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Abstract 
Possible changes in the structure and seasonal variability of the subtropical 
ridge may lead to changes in the rainfall’s variability modes over Caribbean 
region. This generates additional difficulties around water resource planning, 
therefore, obtaining seasonal prediction models that allow these variations to 
be characterized in detail, it’s a concern, specially for island states. This re-
search proposes the construction of statistical-dynamic models based on PCA 
regression methods. It is used as predictand the monthly precipitation accu-
mulated, while the predictors (6) are extracted from the ECMWF-SEAS5 en-
semble mean forecasts with a lag of one month with respect to the target 
month. In the construction of the models, two sequential training schemes 
are evaluated, obtaining that only the shorter preserves the seasonal characte-
ristics of the predictand. The evaluation metrics used, where cell-point and 
dichotomous methodologies are combined, suggest that the predictors related 
to sea surface temperatures do not adequately represent the seasonal variabil-
ity of the predictand, however, others such as the temperature at 850 hPa and 
the Outgoing Longwave Radiation are represented with a good approxima-
tion regardless of the model chosen. In this sense, the models built with the 
nearest neighbor methodology were the most efficient. Using the individual 
models with the best results, an ensemble is built that allows improving the 
individual skill of the models selected as members by correcting the underes-
timation of precipitation in the dynamic model during the wet season, al-
though problems of overestimation persist for thresholds lower than 50 mm. 
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1. Introduction 

Currently, the increase in the demands of a growing population, together with 
extreme manifestations of the climate in large regions, leads to a significant in-
crease in the need for resource planning. In this sense, the water resource be-
comes more important, which participates in all aspects of human socioeco-
nomic life such as health, food security and energy. These factors, described very 
briefly, drive the need for long-term forecasts that allow adequate planning of 
available resources and preparation in advance for the presence of extreme 
weather conditions. 

The target of obtaining seasonal forecasts has numerous difficulties. Different 
climatic drivers that have been identified and described by several authors 
([1]-[7]) generate their own influence on precipitation patterns in a certain re-
gion. These modulators manifest themselves at different spatio-temporal scales, 
implying the quantification of said interaction is an important challenge, which 
makes long-term modeling difficult. 

As an example, the NAO (North Atlantic Oscillation) can be modulated by 
the tropical forcing associated with the ENSO (El Niño South-Oscillation) and 
the convection associated with the MJO (Madden-Julia Oscillation), or condi-
tioned by fluctuations in the mean of the western Atlantic jet and the result of 
these interactions will be decisive in the behavior of precipitation towards both 
Atlantic coasts [8]. 

The Central American and Caribbean region, due to its position in the tropi-
cal zone, may be affected by the redistribution of typical rainfall, which may be 
conditioned by changes in seasonal regimes or modifications in the qua-
si-permanent systems that govern the successive changes of the seasonal condi-
tions in the region. 

As an example of this, we can mention the tendency for the Hadley cell to ex-
pand [9] towards the poles and with it, arid zones, deserts and the subtropical 
jets positions also move, with the consequent impact in the patterns related to 
the spatial distribution and intensity of rainfall in the region. 

Several approaches have made it possible to respond to this problem. One of 
them is the dynamic method, where atmospheric general circulation models 
(GCMs) are used, either forced on their low boundary with SST anomalies (sea 
surface temperature) or coupled to an ocean model, being able to generate 
long-term predictions with a middle range of 6 to 12 months. These systems, not 
limited by purely linear considerations, can represent the processes that influ-
ence seasonal variability in a given region, including those of low frequency or 
unprecedented climate patterns.  

However, it has also been documented that they present disadvantages for 
their application, such as the high computational cost and the tendency to gen-
erate biases in the representation of the mean and standard deviation in va-
riables such as precipitation. 

In relation to this tool, researches like ([10]-[13]) have described that the 
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ECMWF presents difficulties such as the generation of dry biases characterized 
by deficiencies in the prediction of the propagation of the MJO, as well as cold 
biases in the equatorial Pacific region, which affects the forecast of the amplitude 
and intensity of ENSO events. Nor does it adequately represent the tropos-
phere-stratosphere interaction, which has repercussions in the adequate forecast 
of phenomena associated with the QBO (Quasi-Biennial Oscillation). Despite 
these deficiencies, it has been used to predict extreme behaviors such as drought 
with good results. 

For example, [14] uses its forecasts to carry out probabilistic monitoring of 
drought using different indices such as SPI (Standardized Precipitation Index), 
obtaining that it is necessary to apply an inflation factor to improve the ensem-
ble’s standard deviation with respect to the observations. Similar research was 
carried out in the Latin American region [15], in this case, their conclusions 
suggest that the model allows representing episodes of moderate drought. How-
ever, its performance is not good enough to pro-vide a useful guide in months of 
large rainfall accumulated. 

