterns crucial for texture classification tasks.

Classification: This phase is the only learnable part of the LBCNIN architecture. In
the classification phase, the encoded features, now represented as a single vector from
the GAP layer, are fed into a SVM classifier with linear kernel. SVMs are effective in
handling high-dimensional data and finding optimal decision boundaries by maximizing
the margin between classes. SVM is also computationally efficient, contrasting with K-

Electronics 2024, 13, 2942 8 of 21

Nearest Neighbors (KNN), which can be slower due to its reliance on distance calculations
for each test instance. The convex nature of the SVM objective function guarantees a
unique and globally optimal solution, providing consistency and reliability in classification
results. The decision to use an SVM is further supported by the RADAM study [35], which
highlights its superior performance on textured images compared to other classifiers like
Linear Discriminant Analysis (LDA). This positions SVM as a robust and efficient choice
for the proposed classification architecture.

3.2. Implementation Details

The extraction and encoding part of the algorithm is implemented in PyTorch-GPU
(v1.12.1) [40] on a machine equipped with an Intel Xeon E5-2640 v3 CPU operating at
2.60 GHz (8 cores), 32 GB of RAM, and evaluated on an NVIDIA GeForce RTX 2080 Ti
GPU. The backbone architectures utilized are sourced from the PyTorch Image Models
library (timm) [41]. The batch size is configured to 32, with each input image being RGB
and sized at 224 × 224 pixels. The classification part (i.e., SVM) is implemented using the
scikit-learn library (v.0.6.7) [42]. It should be noted that the ResNet50 backbone used is
sourced from [43] via the timm library due to its better achieved results.

4. Experiments
4.1. Datasets and Experimental Protocols

To evaluate the proposed LBCNIN architecture, four datasets were selected for their
diverse representation of textures and materials. The same evaluation protocols are used as
in [35] and several other methods. The average accuracy along with standard deviations
across the splits (as explained further) are provided as a performance result. Here is a brief
description of each dataset along with its evaluation protocol:

• Describable Texture Dataset (DTD) [13]: This dataset consists of 5640 images catego-
rized into 47 distinct texture classes. It is evaluated using the 10 provided splits for
training-testing along with the dataset, ensuring robust performance metrics across
different subsets. The same evaluation protocol is used in [30,31].

• KTH-TIPS2-b [8] (KTH-2-b): Featuring 4752 images from 11 different material cate-
gories, this dataset employs a fixed set of 4 splits for 4-fold cross-validation. This setup
allows the model to be trained and tested on diverse subsets, promoting generalized
learning. The same splitting scheme is also used in [34].

• Ground Terrain in Outdoor Scenes (GTOS) [44]: This extensive dataset includes
34,105 images representing 40 outdoor ground material classes. It utilizes a fixed set of
5 train/test splits, offering a robust evaluation framework for models designed to clas-
sify ground terrain textures. The same evaluation splits are used in [10–12,26,30,32,33].

• GTOS-Mobile [27]: Comprising 100,011 images captured via a mobile phone, this
dataset features 31 different outdoor ground material categories. It is divided into a
single train/test split, reflecting real-world mobile data collection scenarios. The same
evaluation protocols are utilized in [10–12,32,33].

Before going into comparisons with state-of-the-art methods, in the next subsection, a
notable difference is that LBCNIN’s results are achieved by employing batch normalization
on batches of images from the same class, unlike all state-of-the-art methods which require
a single image for inference. Therefore, the presented comparison may not be entirely equi-
table. However, the proposed LBCNIN architecture proves to be particularly advantageous
for handling the multiview data from 3D semantic segmentation.

4.2. Comparison with State-of-the-Art Methods

The following section discusses the performance of the proposed LBCNIN architecture
in comparison with state-of-the-art methods across the four datasets described in Section 4.1.
The comparison, as shown in Table 1, uses the four backbones described in Section 3.1, with
respective number of parameters and GFLOPs noted for each.

Electronics 2024, 13, 2942 9 of 21

For the MobileNet V2 1.4 backbone, which has a relatively low computational demand,
the LBCNIN architecture outperforms the RADAM light [35] method, which uses the same
pre-trained backbone.

Table 1. Performance comparison of the proposed architecture LBCNIN in terms of accuracy (%) and
standard deviations (±) with state-of-the-art methods. The backbones (along with their number of
parameters and GFLOPs) are grouped into row blocks based on their processing capacity. The top
results for each dataset in each block are highlighted in bold. The best results, regardless of the used
backbones, are underlined. The reference source in square brackets next to each method indicates
that the results are taken from the original paper referred to by that source. If a second reference is
listed, it signifies that the results are sourced from the subsequent reference.

Method Backbone
Backbone
Params *

(Millions)

Backbone
GFLOPs * DTD KTH-2-b GTOS GTOS-

Mobile

RADAM light [35] MobileNet
V2 1.4 6 0.77 73.1 ± 0.9 86.8 ± 3.1 81.7 ± 1.7 78.2

LBCNIN (proposed) ** 87.2 ± 0.8 90.4 ± 5.0 83.5 ± 1.6 80.6

DeepTEN [26,33]

ResNet18 12 2

- - - 76.1
HistRes [29] - - - 79.8 ± 0.8
DEPNet [27] - - - 82.2
FENet [30] 69.6 86.6 ± 0.1 83.1 ± 0.2 85.1 ± 0.4

RPNet [31,33] 71.6 ± 0.7 86.7 ± 2.7 83.3 ± 2.2 76.6 ± 1.5
MAPNet [11] 69.5 ± 0.8 80.9 ± 1.8 80.3 ± 2.6 83.0 ± 1.6
DSRNet [10] 71.2 ± 0.7 81.8 ± 1.6 81.0 ± 2.1 83.7 ± 1.5
RADAM [35] 68.1 ± 1.0 84.7 ± 3.6 80.6 ± 1.7 79.5

