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Alpha rhythm slowing is an important electroencephalogram(EEG) feature

associated with (AD). This study aims to understand the correlation between

alpha band deceleration and molecular changes from the perspective of

neural computing. Considering the e�ect of Aβ amyloid deposition on the

inhibitory changes in the thalamic, a thalamic cortical model coupled with

Aβ amyloid is established. The results show that Aβ amyloid deposition may

induce neurotoxicity in thalamic reticular nucleus neurons, which results in

inhibitory changes in the thalamus and slows the alpha rhythm of EEG output

from the thalamus. In order to understand the pathogenesis more intuitively,

some numerical simulations are provided to illustrate the obtained theories.

This research is helpful to understand the pathogenesis of AD, so as to provide

theoretical basis for the intervention and control of the disease.

KEYWORDS

Aβ amyloid protein, Alzheimer’s disease, inhibitory neuron population, alpha rhythm,
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1 Introduction

As a common degenerative neurological disease, Alzheimer’s disease (AD) seriously

threatens human health (1). Statistics show that about 50%–60% of dementia patients

are related to AD. It is caused by many complex factors, and its phenomenon is mainly

manifested in the decline of cognitive ability (2). Therefore, the early diagnosis and clinical

intervention of AD have attracted great attention of the society. At present, the neuronal

mechanisms related to the pathogenesis of AD remain unclear. Modeling can help to

understand the temporal and spatial characteristics of various neurological diseases, so as

to predict dynamic trends(3). To gain a clearer understanding of the biomolecular and

neuron-related mechanisms of AD, many people are increasingly turning their attention

to computational models related to neurological or psychiatric disorders(4).

The slowing of alpha band is a common biomarker of AD (5, 6). Therefore, many

computational models based on neural field are proposed to simulate EEG signals (7, 8).

Bhattacharya found that inhibitory neuronal population plays an important role in normal

brain activity by using the computational model of thalamic cortical neuronal population

loop related to AD (9). Recently, Stefanovski incorporated the effect of Aβ amyloid

on neuronal population dynamics into the Jason Ritter network model through neural
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computing method,which linked Aβ amyloid related synaptic

disinhibition to specific alpha rhythm slowing in EEG. The

neurobiological processes more directly related to the pathogenesis

can be identified by neural computing model (10). The inhibitory

effect of thalamic reticular nucleus neuronal population (TRN)

on thalamic relay nucleus neuronal population (TCR) and the

deinhibitory effect of Aβ amyloid protein on inhibitory neuronal

population provide ideas for the realization of inhibitory damage

in this study.

The aggregated Aβ amyloid and its related intermediates cause

damage to the inhibitory synaptic plasticity in the neural circuit

(11–13). This suggests that the impairment of inhibitory neuronal

populations in the brain network leads to Alzheimer’s disease

(14). In Stefanovski’s study, only the disinhibition of Aβ protein

deposition on the inhibitory interneuron population in the cortical

module was considered, resulting in the overexcitation of excitatory

pyramidal neuron population. However, some studies have shown

that thalamic relay nucleus neurons have excitatory relay effects

on pyramidal neurons (15). Based on the inhibitory effect of the

inhibitory thalamic reticular nucleus on the thalamic relay nucleus

(16), we decided to integrate the mapping function of Aβ amyloid

protein in Stefanovski’s study into the thalamic reticular nucleus of

the thalamic module to achieve disinhibition.

According to the above effect of Aβ amyloid on inhibitory

neurons, the ratio of excitability to inhibition time constant of

thalamic cortical circuit model can also simulate the effect of

Aβ amyloid on inhibitory neurons. All these make it possible to

simulate the disinhibition affected by Aβ amyloid in the thalamic

cortical circuit. Meanwhile,the model can well simulate EEG of

brain. The specific steps of this study are as follows. First, we

introduced a thalamic cortical model influenced by Aβ amyloid

and obtained preliminary simulation results. Then the effects of

Aβ amyloid and synaptic connection parameters on the power

spectrum from the model output is discussed. Finally, this study

is summarized.

2 Methods

According to the introduction, our goal is to map the

effect of Aβ amyloid deposition to the thalamic cortical neural

calculation model proposed by Bhattacharya (9). The model

consists of TCR representing excitatory neuron population and

TRN representing inhibitory neuron population. TRN neuron

population has inhibitory projection to TCR neuron population.