Despite these results, the use of the statistical approach has predominated in 
the Latin American region. This methodology uses an empirical relationship 
between a predictor (variable that is used to make the forecast) and a predictand 
(variable that is to be predicted). Their main advantage is that they are designed 
to be consistent with observations and can provide probabilistic and determinis-
tic predictions, in addition to their application requiring low computational re-
sources. However, they assume a stationary climate system and, due to the linea-
rization that characterizes these methods, they tend to have problems adequately 
representing nonlinear interactions (such as convective processes in the tropics) 
as well as the standard deviation of the predictands [8]. 

This approach can be developed in two aspects, one where observations are 
used to establish functional relationships, often regression, through which pre-
dictions can be made, or combined with CGMs in what is known as a hybrid 
approach. 

The use of SST (sea surface temperature) as a predictor to forecast the season-
al variability modes of precipitation (predicting) has been the most commonly 
used, however, its results show modest skill indices ([16] [17]). 

More recent studies [18] find that predictors related to moisture fluxes can 
more skillfully predict different characteristics of precipitation compared to 
SSTs. Several authors relate predictors such as vertically integrated moisture 
transport flux, zonal wind and 850 hPa surface temperature, reduced sea level 
pressure (slp) and specific humidity lead to results superior to SSTs ([18] [19]). 

Several hybrid approaches suggest that the use of ECMWF solutions can be 
used to train statistical models that allow for improving the skill of the dynamic 
model in a given region. For example, [20] uses supervised learning methods 
and neural networks to obtain forecasts of the flow of the Tocantins River. To do 
this, they apply a bias-correction scheme to the outputs of the dynamic model to 
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then feed the statistical models. Their results coincide with [21], who finds that 
the ECMWF is able to represent the rainfall seasonality in the region of interest. 
Other authors such as [22] and [23] have used other methods such as Bayesian 
models or wavelet functions to obtain similar results. 

[24] uses categorical classification correction models using machine learning 
techniques based on ECMWF solutions. This research evaluates two methodolo-
gies. On the one hand, they use the ECMWF ensemble mean as input data for 
various machine learning schemes that are evaluated as individual models. The 
second methodology uses the ensemble members separately to give input to the 
models, thus generating committee models. Their results suggest that the second 
approach allows for preserving the physical relationship through individual 
training of the statistical model with each ensemble member of ECMWF. 

At national, work with predictive purposes on seasonal and sub-seasonal 
scales has been superficial and has been fundamentally oriented to purely statis-
tical approaches. They can be cited ([25] [26]) who suggest the use of a regres-
sion model 6 months in advance. On the other hand, [27] try to use a dynamic 
approach, selecting the WRF (Weather Research and Forecasting) with the ob-
jective of predicting precipitation associated with synoptic-scale systems. This 
last variant, however, has the weakness of being fundamentally based on existing 
experiences with short- and medium-term forecasting. None of these expe-
riences managed to be fully developed. 

Taking this background into account, the objective of this research is to de-
velop and evaluate a hybrid seasonal precipitation prediction model based on 
principal components analysis (PCA) regression schemes, using the ECMWF 
ensemble mean as input. 

2. Materials and Methods 

2.1. ECMWF-SEAS5 and Predictors Selection 

The ECMWF-SEAS5 model’s forecast is used to obtain the group of predictors 
that are subsequently used to feed the statistical models. According to the results 
of [12], the new European model’s version, coded as SEAS5, presents several 
characteristics in its performance in tropical regions. 

According to the authors, the dynamic system tends to generate warm biases 
in the tropical ocean, particularly in summer, which they suggest is related to the 
fact that the system tends to produce shallower mixed layers in these regions. 
The Pacific and Atlantic basins are the most affected relate to the sea surface 
temperature forecasting. This has an influence on the prediction of large-scale 
dynamics related to heat and moisture transport in the easterly flow toward the 
tropical region. Together with the additional cooling produced in the Niño 3.4 
region, although to a lesser extent than its predecessor SEAS4, it can lead to 
rainfall underestimations in the tropical region. The errors in the SST prediction 
of the Niño region seem to be more notable in the DJF (December-January- 
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February) trimester. 
ECMWF also tends to reduce the gradient between the action centers that give 

rise to the NAO, which leads to this oscillation not being well represented at the 
surface. In relation to the dynamic processes that occur in the stratosphere and 
their relationship with teleconnection phenomena, the model basically manages 
to predict the phase of the QBO, however, it does not manage to well represent 
the amplitude and intensity of this oscillation. According to the authors, this is 
related to the presence of cold biases in the tropical tropopause environment to-
gether with a transition towards a warm bias in the high tropopause, which can 
generate errors in the representation of the mid-latitude jets and the simulation 
of stronger westerlies above the 40 hPa surface. 