CLASSNet [12] 71.5 ± 0.4 85.4 ± 1.1 84.3 ± 2.2 85.3 ± 1.3
DTPNet [33] 71.8 ± 0.7 86.7 ± 1.3 84.8 ± 2.4 87 ± 1.2
MPAP [34] 72.4 ± 0.7 87.9 ± 1.5 85.5 ± 1.7 85.5 ± 1.6

LBCNIN (proposed) ** 89.3 ± 0.6 89.8 ± 3.7 81.4 ± 1.7 74.7

DeepTEN [26,33]

ResNet50 26 5

69.6 82.0 ± 3.3 84.5 ± 2.9 -
HistRes [29] 72.0 ± 1.2 - - -
DEPNet [27] 73.2 - - -
FENet [30] 74.2 ± 0.1 88.2 ± 0.2 85.7 ± 0.1 85.2 ± 0.4

RPNet [31,33] 73.0 ± 0.6 87.2 ± 1.8 83.6 ± 2.3 77.9 ± 0.3
MAPNet [11] 76.1 ± 0.6 84.5 ± 1.3 84.7 ± 2.2 86.6 ± 1.5
DSRNet [10] 77.6 ± 0.6 85.9 ± 1.3 85.3 ± 2.0 87.0 ± 1.5
RADAM [35] 75.6 ± 1.1 88.5 ± 3.2 81.8 ± 1.1 81

CLASSNet [12] 74.0 ± 0.5 87.7 ± 1.3 85.6 ± 2.2 85.7 ± 1.4
MSBFEN [32] 77.8 ± 0.5 86.2 ± 1.1 86.4 ± 1.8 87.6 ± 1.6
DTPNet [33] 73.5 ± 0.4 88.5 ± 1.6 86.1 ± 2.5 88.0 ± 1.2
MPAP [34] 78.0 ± 0.5 89.0 ± 1.0 86.1 ± 1.8 88.1 ± 1.3

LBCNIN (proposed) ** 93.5 ± 0.8 91.3 ± 4.7 81.5 ± 2.1 80.8

RADAM [35] ConvNeXt-XL
in ImageNet-21K 350 60.9 83.7 ± 0.9 94.4 ± 3.8 87.2 ± 1.9 90.2

LBCNIN (proposed) ** 89.4 ± 0.9 96.1 ± 3.3 87.3 ± 1.6 91.8

* The number of parameters and GFLOPs for the MobileNet V2 1.4 backbone are referenced from [45], for the
ResNet (18 and 50) backbones from [46], and for the ConvNeXt-XL in ImageNet-21K from [38]. ** The LBCNIN’s
results are achieved by implementing batch normalization within batches of images from the same classes. This
approach differs from all state-of-the-art methods and is particularly suited for the multiview data encountered in
TI 3D semantic segmentation.

Specifically, LBCNIN achieves a notable improvement in accuracy across all four
datasets. For instance, it records 87.2% on the DTD dataset and 90.4% on the KTH-2-b
dataset, significantly higher than RADAM light’s 73.1% and 82.6%, respectively. It is
noteworthy that the proposed architecture, using this backbone, achieves higher accuracy
on the DTD and KTH-2-b datasets compared to all state-of-the-art methods that utilize
the significantly more complex and resource-intensive ResNet18 and ResNet50 backbones.
Despite achieving the highest average accuracy for the KTH-2-b dataset, a notable deviation

Electronics 2024, 13, 2942 10 of 21

across the tested folds of ±5% is observed. This higher deviation is also evident for the other
backbones. This deviation may be attributed to various factors, including the complexity of
the datasets, the variability in the texture patterns within the images, and the sensitivity of
the model to different input variations.

When using the ResNet18 backbone, the proposed LBCNIN achieves higher accuracy
on DTD (89.3%), and KTH-2-b (89.8%) datasets compared to other state-of-the-art methods
like DeepTEN, HistRes, DEPNet, FENet, RPNet, and others. Notably, LBCNIN shows a
substantial improvement on the DTD dataset, surpassing other methods by a significant
margin. However, for the GTOS dataset, it achieves an accuracy of 81.4%, and for the GTOS-
Mobile dataset, it achieves 74.7%, which are among the lowest compared to some methods.

For the ResNet50 backbone, known for its higher computational demands, the LBC-
NIN architecture maintains its lead in performance on the DTD and KTH-2-b datasets,
achieving an impressive 93.5% accuracy on the DTD dataset (the highest among all tested
benchmarks) and 91.3% on the KTH-2-b dataset. These results signify a consistent perfor-
mance improvement over other methods such as DeepTEN, HistRes, DEPNet, and several
others. However, it falls short on the GTOS dataset, scoring 81.5%, and the GTOS-Mobile
dataset, with a score of 80.8%, compared to other methods.

It is also evident that for both ResNet18 and ResNet50, the performance of the LBCNIN
architecture on the GTOS and GTOS-Mobile datasets is notably lower compared to that
of DTD and KTH-2-b. This variability may be attributed to the larger size and diversity
of these datasets compared to DTD and KTH-2-b. Unlike training a backbone with an
optimized loss function, which aims to minimize errors, training SVMs on a pretrained
backbone focuses on maximizing classification accuracy. Therefore, the discrepancy in
performance could reflect the complexity and diversity of the larger datasets. Larger
datasets like GTOS and GTOS-Mobile pose challenges such as increased risk of overfitting,
complexity of the decision boundary due to diverse textures, and higher variability in data
distribution. These factors can influence the SVM model’s ability to generalize effectively
across all texture classes, leading to variations in performance observed in the results of
the LBCNIN architecture. Addressing these challenges remains a key focus for future
work, aiming to enhance the stability and generalizability of the LBCNIN architecture
on diverse datasets.