On the contrary, TCR neuron population has excitatory feedback to

TRN neuron population and they communicate through synapses

(17, 18) Based on Stefanovski’s recent research (10), we tried to map

the effect of Aβ amyloid deposition on the inhibition time constant

to the inhibitory neuron population in the thalamic cortical neural

calculation model. The thalamic cortical equation and the mapping

function equation from Aβ amyloid to inhibition time constant are

as follows.

ẋret1 = xret2

ẋret2 =
He

τe
P(t)−

2

τe
xret2 −

1

τ 2e
xret1 (1)

ẋtcr1 = xtcr2

ẋtcr2 =
He

τe
S(C3xret1 − C2xtrn1)−

2

τe
xtcr2 −

1

τ 2e
xtcr1 (2)

ẋtrn1 = xtrn2

ẋtrn2 =
Hi

τi(βa)
S(C1xtrn1)−

2

τi(βa)
xtrn2 −

1

τi(βa)2
xtrn1 (3)

S(Vcell) =
2e0

1+ e−ν(Vcell−s0)
(4)

In the model equation, xret ,xtcr and xtrn are the state variables

of retina, thalamic relay nucleus and thalamic reticular nucleus

respectively. He,Hi represent the synaptic strength of excitatory

and inhibitory postsynaptic potential. τe is the excitability time

parameter. τi(βa) is the inhibitory time parameter affected by

Aβ amyloid deposition. Each connectivity parameter Ci : i={1,2,3}

represents the connectivity parameter generated by presynaptic

neuron group. C1 represents the excitatory connection from relay

nucleus to reticular nucleus Cnte, C2 represents the inhibitory

connection from reticular nucleus to relay nucleus Ctni, and C3

represents the external excitatory input of relay nucleus Ctre. The

exogenous input of thalamus module is represented by P(t). With

mean µrand variance φr , Gaussian white noise is used to simulate

P(t). The average potential of the post synaptic is converted into

action potential pulse density by a sigmoid function S(·). the

maximum discharge rate is 2e0 and s0 the discharge threshold. The

slope of S(·) is ν. See Table 1 for specific parameter values.

The output is the post-synaptic potential of the TRN in the

model, in which its equation is defined as:

Vtcr = C3xret1 − C2xtrn1 (5)

The mapping function of amyloid Aβ to inhibitory time

constant:

τi(βa) = S−1
1 (βa)

rβa = 2 ln(Smax · 1s− 1)/(βa,off − βa,max)

β0 = (βa,off + βa,max)/2 (6)

S1(λ) =
Smax − Smin

1+ exp(rλ(λ0−λ))
: 0 < Smin < Smax (7)

In the mapping function of Aβ amyloid to inhibitory time

constant, βa is the current local Aβ amyloid load measured by

PET. βa,off is the threshold cut-off value of Aβ amyloid, which

is used to distinguish normal and pathological Abeta load. βa,max

is the maximum possible load value of βa amyloid detected by

PET in the population. Sigmoid function S1(·) is a continuously

differentiable decreasing conversion function, which is used to

convert the load value of βa detected by PET into inhibitory time

constant τi(βa) and realize the mapping from Aβ amyloid to

inhibitory time constant. rβa and β0 are the slope and midpoint

of sigmoid function respectively. Aβ amyloid loading affects the
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TABLE 1 The relevant parameters are defined in Equations (1)–(5), and all

parameters are derived from the relevant work of Bhattacharya et al. (9).

Parameter Value

He(mv) 3.25

Hi(ms) 22

τe(mV−1) 10

ν(s−1) 0.56

s0 6

e0 25

C1(%) 35

C2(%) 15

C3(%) 7

µr(sps) 0≤ µr ≤100

φr(sps
2) 1

TABLE 2 The specific values of the parameters defined in Equations (6),

(7), and the values of all parameters are derived from stefanovski’s

relevant work (10).

Parameter Value

βa,max 2.65

βa,min 1.4

τi(βa)(ms) 14.29≤ τi(βa) ≤50

Smax 0.07

Smin 0.02

inhibitory time constant, which follows the sigmoid function curve.

The variation changes from Smin to Smax. Therefore, the inhibitory

dendritic time constant τi(βa) varies from 1/Smax to 1/Smin. See

Table 2 for specific parameter values.

The related equations defined in the model are calculated

in MATLAB by fourth-order/fifth-order Runge-Kutta method.