This characterization suggests that the model will inadequately represent cer-
tain atmospheric dynamical responses with the consequent impact on predicted 
seasonal rainfall patterns. In this case, the use of alternative methods that im-
prove these predictions seems to be an alternative to obtaining seasonal forecasts 
with regional applications. 

Following this line, the present work proposes to use a series of predictor va-
riables extracted from the ECMWF forecasts, through which statistical models 
will be built to try to improve the dynamic system forecast. A total of 7 are used, 
which are derived from the results of [28]. Who use the maximum covariance 
method (MCA) within a principal components analysis to determine the greatest 
spatio-temporal associations between several predictors candidates and the 
monthly rainfall recorded in Cuba. 

OLR (Outgoing Longwave Radiation), SLP (Mean sea level pressure), T850 
(Temperature at 850 hPa surface), Asst (Tropical Atlantic Sea Surface Tempera-
ture) and Csst (Caribbean Sea Surface Temperature) are similar to those used in 
other research where statistical relationships are used ([17]-[19] [29]). Added to 
this more traditional group is the Gálvez-Davison Index (GDI). 

GDI is a stability index generated to improve the convection forecast in the 
Caribbean [30]. Research by ([31] [32]) suggests that the use of thermodynamic 
indices such as CAPE can be useful to explain certain precipitation patterns and 
their connections with phenomena of seasonal influence on the behavior of the 
precipitation in the Caribbean region such as the American monsoon. However, 
the CAPE usually has limitations in the tropical region since its values can be 
high due to the higher tropopause height in the tropics with respect to other re-
gions, this does not necessarily imply the presence of deep convection regimes in 
certain circumstances. In contrast, for the Caribbean region, it was found that 
the GDI can explain more than 50% of the variance of precipitation and 
represent, with skill values higher than traditional thermodynamic indices, dif-
ferent precipitation regimes [30]. 

This index considers three physical processes that modulate tropical convec-
tion: the simultaneous availability of heat and moisture at the middle and lower 
troposphere; the stabilizing/destabilizing effects at middle and upper levels 
caused by ridges and troughs; and dry air entrainment and stabilization related 
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to inversions (Equation (1)) 

 GDI ECI MWI II= + +  (1) 

where the ECI is a stability index, MWI represents the heat content at middle 
levels and II is an inversion index.  

In all cases, the predictors were extracting to forecasts generated by ECMWF 
with a delay of one month (lag = 1), taking into account the results of [24], who 
affirm that the forecasts of the model for lag = 0 and lag = 1 lead to the most ro-
bust results in relation to rainfall. The years considered for the study correspond 
to 2020 and 2021; where the selection criterion takes into account differences 
between the annual cycle recorded in both years. The subregions used for the 
predictors are listed in (Figure 1). 
 

  
(a)                                                    (b) 

 
(c) 

Figure 1. Predictors’s subregions. (a) OLR, SLP, T850, GDI; (b) Csst; (c) Asst. 
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2.2. Predictand 

The monthly accumulated rainfall is selected as the predictand. This selection is 
due to the fact that a national grid generated from the research of [33] is used 
(Figure 2). These authors use the records of accumulated monthly rainfall rec-
orded by the network of meteorological stations and the pluviometric network 
(belonging to the National Institute of Hydraulic Resources), which are interpo-
lated to a 4 km (kilometers) grid of spatial resolution. The use of these data al-
lows for the availability of high-resolution observational records from 1980 to 
the present. 
 

 

Figure 2. Predict and domain, used for the hybrid system forecast too. The values are 
only present in land areas, while adjacent seas are defined as NaN. 

2.3. PCA Regression Methods 

To generate hybrid forecasts, three PCA regression methods are proposed. Each 
of them is applied individually to each predictor with the purpose of generating 
individual models. Prior to using each model both, predictor and predictand, are 
standardized to subsequently perform a dimensionality reduction using the 
principal component method (PCA). This step pursues the purpose of representing 
those patterns with the greatest influence on the variability of precipitation over 
the study area (Figure 2) by eliminating noise and possible multicollinearity er-
rors. 

In all cases, a retrospective forecasting strategy is used where two sequential 
training periods are considered, one of 20 years and another of 6 months prior 
to the target month, in order to evaluate its possible impact on the hybrid design 
(Figure 3). Since the data is distributed on a monthly scale, this implies that the 
schemes with the longest training period can be decomposed into a larger num-
ber of principal components. Taking these differences into account, an arbitrary 
restriction is applied to guarantee the greatest possible homogeneity in the de-
signs. This restriction consists of using as many components as necessary to ex-
plain more than 90% of the predictor and predictand’s variances. In all cases, the 
constructed models are applied to the corresponding PCA; once the forecasted 
PCA are obtained, the fields are reconstructed, thus obtaining a deterministic 
forecast of the predictand. 
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(a) 

 
(b) 

Figure 3. Schematization of the selection of training and forecast thresholds; (a) 20 years, (b) 6 months. For all 
cases using a monthly tn step. 