Using the ConvNeXt-XL backbone with the highest computational capacity among
those tested, the LBCNIN architecture achieves the best results across the board, except for
the DTD dataset. On the DTD dataset, the best accuracy is reached by LBCNIN but with
the ResNet18 backbone, as mentioned earlier. For other datasets, it attains an accuracy of
96.1% on the KTH-2-b dataset, 87.3% on the GTOS dataset, and 91.8% on the GTOS-Mobile
dataset. These results underline the robustness and efficiency of the LBCNIN architecture,
as it consistently outperforms the RADAM method and other state-of-the-art approaches.

It should be noted that the LBCNIN method shows worse performance using the
ResNet18 backbone (and comparable performance utilizing ResNet50) compared to Mo-
bileNet V2 1.4 for the KTH-2-b, GTOS, and GTOS-Mobile datasets, probably because
MobileNet V2’s efficient architecture with depthwise separable convolutions better com-
plements the LBC layer used in LBCNIN to encode features. The LBC layer introduces
sparsity by using binary weights, which might align more effectively with MobileNet
V2’s lightweight design, leading to better feature extraction and handling of fine-grained
textures. This synergy results in higher accuracy for texture-specific datasets, even without
training the backbone.

4.3. Ablation Study on Different Architecture Components

Ablation studies are conducted to systematically remove different components of the
proposed architecture, demonstrating the significance of each. In this study, the focus is
on the DTD, and KTH-2-b datasets, utilizing both MobileNet V2 1.4 and ConvNeXt-XL in
ImageNet-21K backbones. These particular backbones are chosen because they represent
the smallest and largest models in terms of number of parameters and GFLOPs among the

Electronics 2024, 13, 2942 11 of 21

four examined backbones (Table 1). Table 2 provides a comparison of the accuracy achieved
by LBCNIN architecture with various components included or excluded. Each row in the
table corresponds to a different configuration, where specific components are either present
(marked with a checkmark) or absent. The table indicates several notable findings.

Firstly, employing only GAP and BatchNorm2d yielded the lowest accuracy across all
datasets and backbones. Secondly, employing only the GAP layer and LBC layer yielded
slightly higher accuracy. However, by adding the Sigmoid activation function to GAP
and LBC, the accuracy increases. It is worth noting that using only GAP achieves better
performance compared to the previous two configurations mentioned (except ConvNeXt-
XL on the KTH-2-b dataset). However, the focus lies on the configurations of the last
two rows where BatchNorm2d is applied (with and without the activation functions).
It’s noteworthy that when all proposed components are used together, the accuracy is
optimized. Comparing the case where all components are added with only GAP, a notable
improvement in accuracy of almost 16% is observed for DTD with MobileNet V2 1.4 and
over 8% for the ConvNeXt-XL backbone. The average accuracy is also enhanced for the
KTH-2-b dataset, by 4% for MobileNet V2 1.4 and 5.7% for the ConvNeXt-XL backbone.
These findings underscore the effectiveness of the proposed LBCNIN architecture when all
components work in tandem.

Table 2. Examining the impact of individual components on accuracy (%) within the proposed
LBCNIN architecture (best results are highlighted in bold).

Backbone Batch
Norm2d

Activation
Functions
Sigmoid

LBC
Layer GAP DTD KTH-2-b

MobileNet
V2 1.4

✓ 71.4 ± 0.7 86.4 ± 2.5
✓ ✓ 69.3 ± 1.0 84.8 ± 3.0

✓ ✓ ✓ 70.7 ± 1.2 85.6 ± 1.8
✓ ✓ 68.6 ± 0.8 83.5 ± 2.5
✓ ✓ ✓ 83.4 ± 0.7 89.6 ± 3.8
✓ ✓ ✓ ✓ 87.2 ± 0.8 90.4 ± 5.0

ConvNeXt-XL
in ImageNet-21K

✓ 81.3 ± 0.9 93.4 ± 4.1
✓ ✓ 80.9 ± 0.9 93.8 ± 4.2

✓ ✓ ✓ 82.0 ± 0.9 93.7 ± 4.0
✓ ✓ 79.8 ± 1.0 91.7 ± 4.6
✓ ✓ ✓ 83.4 ± 1.0 94.4 ± 4.0
✓ ✓ ✓ ✓ 89.4 ± 0.9 96.1 ± 3.3

4.4. Evaluation of Different Activation Functions

In this section, the impact of different activation functions on the proposed LBCNIN
architecture utilizing MobileNet V2 1.4 and ConvNeXt-XL in ImageNet-21K backbones on
the DTD and KTH-2-b datasets is evaluated. The activation functions considered in this
evaluation include ReLU, Leaky ReLU, ELU, Swish, and Sigmoid.

Rectified Linear Unit (ReLU): ReLU introduces non-linearity by outputting zero for
negative inputs and the input value itself for positive inputs. In a non-trainable network,
ReLU helps preserve the salient features of the input images. However, its inability to
handle negative values effectively may lead to the loss of important information.

Leaky ReLU: Leaky ReLU addresses the limitations of ReLU by allowing a small,
non-zero gradient for negative inputs. This ensures that all features, including negative
values, contribute to the final representation. In a non-trainable network, Leaky ReLU can
enhance robustness by preventing the complete suppression of negative activations.