2.3.1. PCA Linear Regression 
The method, as it is known, is based on the formulation described in (Equation 
(2)), where Y represents the predicted PCA; X the predictor’s PCA; β1 and β2 the 
coefficients and ε the noise obtained from the model residuals. 

 1 2Y Xβ β ε= + +  (2) 

This linear model is considered a parametric method [34] since it assumes 
that the relationship between the variables is linear and can be defined by the 
line parameters, which implies that the changes between the predictor and predic-
tand will be constant. This is an important limitation, since given the non-linear 
nature of the variables involved, it can lead to biased or erratic predictions that 
lead to low model skill. 

Another disadvantage is that, because it assumes that the predictor-predictand 
functional relationship is represented by a linear function, it may be deficient in 
representing extreme or rare events and therefore, this makes it sensitive to the 
presence of themselves during the training period, which can have negative re-
percussions on the forecasts. 

2.3.2. Linear PCA Regression Based on K-Nearest Neighbor 
This methodology involves a modification of linear regression in its simplest 
version, following in this case a non-parametric approach, which implies that it 
does not establish a prior functional relationship between the predictor and pre-
dictand, making it more flexible than the proposal in the section above. Howev-
er, it offers similar results to linear regression. 

The basic nearest neighbor regression obtains a relationship similar to the li-
near one (Equation (2)), where it calculates the Euclidean distance but limits the 
number of points (Equation (3a)). To do this, it uses uniform weights: that is, 
each point in the local neighborhood contributes uniformly to the classification 
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of a query point. In this case, the points are weighted so that weights are propor-
tional to the inverse of the distance from the query point (Equation (3b)). 

 ( )2
1 i ii

kd x y
=

= −∑  (3a) 

 0 1

1
i

k
if y

k =
= ∑  (3b) 

where d represents the distance between the observation and f0 prediction, the 
weight or weighting of the k selected points in the neighborhood of the point of 
interest. 

The curve building from line segments that are generated in each neighbor-
hood allows the model to not be conditioned by a specific functional relationship 
as in the previous case. However, the selection of k-neighbors can be critical, 
since large values of k reduce the effect of noise but make the boundaries be-
tween classes less clear. Additionally, the method is also sensitive to rare or 
anomalous events and may not work adequately if the available sample is small 
[35]. For this work, k = 5 is used for 6-month training and k = 10 for multide-
cadal training. 

2.3.3. PCA Regression Based on Support Vectors 
The method is based on the construction of an optimal hyperplane in the form 
of a decision surface, so that the margin of separation between the two classes in 
the data is maximized. This means that it will try to fit the best line within a 
threshold value. The threshold value is represented as the distance between the 
hyperplane and the limit line trying to satisfy the condition: 2 1y xα β β α− < − + < , 
where α represents the margin or threshold. 

This methodology allows solving the regression problem with different ap-
proaches, ranging from linear, which is already worked with the methods de-
scribed above, to more complex ones such as polynomial, sigmoid or RBF (Radi-
al Basis Function). Additionally, the implementation of the method through the 
Scikit-Learn Python library allows you to create your own kernels. In this case, it 
is decided to use a nonlinear kernel represented by RBF (Equation (4)). 

 ( )
2

; e
i ix y

f x y
γ

σ
− −

=  (4) 

where the numerator of power represents the Euclidean distance and the deno-
minator is the variance of the hyperplane [35]. 

When using this function two critical parameters must be considered. One of 
them is C, which is common for all support vector kernels, which compensates 
for miss classification of training examples with the simplicity of the decision 
surface. This implies that small values of this parameter tend to smooth the re-
sult, while large values imply the classification of a greater number of examples by 
selecting more samples as support vectors, in other words, expanding the hyper-
plane [36]. 

The second parameter is gamma, which defines how much a single training 
example influence, and can be interpreted as the inverse of the radius of influ-
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ence of the selected examples. As can be seen, the selection of both parameters is 
critical for the performance of the model; if gamma is too large, the radius of the 
influence area of the support vectors only includes the support vector itself and 
no amount of regularization with C will be able to prevent overheating. On the 
other hand, if gamma is too small, the model is too limited and cannot capture 
the complexity or shape of the data. 

It is usually recommended that both parameters be spaced exponentially be-
tween each other, normally a logarithmic spacing between 103 and 10−3 is usually 
sufficient [36]. In this study, it was necessary to increase the value of the para-
meter C to around 106 for all cases, since with lower values very smoothed fore-
cast curves were obtained that did not represent the characteristics of the annual 
rainfall behavior. However, this led to this methodology being the most compu-
tationally expensive compared to the other variants. 