Exponential Linear Unit (ELU): ELU outputs the input value for positive inputs and
an exponential function for negative inputs, maintaining a non-zero mean in the extracted
features. While ELU helps in smoothing the feature space and improving interpretability,

Electronics 2024, 13, 2942 12 of 21

its effectiveness in non-trainable networks lies in its ability to capture both positive and
negative activations without excessive suppression.

Swish: Swish function is defined as:

Swish(x) = x · σ(x), (8)

where σ(x) represents the sigmoid function (see Equation (1)).
Swish is smooth and non-monotonic and allows both positive and negative values to

propagate, scaled by a sigmoid function, enhancing the quality of the extracted features. In
non-trainable networks, Swish can provide a balanced activation function that captures a
wide range of input values without overly saturating or suppressing them.

Sigmoid: Sigmoid function, as defined in Equation (1), maps input values to a range
between 0 and 1 using the sigmoid curve. Moreover, Sigmoid exhibits a normalization
effect by squashing the input values into a probabilistic range. This property can help
stabilize the output and facilitate clearer decision boundaries between classes.

Table 3 provides a comparison of the accuracy between the aforementioned activation
functions. The Sigmoid activation function outperforms other activation functions like
ReLU, LeakyReLU, ELU, and Swish in accuracy for both the DTD and KTH-2-b datasets
across different backbones, even without training the backbone. This superior performance
can be attributed to the Sigmoid function’s ability to stabilize the learning process by
keeping feature values within a bounded range of 0 to 1, which prevents disruptions
in the pre-trained backbone’s performance. The smooth, continuous non-linearity of
Sigmoid helps capture subtle patterns and textures, which is crucial for texture-rich datasets.
Additionally, the Sigmoid function complements the LBC layer’s sparse binary weights,
enhancing feature encoding. To approximate Local Binary Patterns (LBP), the authors
of LBCNNs presented in [17] utilize a non-linear activation function (Sigmoid or ReLU)
in their LBC layer, further validating the choice of Sigmoid in this context. Moreover,
when combined with BatchNorm2d, the Sigmoid ensures effective feature normalization,
contributing to improved accuracy.

Table 3. Accuracy (%) comparison utilizing different activation functions (best results are highlighted
in bold).

Backbone Activation Function DTD KTH-2-b

MobileNet
V2 1.4

ReLU 80.8 ± 0.9 88.8 ± 3.6
LeakyReLU 80.8 ± 0.8 88.9 ± 3.6

ELU 84.1 ± 0.8 89.2 ± 4.2
Swish 80.5 ± 0.9 88.7 ± 3.6

Sigmoid 87.2 ± 0.8 90.4 ± 5.0

ConvNeXt-XL
in ImageNet-21K

ReLU 82.7 ± 1.0 93.8 ± 4.0
LeakyReLU 82.8 ± 1.0 93.8 ± 4.0

ELU 84.57 ± 1.0 94.2 ± 4.0
Swish 82.7 ± 1.0 93.7 ± 4.0

Sigmoid 89.4 ± 0.9 96.1 ± 3.3

4.5. Assessing the Stability of LBCNIN Accuracy with Different Random Masks of LBC

An additional 10 runs were conducted with different random seeds for each run,
utilizing the second fold on the DTD and KTH-2-b datasets using the MobileNet V2 1.4
backbone. To assess the stability of LBCNIN based on the masks, the mean accuracy and
standard deviation were calculated across these runs. For the DTD dataset, the mean
accuracy was 88.1% (±0.4), and for the KTH-TIPS2-b dataset, it was 83.8% (±0.9). This
analysis indicates minimal change in accuracy, less than ±1%, demonstrating that the
proposed architecture is relatively stable with respect to the randomly generated masks
of LBC.

Electronics 2024, 13, 2942 13 of 21

4.6. Detailed Results

Confusion matrices: The proposed LBCNIN architecture with ConvNeXt-XL in
ImageNet-21K backbone is tested for its effectiveness on all datasets by examining confu-
sion matrices and corresponding accuracies generated for the worst-case folds for DTD,
KTH-2-b, and GTOS datasets, except GTOS-Mobile that has a single fixed fold (Figure 2).
Overall, the confusion matrices exhibit a strong diagonal concentration, indicating good
classification performance by the proposed LBCNIN architecture.

Figure 2. Confusion matrices and accuracies utilizing ConvNeXt-XL in ImageNet-21K backbone for
each dataset. Results of the folds yielding the lowest accuracy for DTD, KTH-2-b, and GTOS datasets
are presented, with GTOS-Mobile shown based on its single fold.

Electronics 2024, 13, 2942 14 of 21

Regarding the DTD dataset, some of the confused cases include ’smeared’, ’sprinkled’,
’flecked’, ’cracked’, and ’stained’ being predicted as ’blotchy’, ’dotted’ being predicted
as ’polka-dotted’, ’porous’ classified as ’pitted’, ’swirly’ predicted as ’spiralled’, ’braided’
classified as ’woven’, etc. Most of these misclassifications occur among classes with visually
similar samples.

For the KTH-2-b dataset, the most misclassified case is ’linen’ predicted as ’cotton’.
In the GTOS dataset, notable confusions include ’rust_cover’ predicted as ’aluminum’,
’stone_asphalt’ as ’asphalt_stone’, ’stone_cement’ as ’cement’, and ’soil’ as ’mud’. These
examples often have similar visual appearances and semantics, which can potentially lead
the model to make mistakes.

For the GTOS-Mobile dataset, the most misclassified samples are ’large_limestone’
mistakenly predicted as ’small_limestone’, ’stone_asphalt’ predicted as ’asphalt’, and
’paint_cover’ classified as ’metal_cover’. Like the GTOS dataset, the errors here often
involve classes with similar characteristics.