2.3.4. Application Limits 
It should be taken into account that there are several factors that can limit the 
application of the methods used in this research and therefore the quality of the 
results. For example, when building forecast models from principal components, 
there is a dilemma as to how many components can be included; too many 
components can lead to overfitting and too few components can lead to not in-
cluding variability modes that provide precipitation. Another fundamental limi-
tation of this methodology is that principal component analysis and linear re-
gression assume linear relationships between the variables. However, relation-
ships in climate data can be nonlinear, such as tropical rainfall. The proposed 
design attempts to reduce the impact of these effects on the forecast. 

On the other hand, the volume of data is another factor that limits the degree 
of precision achieved with these methods. The methods in question are highly 
dependent on the length of the series in which they will be applied. The larger 
the data sample, the greater the capacity of the model to capture the temporal 
and spatial behavior of precipitation. 

2.4. Evaluation Metrics 

With the purpose of evaluating the added value of the hybrid design, a group of 
metrics is selected that will allow establishing the ability of the models built on 
spatio-temporal scales. The years 2020 and 2021 were selected to apply the eval-
uation. The selection criterion is based on the difference in relation to the beha-
vior of the annual cycle, being very similar to what is theoretically described for 
the region in the case of 2020, while the following year resulted in a more dis-
creet behavior in relation to the accumulated monthly recorded, with a down-
ward trend after the May peak. 

Bias values (Equation (5)), RSME ((Equation (6)), KGE (Equation (7)) allow it 
to quantitatively describe the behavior of the built models. Additionally, coeffi-
cient of determination values were used to support the selection of the best per-
forming models (Equation (8)). In this case, the first three respond to a cell-point 
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verification scheme, so the evaluation was complemented with a dichotomous 
analysis based on the use of SEDS [37] that seeks to more clearly discriminate 
the thresholds where the proposed models gain/lose skill (Equation (9)). 

 ( )1

1Bias i ii
n obs fcst

n =
= −∑  (5) 

 ( )2
1

1RSME i ii
n obs fcst

n =
= −∑  (6) 

 ( ) ( ) ( )2 2 2KGE 1 1 1 1r α β= − − + − + −  (7) 

 
2

2
2 2

XY

X Y

R σ
σ σ

=  (8) 

In this case, r represents the linear correlation between the forecast and the 
observation, while α and β are the ratio between the standard deviation and the 
mean respectively calculated between the forecast and the observation; as well as 
σXY represents the covariance between the prediction and the observed and σ2 
the respective variances. 

 log logSEDS
log log

q H
p H
−

=
+

 (9) 

where H represents the correct detections, while p = (a + c)/n is the relative fre-
quency with which the observed event is detected and q = (a + b)/n is the relative 
frequency of predicted events; the parameters a-b-c are obtained from the con-
tingency table for binary events (Table 1); where n is the total number of events. 
 
Table 1. Contingency table model for binary events. 

Forecasted 
Observed 

Yes No 

Yes a b 

No c d 

3. Results 
3.1. Annual Rainfall Cycle 

The annual cycle behavior on the island is defined by the presence of a dry sea-
son (November-April) characterized by rainfalls fundamentally associated with 
extratropical systems that invade the tropical zone. At this cause, the predomi-
nant influence of dry air masses, related to migratory anticyclones, substantially 
increases the days without precipitation in these months. 

Towards spring, during the transition to summer, the rainfall generally tends 
to increase, conditioned by the persistence of meridional temperature gradients, 
the influence of subtropical jet and the westward expansion of the subtropical 
ridge, which favors the transport of moisture from the ITCZ that is moving 
northward. Often this combination of factors is also capable of inducing baroc-
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linic instability that leads to manifestations of severe weather that provide im-
portant records of precipitation in short time periods at this period of year. 

Already during the wet season of the year, the first rainfall peak appears, usually 
between May and June. In this sense, seasonal systems appear that significantly 
increase rainfall towards the western and central regions of the country, such as 
the May-June trough. This system, the result of the flow of troughs or short 
waves from mid-latitudes, is often located between the Mexican ridge and the 
subtropical ridge between medium and high levels. This configuration is capable 
of interacting with synoptic-scale systems such as easterly waves, upper lows or 
the subtropical jet itself and, as a whole, favor the early peak of precipitation. 

The mid-summer drought process appears as a consequence of the westward 
expansion of subtropical ridge, conditioning the arrival of dust clouds from the 
Sahara in the months of July and August where their non-hygroscopic aerosols 
favor the absence of rainfall. In this case, the ridge completely extended to the 
west (often to the Gulf of Mexico) tends to cut off moisture transport. In these 
months, precipitation is usually associated with strong diurnal warming, occa-
sionally stimulated by the passage of tropical waves, which often exhibit discrete 
representations in their cloud field, or higher lows that usually emerge from the 
TUTT (Thought Upper Tropical Tropospheric). 

Towards wet season ends, the withdrawal of the subtropical ridge, generates a 
typical minimum sea level pressure in the area, thus allowing greater exchange 
with the extratropics. At this time the ITCZ has reached its maximum displace-
ment towards the north and begins the southward migration, this is conducent 
the moisture convergence in the region and also conditioning the peak of the 
hurricane season in the Atlantic basin, therefore, a new rainfall increase is ob-
served, producing a second maximum. 

These average characteristics are usually reflected in the average behavior of 
precipitation in Cuba (Figure 4(a)) in the selected years for the research. How-
ever, towards 2021 the delay in the contraction of the ridge influences the condi-
tions of subsidence and divergence, which is why a discrete late peak of precipi-
tation occurred on the island, reinforcing the conditions of seasonal drought. 

In this sense, coinciding with authors from the region [15], it can be observed 
that the ECMWF forecasts, estimated from the ensemble mean, underestimate 
the monthly rainfall accumulated mainly in the wet season. That can be related 
to deficiencies in adequately simulating the moisture fluxes behavior and diver-
gence advection related to the relative position of subtropical ridge, since it addi-
tionally suggests that the late peak is usually more active than the first maxi-
mum, which is opposite to the records obtained. 

This means that the ECMWF model tends to overestimate moisture transport 
in the Caribbean during the transition to winter, which may be related to the 
tendency to produce warm biases in the Atlantic basin in combination with the 
behavior of ridge contraction [12]. Taken together, these characteristics main-
tain the ocean-atmosphere feedback and can explain the model’s representation 
of the annual precipitation pattern. 
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(a) 

 
(b) 

Figure 4. Rainfall average behavior between 2020 and 2021 (a); annual cycle (black) and 
ECMWF forecast (red) (b). 
 

The latter can be corroborated in Figure 5, where the ECMWF forecast not 
only inadequately represents the flow, but also exhibits a tendency to overesti-
mate sea level pressure values, this suggests a greater influence of the subsidence 
associated with the subtropical ridge and lower moisture transport from the 
ITCZ region. On the other hand, a configuration like the one shown in (Figure 
5(a)) also reduces the exchange with the extratropics and the instability asso-
ciated with the establishment of meridional temperature gradients. All of these 
factors contribute to the underestimation observed in the dynamic model fore-
cast. 
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(a) 

 
(b) 

Figure 5. Mean sea level pressure behavior in October 2021. (a) ECMWF’s ensemble 
mean; (b) ERA5 reanalysis. 

3.2. Evaluation of Individual Models 

The statistical-dynamic models generated from the proposed methods suggest 
that long sequential training periods are not suitable for generating monthly 
forecasts (Figure 6). As shown in the graphics, for all the proposed predictors 
the forecast curves are very smoothed and unrealistic. The determination coeffi-
cient values are consistent with these characteristics, generally exhibiting a beha-
vior close to zero or negative. 

In these cases, only the models built from linear regression showed values of 
determination coefficient close to those obtained with the ECMWF, as is the case 
of SLP (Figure 6(b)) and OLR. However, this value is purely numerical and has 
no physical meaning since the predicted curves do not represent any of the sea-
sonal characteristics of rainfall on the island. 

On the opposite, the 6-month sequential training generated more coherent 
results and it was possible to discriminate both methods and predictors based on 
the individual forecasting ability of each one. The construction of the annual 
trend for the years selected in this study suggests that the predictors that 
represent the SSTs have low ability to reproduce the monthly rainfall (Figure 7). 
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These results coincide with [18] who grant greater predictive importance to 
moisture fluxes compared to SSTs. At this point, the regression coefficients ob-
tained for different PCA regression schemes, capture the seasonal trend of most 
predictors. 
 

 
(a) 

 
(b) 

Figure 6. Example of forecasts resulting from 20-year sequential training to obtain 
monthly forecasts. (a) Caribbean SST; (b) SLP. 
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(a) 

 
(b) 

Figure 7. Example of forecasts resulting from 6-months sequential training to obtain 
monthly forecasts. (a) Atlantic SST; (b) Temperature at 850 hPa. 
 

The forecasts obtained from this regression scheme further suggest that there 
is a general tendency to overestimate monthly rainfall during the dry season. 
This result suggests that the errors related to the magnitude of the changes in the 
predictors are not significantly corrected by the statistical component (Figure 6 
and Figure 7). This behavior seems to be related to representation described 
above, where ECMWF solutions overestimate the environment conductive for a 
rainfall increase. From a synoptical point of view, wetter frontal systems and a 
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flow from the first quadrant generate precipitation episodes of variable impor-
tance, supporting this seasonal behavior. 