2D t-SNE features visualization: Figure 3 illustrates 2D t-SNE distribution of fea-
tures, each represented by distinct colors or markers corresponding to 31 different classes,
within the GTOS-Mobile dataset. These features are extracted by the LBCNIN architec-
ture utilizing ConvNeXt-XL in ImageNet-21K backbone. The distinct clustering of points
highlights the effectiveness of the proposed LBCNIN architecture, in capturing relevant
features for classification. However, the presence of scattered points or overlapping clusters
suggests areas where the feature representation may be less conclusive or where outliers
exist. Exploring these regions further could yield insights into the dataset’s structure and
inform adjustments to the feature extraction process, potentially improving classification
performance and model robustness.

Figure 3. 2D t-SNE visualization [47] of texture encoded features on samples from GTOS-Mobile
dataset using ConvNeXt-XL in ImageNet-21K backbone.

GradCAM [48] visualizations: Figure 4 illustrates GradCAM visualizations utilizing
the encoded data from the proposed LBCNIN architecture across different texture classes
from the DTD dataset using ConvNeXt-XL in ImageNet-21K backbone.

Electronics 2024, 13, 2942 15 of 21

Figure 4. Sample images of different classes from DTD dataset (top) and their GradCAM [48]
visualizations (bottom) using ConvNeXt-XL in ImageNet-21K backbone.

These visualizations highlight the regions within the images that the LBCNIN ar-
chitecture focuses on when making its predictions. The model effectively identifies and
emphasizes key texture patterns and features relevant to each class, demonstrating its pro-
ficiency in extracting meaningful and discriminative information. This capability confirms
the model’s potential in effectively handling texture recognition tasks.

Confusion cases: Some confusing cases for the proposed LBCNIN architecture with
the GTOS-Mobile dataset utilizing ConvNeXt-XL in ImageNet-21K backbone are shown in
Figure 5.

Figure 5. Confusing cases on the GTOS-Mobile dataset using the ConvNeXt-XL in ImageNet-21K
backbone. The top section showcases misclassified images with their true labels displayed above
them. The bottom section displays the corresponding incorrectly predicted labels for these images,
along with similar samples that really belong to the incorrectly predicted class. For example, the top
most right image belongs to the class ’small_limestone,’ but it is mistakenly predicted as ’pebble’.
The bottom most right image is very similar to the one on the top most right, but it actually belongs
to the class ’pebble’.

Electronics 2024, 13, 2942 16 of 21

These image pairs often exhibit very similar visual characteristics, making it difficult
for the model to distinguish between them accurately. The slight variations in texture
and pattern between these pairs present a significant challenge for classification. Such
similar pairs can also be seen in other state-of-the-art methods, such as CLASSNet and
DTPNet. Addressing these confusing cases may require enhancing the model’s ability to
detect subtle differences in texture, which is an avenue for future research to improve the
robustness and accuracy of the model.

4.7. Timing Performance

In Table 4, the comparison of average runtime for 200 iterations across the MobileNet
V2 1.4 and ConvNeXt-XL in ImageNet-21K backbones is presented. These two backbones
are chosen due to their contrasting computational demands, measured in number of
parameters and GFLOPs (see Table 1). In this investigation, the batch size is configured to
be 1, which corresponds to a single RGB image with dimensions 224 × 224 pixels.

Table 4. Comparison of average runtime for 200 iterations across MobileNet V2 1.4 and ConvNeXt-XL
in ImageNet-21K backbones in the proposed LBCNIN architecture, conducted on a workstation
equipped with an Intel Xeon E5-2640 v3 CPU operating at 2.60 GHz (8 cores) and an NVIDIA GeForce
RTX 2080 Ti GPU.

Backbone Component CPU Time
(ms)

GPU Time
(ms)

MobileNet V2 1.4 backbone (forward pass) 35.5 ± 9.1 16.3 ± 10.2
LBCNIN (inference) 43.3 ± 9.4 17.2 ± 10.2

ConvNeXt-XL in ImageNet-21K backbone (forward pass) 394.6 ± 43.6 26.2 ± 6.7
LBCNIN (inference) 523.2 ± 44.2 185.8 ± 8.8

The table provides insights into the computational efficiency of each backbone, both in
terms of CPU and GPU processing times. It’s important to note that the reported runtime
for the LBCNIN inference phase includes the forward pass of the backbone along with
the time required for the proposed feature encoding and SVM classifier inference. As
expected, MobileNet V2 1.4 demonstrates significantly lower inference times, making it
more suitable for real-time TI applications. Specifically, MobileNet V2 1.4 is approximately
12.1 times faster than ConvNeXt-XL on the CPU and 10.8 times faster on the GPU for
LBCNIN inference. The forward pass of MobileNet V2 1.4 is around 11.1 times faster on
the CPU and 1.6 times faster on the GPU compared to ConvNeXt-XL. Moreover, the overall
LBCNIN inference time indicates that MobileNet V2 1.4 maintains efficiency, with a minimal
increase due to the LBCNIN encoding and SVM classifier inference processes compared
to the backbone forward pass alone. In contrast, for ConvNeXt-XL, the overall DNNLBC
inference time indicates a significant increase, highlighting the substantial additional
computational load.

Comparing CPU vs. GPU times, the GPU is significantly faster, as expected, for both
backbones, particularly for ConvNeXt-XL, where the GPU is approximately 15 times faster
for the backbone forward pass and 2.8 times faster for the LBCNIN inference. These find-
ings underscore the importance of considering computational efficiency alongside model
accuracy when selecting a backbone for real-time applications, with MobileNet V2 1.4
emerging as a highly promising option for low-latency processing.

However, it’s important to note that despite its faster inference times, MobileNet V2 1.4
exhibits lower accuracy compared to ConvNeXt-XL for all four examined datasets, as
indicated in Table 1.

4.8. Limitations of the Presented Work

The following are considered limitations of the proposed work:

Electronics 2024, 13, 2942 17 of 21

• Necessity of high computational resources for larger datasets: The method demon-
strates very good results on two datasets: DTD, and KTH-2-b, using the MobileNet
V2 1.4 backbone, which is efficient in terms of computational resources. However,
achieving the best results on the GTOS and GTOS-Mobile datasets required the use of
the ConvNeXt-XL backbone, which is computationally intensive. Additionally, the
results on the GTOS and GTOS-Mobile datasets are less favorable even when using
the ResNet18 and ResNet50 backbones compared to other methods. This reliance on
high-resource backbones for certain datasets may limit the method’s applicability in
environments where computational resources are constrained.

• Confusion in similar textures: As noted in Sections 4.6, LBCNIN encounters difficulty
distinguishing between visually similar textures, particularly in the GTOS-Mobile
dataset. This indicates that the model might struggle with textures that have subtle
differences, which could impact its performance in applications requiring fine-grained
texture discrimination. To address these two limitations, optimizing the LBCNIN
architecture without significantly increasing computational demands is crucial. This
may involve refining the feature extraction process, introducing novel layers, or aggre-
gating information from intermediate blocks of the backbone network. Leveraging
these blocks can capture hierarchical features and nuances effectively. Additionally,
integrating data augmentation techniques during training can enhance generalization
and robustness, thereby improving the model’s performance across diverse datasets.
Specifically, augmenting the training data with more diverse examples of similar
textures or using data augmentation techniques to create variations in the existing
dataset can be beneficial for tackling the challenge of confusion in similar textures.

• Impact of noise on image texture recognition: The study did not investigate the im-
pact of different types of noise on the experimental results. Future research should ex-
plore how various noise types affect the performance of texture recognition models like
LBCNIN. This includes considering methods for image denoising using CNNs [49] or
Gaussian noise enhanced training as in [50].

• Dataset variability: While the LBCNIN method shows strong performance on two
benchmark datasets, its effectiveness might not generalize to other texture datasets not
included in the study. The chosen datasets (DTD, KTH-2-b, GTOS, and GTOS-Mobile)
represent a variety of textures, but real-world TI applications may involve textures
with different characteristics that were not tested.

• Imbalanced datasets: Many texture recognition datasets suffer from imbalanced class
distributions, where some classes have significantly fewer samples than others. This
imbalance can adversely affect the accuracy of models like LBCNIN, particularly
for classes with fewer training samples. Future research should explore techniques
to mitigate the impact of imbalanced datasets, such as class re-weighting during
training, data augmentation strategies that focus on minority classes, or advanced
sampling techniques like oversampling or undersampling. These approaches could
potentially improve the robustness and generalization of texture recognition models
across diverse datasets with varying class distributions. To address this limitation, it
would be beneficial to conduct experiments on additional texture datasets to assess the
generalization performance of the LBCNIN method across a wider range of textures.
This would provide insights into the model’s robustness and effectiveness in handling
textures with different characteristics that were not tested in the current study.

• Requirement for suitably trained backbones: The performance of LBCNIN heavily
relies on the quality and diversity of features extracted by pre-trained backbones. If
these backbones are not adequately previously trained or if they do not capture rele-
vant texture features, the overall performance of LBCNIN might suffer. To mitigate this
limitation, it would be beneficial to explore the performance of LBCNIN with a wider
range of backbone architectures. Experimenting with different pre-trained backbones,
including those trained on diverse datasets or specialized in texture recognition tasks,
could provide insights into the robustness and adaptability of the LBCNIN method.

Electronics 2024, 13, 2942 18 of 21

• Requirement for several samples from the same class during the inference phase:
The proposed architecture incorporates intra-class normalization techniques, which
operate under the assumption that multiple images of the same texture class are
available for testing. This is crucial for the method to effectively normalize and learn
the distinct features of each texture class. However, if the classification task involves
only a single image, the DNNLBCBN method may not be able to apply the same
normalization process as intended, potentially resulting in suboptimal performance.

5. Conclusions

This paper introduces a novel architecture LBCNIN, for texture recognition. By in-
corporating features from the backbone without fine-tuning and utilizing a non-trainable
local binary convolution layer and batch normalization of images within the same class,
LBCNIN achieves competitive performance across various texture benchmarks. The pro-
posed method is still simple, but outperforms state-of-the-art approaches on two out of
four investigated datasets, namely DTD and KTH-2-b, across all backbone architectures.
Notably, even with the least computational resources, such as MobileNet V2 1.4, LBCNIN
achieves superior results compared to methods using more resource-intensive backbones
like ResNet18 and ResNet50 on these datasets. This makes LBCNIN well-suited for real-
time applications such as the TI. Furthermore, LBCNIN demonstrates robust performance
on the remaining two datasets, GTOS and GTOS-Mobile, using the ConvNeXt-XL back-
bone, which consumes more computational resources. Moreover, the non-fine-tuning of
backbones accelerates the training process, solely requiring training of the classification
linear SVM model. It’s important to consider that during testing, the proposed architecture
requires a batch of samples from the same class. This is typically the case when multi-
view object data is accessible via 3D semantic segmentation in scene understanding for
TI applications. Therefore, the comparisons made may not be entirely correct, as all other
state-of-the-art methods presented are designed to process a single texture image, unlike
the proposed method which leverages batches for improved accuracy. Overall, LBCNIN
presents a promising avenue for texture recognition, offering high performance across
diverse datasets and resource constraints.