These results expose some deficiencies that a sequential training scheme could 
have. In this case, the statistical models reproduce conditions of greater moisture 
or conductive flows to generation of different rainfall regimes and are unable to 
reverse this trend based on observations. This fact suggests that the use of split 
training schemes, either individually or combined with sequential training, 
could be beneficial in order to try to reverse these deficiencies. 

The balance schemes (Figure 8) show that the predictors associated with the 
SST had a very similar behavior, with overestimation in the winter season while 
exhibiting a reduction in the time scale of the wet season, shortening its duration 
and delaying the rainfall early peak, which leads to a significant growth in errors. 

At this point, it is worth remembering that [12] suggests that warm SST biases 
also cover the JJA months (June-July-August). This means that the dynamical 
forecast can show a greater homogeneity in the tropical oceans, which from a 
dynamic point of view can delay the appearance of hot pools, which together 
with the expansion of subtropical ridge and the northward ITCZ migration, 
constitute a mechanism that favors convergence, moisture transport and, there-
fore, precipitation. This effect seems to be “absorbed”, so to speak, by the models 
built from the SSTs, which is reflected in the results. 

The models built with the use of the GDI as a predictor worked better when 
they were adjusted to a linear relationship, which makes sense since the value of 
the index follows this type of relationship with respect to the observational 
framework used (Figure 9). However, the nearest neighbor method showed a 
higher coefficient of determination than the rest (0.35), which is why it seems 
more convenient to use this model with the GDI. 
 

 
(a) 
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(b) 

 
(c) 

Figure 8. Balance obtained between observations and design models. (a) SSTs; (b) T850 y 
GDI; (c) OLR y SLP. 
 

The T850 predictor was one of those that exhibited the best results since it 
partially corrected the underestimation of the dynamic model during the wet 
season, however, the monthly rainfall overestimation in the dry season, funda-
mentally over the first trimester, persisted. In this case, the models built from the 
k-nearest neighbors and vector support methods were the most robust, with the 
highest determination coefficients (0.43 and 0.51 respectively), almost doubling 
in skill the result obtained by the ECMWF (0.23). 
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Figure 9. Taylor diagram including the ECMWF ensemble mean forecast and proposed models for the assessment 
period. 

 
These models generate SEDS values around 0.5 or higher for thresholds 

greater than 50 mm, which places it together with the OLR in one of the predic-
tors with the greatest forecast skill (Figure 10(a)). Precisely the latter shows sim-
ilar results, but it tends to show a more pronounced delay of the early peak of 
precipitation more evident compared to T850, with the linear regression model 
being the one that exhibits the most discrete results. 

As for the SLP predictor, it represents with good approximation the monthly 
rainfall thresholds between 50 and just over 100 mm (Figure 10(b)). However, 
the skill indices decrease for values outside this threshold, given that their fore-
casts overestimate those accumulated below 50 mm and underestimate those 
greater than monthly values between 125 and 150 mm. In this sense, the model 
built from the support vectors exhibits the most realistic forecasts. 

In summary, it is observed that the models built from SSTs are not suitable for 
monthly rainfall forecasting, taking into account these experiments designs. The 
SLP and GDI predictors present slightly better results, but limitations persist in 
relation to the forecast thresholds, where the greatest skills are obtained around 
the forecast mean with evident problems of overestimation/underestimation to-
wards the lower/upper limits of forecasted series. In these cases, the models built 
with the k-nearest neighbor method are the most realistic. 

The OLR and T850 predictors are those that represent the monthly accumu-
lated rainfall with greater skill, although, like the rest of the predictors, they 
overestimate accumulations below the 50 mm threshold. Here the linear regres-
sion models presented the least satisfactory results. 

https://doi.org/10.4236/acs.2024.143021


P. M. González-Jardines et al. 
 

 

DOI: 10.4236/acs.2024.143021 347 Atmospheric and Climate Sciences 
 

 
(a) 

 
(b) 

Figure 10. Symmetric extreme dependency index calculated for the models built with the 
OLR (a) and SLP (b). ECMWF forecasts (black). 

3.3. Ensemble Forecast 

Based on described results in the previous section, it is proposed to build an en-
semble with the best performing models in order to take the individual advan-
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tage of each one. Those statistical-dynamic models with the lowest average bias 
and the highest coefficient of determination with respect to the ECMWF were 
selected to form the ensemble. 

Following this philosophy, the models built from the k-nearest neighbor me-
thodology with the predictors GDI, SLP, T850 and OLR, together with simple 
linear regression using the SLP predictor and the vector support methodology 
with T850 and OLR constitute the ensemble members. 