Author Contributions: Conceptualization, N.N. and K.T.; methodology, N.N. and K.T.; software,
N.N. and K.T.; validation, N.N.; formal analysis, A.M. and N.N.; investigation, A.M., K.T. and
N.N.; resources, N.N.; data curation, N.N.; writing—original draft preparation, A.M., K.T. and
N.N.; writing—review and editing, A.M. and K.T.; visualization, N.N.; supervision, A.M.; project
administration, A.M.; funding acquisition, A.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is financed by the European Union-Next Generation EU, through the Na-
tional Recovery and Resilience Plan of the Republic of Bulgaria, project No. BG-RRP-2.004-0005:
“Improving the research capacity and quality to achieve international recognition and resilience of
TU-Sofia” (IDEAS).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BoVW Bag-of-Visual-Words
CLASSNet Cross-Layer Aggregation of a Statistical Self-similarity Network
CNNs Convolutional Neural Networks
DeepTEN Deep Texture Encoding Network

Electronics 2024, 13, 2942 19 of 21

DTPNet Deep Tracing Pattern encoding Network
DL Deep Learning
LBCNIN Local Binary Convolution Network with Intra-class Normalization
DNNs Deep Neural Networks
ELU Exponential Linear Unit
FC Fully Connected
FV Fisher Vector
GAP Global Average Pooling
KNN K-Nearest Neighbors
LBC Local Binary Convolution
LBCNNs Local Binary Convolutional Networks
LBP Local Binary Patterns
LDA Linear Discriminant Analysis
MPAP Multiple Primitives and Attributes Perception
MSBFEN Multi-Scale Boosting Feature Encoding Network
RADAM Random encoding of Aggregated Deep Activation Maps
RAE Randomized Autoencoder
ReLU Rectified Linear Unit
RIFT Rotation Invariant Feature Transform
RPNet Residual Pooling Network
SIFT Scale Invariant Feature Transform
SVM Support Vector Machine
TI Tactile Internet
VLAD Vector of Locally Aggregated Descriptor
VR Virtual Reality

References
1. Agarwal, M.; Singhal, A.; Lall, B. 3D local ternary co-occurrence patterns for natural, texture, face and bio medical image retrieval.

Neurocomputing 2018, 313, 333–345.
2. Ding, C.; Choi, J.; Tao, D.; Davis, L.S. Multi-directional multi-level dual-cross patterns for robust face recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 38, 518–531.
3. Akiva, P.; Purri, M.; Leotta, M. Self-supervised material and texture representation learning for remote sensing tasks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 8203–8215.

4. Liu, L.; Chen, J.; Fieguth, P.; Zhao, G.; Chellappa, R.; Pietikäinen, M. From BoW to CNN: Two decades of texture representation
for texture classification. Int. J. Comput. Vis. 2019, 127, 74–109.

5. Swetha, R.; Bende, P.; Singh, K.; Gorthi, S.; Biswas, A.; Li, B.; Weindorf, D.C.; Chakraborty, S. Predicting soil texture from
smartphone-captured digital images and an application. Geoderma 2020, 376, 114562.

6. Bell, S.; Upchurch, P.; Snavely, N.; Bala, K. Material recognition in the wild with the materials in context database. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3479–3487.

7. Scabini, L.F.; Ribas, L.C.; Bruno, O.M. Spatio-spectral networks for color-texture analysis. Inf. Sci. 2020, 515, 64–79.
8. Caputo, B.; Hayman, E.; Mallikarjuna, P. Class-specific material categorisation. In Proceedings of the Tenth IEEE International

Conference on Computer Vision (ICCV’05) Volume 1, Beijing, China, 17–21 October 2005; IEEE: New York, NY, USA, 2005;
Volume 2, pp. 1597–1604.

9. Yang, Z.; Lai, S.; Hong, X.; Shi, Y.; Cheng, Y.; Qing, C. DFAEN: Double-order knowledge fusion and attentional encoding network
for texture recognition. Expert Syst. Appl. 2022, 209, 118223.

10. Zhai, W.; Cao, Y.; Zha, Z.J.; Xie, H.; Wu, F. Deep structure-revealed network for texture recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11010–11019.

11. Zhai, W.; Cao, Y.; Zhang, J.; Zha, Z.J. Deep multiple-attribute-perceived network for real-world texture recognition. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; pp. 3613–3622.

12. Chen, Z.; Li, F.; Quan, Y.; Xu, Y.; Ji, H. Deep texture recognition via exploiting cross-layer statistical self-similarity. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 5231–5240.

13. Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; Vedaldi, A. Describing textures in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3606–3613.

14. Andrearczyk, V.; Whelan, P.F. Using filter banks in convolutional neural networks for texture classification. Pattern Recognit. Lett.
2016, 84, 63–69.

15. Fujieda, S.; Takayama, K.; Hachisuka, T. Wavelet convolutional neural networks for texture classification. arXiv 2017.
arXiv:1707.07394.

Electronics 2024, 13, 2942 20 of 21

16. Jogin, M.; Mohana; Madhulika, M.; Divya, G.; Meghana, R.; Apoorva, S. Feature extraction using convolution neural networks
(CNN) and deep learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics,
Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; IEEE: New York, NY, USA, 2018;
pp. 2319–2323.

17. Juefei-Xu, F.; Naresh Boddeti, V.; Savvides, M. Local binary convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 19–28.

18. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987.

19. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
20. Lazebnik, S.; Schmid, C.; Ponce, J. A sparse texture representation using local affine regions. IEEE Trans. Pattern Anal. Mach.