The results suggest that the forecasts using the ensemble mean allow captur-
ing the seasonal characteristics of the wet season, significantly correcting the 
underestimation present in the dynamic model and, in this case partially, the lag 
present in some individual models in relation to the appearance of the early 
rainfall peak (Figure 11(a)). In the transition months (spring and autumn), it 
also achieves some improvement with respect to the individual ensemble mem-
bers, here the vector support model building with the T850 predictor, showed 
the lowest average errors in this period, where the atmospheric dynamic is 
usually complex, suggesting that T850 is an excellent predictor for this region. This 
is coincident with theoretical considerations because this variable represents the 
moisture retention capacity at lower levels, being, in fact, a good index for rain-
fall availability in tropical regions.  

Given that the ensemble average considers the forecast values of each indi-
vidual model, no significant improvements are obtained in relation to the accu-
mulated overestimation present in the DJF trimester, this being the lowest skill 
point of the forecast in general. Despite these shortcomings, the ensemble fore-
cast manages to reduce the forecast errors with respect to each individual model 
and the ECMWF (Figure 11(b)). 
 

 
(a) 
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(b) 

Figure 11. (a) Comparison of annual cycle forecast for the selected years between the 
mean of the statistical-dynamic ensemble and ECMWF. (b) RSME corresponding to the 
mean of the statistical-dynamic ensemble and each of its members. 
 

From a spatial point of view, the ensemble building adequately reflects the 
rainfall spatial distribution throughout the island, even in those months where 
quantitative errors are usually greater, with statistical distributions that do not 
differ significantly from observations (Figure 12). This suggests that the pro-
posed ensemble adequately captures the spatio-temporal rainfall variability but 
may inadequately reflect the thresholds from a quantitative point of view, as it is 
affected by errors inherent to the dynamic model. The application of bias cor-
rection methodologies constitutes other options that could improve the forecast 
quality. 
 

   
(a)                                             (b) 

    
(c)                                             (d) 

Figure 12. Comparison between the monthly rainfall records (a) and the forecasts resulting from the statis-
tical-dynamic ensemble mean (b) corresponding to the months of June; and KGE value taking into account 
the study period between the mean of the statistical-dynamic ensemble (c) and ECMWF (d). 
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Compared to the ECMWF, the use of the statistical-dynamic ensemble fore-
cast with a higher skill the rainfall seasonal behavior in the island, taking into 
account the period analyzed, which is reflected in average KGE values that are 
up to 90% higher (Figure 12). This improvement takes into account a better fit 
in relation to spatial resolution, since the proposed models, when trained in a 
high-resolution observational framework, can capture details of seasonal varia-
bility with a higher degree of discrimination than the European model. 

4. Conclusions 

The present research proposes to apply different PCA regression schemes 
through a group of previously identified predictor variables, extracted from the 
solutions of the ECMWF-SEAS5 ensemble mean, with the purpose of obtaining 
quantitative rainfall forecasts for one month. 

The evaluation of the proposed models suggests that the use of sequential 
training schemes with periods of 20 years does not lead to realistic results in any 
case. In contrast, the application of this training philosophy to periods of 6 
months allows for generating forecasts that reflect the rainfall seasonal trend on 
the island. 

The study leads to the use of T850, OLR and SLP in that order being the pre-
dictors that lead to better results. The introduction of the GDI as a predictor 
leads to realistic forecasts, in this sense more extensive research with the index 
can provide a better under-standing for predictive purposes for the area taking 
into account its characteristics. 

Of the proposed models, the k-nearest neighbor methodology generated re-
sults with higher skill indices in most predictors, except for T850 and OLR 
where the vector support models were more efficient. The main difficulties ob-
served in the forecasts are related to the overestimation of the monthly rainfall in 
the dry season, a situation that was more marked in the DJF trimester, as well as 
a delay in the prediction of the early rainfall peak. Rainfall’s monthly thresholds 
under 50 mm and above 150 mm (to a lesser degree) show lesser performance. 

Building an ensemble with the individual models the quality with respect to 
the individual predictions of the members is enhanced, exceeding the R2 value of 
the individual models by approximately 0.20 and the ECMWF by 0.25. However, 
since no element of weighting or bias correction is included, the proposed en-
semble fails to significantly improve the prediction deficiencies observed in the 
DJF trimester. 

The proposal presented in this research manages to better spatially and quan-
titatively represent the accumulated monthly precipitation in a general sense ex-
pressed in several metrics, as mean values of KGE and R2 are 90% and just over 
50% higher than those of the ECMWF. 

Extending the study period, the application of this methodology to supervised 
learning schemes as well as evaluating other data sources for the predictors will 
allow refining the construction of these models in order to improve predictions.  
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