Intell. 2005, 27, 1265–1278.
21. Guo, Z.; Zhang, L.; Zhang, D. A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image

Process. 2010, 19, 1657–1663.
22. Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation. In Proceedings of

the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June
2010; IEEE: New York, NY, USA, 2010; pp. 3304–3311.

23. Bruna, J.; Mallat, S. Invariant scattering convolution networks. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1872–1886.
24. Cimpoi, M.; Maji, S.; Vedaldi, A. Deep filter banks for texture recognition and segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;pp. 3828–3836.
25. Lin, T.Y.; Maji, S. Visualizing and understanding deep texture representations. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;pp. 2791–2799.
26. Zhang, H.; Xue, J.; Dana, K. Deep ten: Texture encoding network. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;pp. 708–717.
27. Xue, J.; Zhang, H.; Dana, K. Deep texture manifold for ground terrain recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;pp. 558–567.
28. Bu, X.; Wu, Y.; Gao, Z.; Jia, Y. Deep convolutional network with locality and sparsity constraints for texture classification. Pattern

Recognit. 2019, 91, 34–46.
29. Peeples, J.; Xu, W.; Zare, A. Histogram layers for texture analysis. IEEE Trans. Artif. Intell. 2021, 3, 541–552.
30. Xu, Y.; Li, F.; Chen, Z.; Liang, J.; Quan, Y. Encoding spatial distribution of convolutional features for texture representation. Adv.

Neural Inf. Process. Syst. 2021, 34, 22732–22744.
31. Mao, S.; Rajan, D.; Chia, L.T. Deep residual pooling network for texture recognition. Pattern Recognit. 2021, 112, 107817.
32. Song, K.; Yang, H.; Yin, Z. Multi-scale boosting feature encoding network for texture recognition. IEEE Trans. Circuits Syst. Video

Technol. 2021, 31, 4269–4282.
33. Chen, Z.; Quan, Y.; Xu, R.; Jin, L.; Xu, Y. Enhancing texture representation with deep tracing pattern encoding. Pattern Recognit.

2024, 146, 109959.
34. Zhai, W.; Cao, Y.; Zhang, J.; Xie, H.; Tao, D.; Zha, Z.J. On exploring multiplicity of primitives and attributes for texture recognition

in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 46, 403–420.
35. Scabini, L.; Zielinski, K.M.; Ribas, L.C.; Gonçalves, W.N.; De Baets, B.; Bruno, O.M. RADAM: Texture recognition through

randomized aggregated encoding of deep activation maps. Pattern Recognit. 2023, 143, 109802.
36. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;pp. 4510–4520.
37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;pp. 770–778.
38. Liu, Z.; Mao, H.; Wu, C.Y.; Feichtenhofer, C.; Darrell, T.; Xie, S. A convnet for the 2020s. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;pp. 11976–11986.
39. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;pp. 448–456.
40. pytorch.org, Instalation of Pytorch v1.12.1. Available Online: https://pytorch.org/get-started/previous-versions/ (accessed on

1 June 2024).
41. Wightman, R. Pytorch Image Models (Timm). Available Online: https://github.com/rwightman/pytorch-image-models

(accessed on 1 June 2024).
42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
43. Wightman, R. PyTorch Image Models (resnet50.ram_in1k). Available Online: https://huggingface.co/timm/resnet50.ram_in1k

(accessed on 1 June 2024).
44. Xue, J.; Zhang, H.; Nishino, K.; Dana, K.J. Differential viewpoints for ground terrain material recognition. IEEE Trans. Pattern

Anal. Mach. Intell. 2020, 44, 1205–1218.
45. Wightman, R. Pytorch Image Models (Timm)-MobileNet V2. Available Online: https://paperswithcode.com/lib/timm/

mobilenet-v2 (accessed on 1 June 2024).

https://pytorch.org/get-started/previous-versions/
https://github.com/rwightman/pytorch-image-models
https://huggingface.co/timm/resnet50.ram_in1k
https://paperswithcode.com/lib/timm/mobilenet-v2
https://paperswithcode.com/lib/timm/mobilenet-v2

Electronics 2024, 13, 2942 21 of 21

46. Wightman, R. Pytorch Image Models (Timm)-ResNet. Available Online: https://paperswithcode.com/lib/timm/resnet/
(accessed on 1 June 2024).

47. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
48. Gildenblat, J.; Cid, J.; Hjermitslev, O.; Lu, M.; Draelos, R.; Butera, L.; Shah, K.; Fukasawa, Y.; Shekhar, A.; Misra, P. et al. PyTorch

Library for CAM Methods. 2021. Available Online: https://github.com/jacobgil/pytorch-grad-cam (accessed on 2 June 2024).
49. Ilesanmi, A.E.; Ilesanmi, T.O. Methods for image denoising using convolutional neural network: A review. Complex Intell. Syst.

2021, 7, 2179–2198.
50. Ye, H.; Li, W.; Lin, S.; Ge, Y.; Lv, Q. A framework for fault detection method selection of oceanographic multi-layer winch fibre

rope arrangement. Measurement 2024, 226, 114168.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://paperswithcode.com/lib/timm/resnet/
https://github.com/jacobgil/pytorch-grad-cam

	Introduction
	Related Work
	Proposed Method
	LBCNIN Architecture
	Implementation Details

	Experiments
	Datasets and Experimental Protocols
	Comparison with State-of-the-Art Methods
	Ablation Study on Different Architecture Components
	Evaluation of Different Activation Functions
	Assessing the Stability of LBCNIN Accuracy with Different Random Masks of LBC
	Detailed Results
	Timing Performance
	Limitations of the Presented Work

	Conclusions
	References