The total simulation time is 30s. The parameter values of each

population were repeated for 20 times to generate the membrane

potential of thalamic relay nucleus neurons and the average value

was taken to ensure the accuracy of statistics. It is necessary to better

extract the features of EEG signal by computer technology analysis

and other auxiliary techniques. The power spectrum analysis of

EEG signals is an useful means to study Alzheimer’s disease (19). To

get the power spectral density of alpha (8–13Hz) frequency band of

thalamic output, we analyzed the membrane potential of thalamic

relay nucleus neuron population: (1) The membrane potential is

sampled and bandpass filtered by a butterworth filter. (2) Welch

period graph method is used to calculate the power spectrum (20).

3 Results

3.1 Regulate Aβ amyloid standardized
uptake value ratio (SUVR) βa

Stefanovski showed that the standardized uptake value ratio

(SUVR) of Aβ amyloid affects the inhibitory time constant of

inhibitory neuron population. The SUVP is expressed as parameter

βa in the above formula (10). In this study, the inhibitory time

constant is affected by changing the deposition amount of Aβ

amyloid in the thalamic cortical model. The alpha rhythm of the

model output signal is observed.

When βa is lower than the clinical critical value of 1.4, the τi(βa)

is not affected. the corresponding τi(βa) is 14.29ms(21). Therefore,

we default that the τi(βa) = 14.29ms is not affected by Aβ amyloid.

This study believes that there is no abnormal pathology in such

brain regions. When βa is between 1.4 and 1.95, the corresponding

τi(βa) is between 14.29ms and 20ms. In this state, these regions

correspond to moderate plogical state of Aβ amyloid in the brain

region.When βa is between 1.96 and 2.15, the corresponding τi(βa)

is between 20ms and 28ms. At this time, these areas are moderate

to severe Aβ amyloid pathological state (21). When there is a

serious pathological state of Aβ amyloid in the brain region,the

time constant is greater than 28ms. βa will be greater than 2.15.

When the mean value µr of input noise is arbitrarily selected,

the power spectral density analysis is performed based on the

signal output from the above model. Figure 1 demonstrates the

influences of βa on the peak power of the signal output from the

model. The change range of βa is 1.4-5.0, which corresponds to

the state of normal to seriously abnormal pathological brain. The

experimental results show that when the noise mean value µr is

randomly selected, the peak power output from the calculation

model decreases with the increase of βa, and finally tends to be

relatively stable.

This study further analyzes the effect of Aβ amyloid on

thalamic cortical model. Figure 2 shows the time series of signals

output under the influence of Aβ amyloid. Figure 3 demonstrates

the power spectral of the model output signal corresponding to

some values. It can be seen from the figure that with the increase of

Aβ amyloid deposition in thalamus, the corresponding peak power

and dominant frequency within alpha band decrease. It can also

be seen from the figure that this change is very small in moderate

diseases, but very significant in the pathology of severe diseases. As

can be seen from Figure 4, with the increase of parameter related to

Aβ amyloid in the model, the power of each frequency band within

alpha band decreases. The result shows that when the parameter

related to Aβ amyloid increased in the thalamic cortical model, the

alpha rhythm output from the model slowed down.

3.2 Regulate the synaptic connection
parameter C1 from TCR to TRN

In Bhattacharya’s study, the increase of excitability parameter

C1 indicates that the synaptic activity of TCR neurons to TRN

neurons is increased (22) In this section, the value of excitability

parameter C1 was changed between 0 and 100 in the state of

moderate to severe disease. Then the effect on the alpha band was

observed through power spectrum analysis.

In moderate to severe illness, C1 value is increased on the

basis of excitability parameter C1 = 35. Alpha band power is

analyzed through power spectrum analysis. It can be observed from

Figure 5 that with the increase of C1 value, the corresponding alpha

band peak power in the power spectrum increases significantly.
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FIGURE 1

When µr={70,80,90,100}, the variation trend of the peak power of the signal output from the model with the change of βa.

FIGURE 2

When µr=86, the time series of the signal output from the model when βa={0.001,1.92,2.10,2.14,3.00}.

The time series corresponding to the EEG signal output from

the model is shown in Figure 6. The results showed that in

moderate to severe disease, the increase of the excitatory synaptic

activity in the afferent pathway from TCR neuron population

to TRN neuron population can lead to peak power within

alpha band increase significantly. This may indicate that when

Aβ amyloid deposition destroys the inhibitory of TRN neuron

population, excitatory synaptic activity of TRN neuron population

afferent pathway can enhance the inhibitory of TRN neuron

population.
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FIGURE 3

When µr=86, power spectral density of the signal output from the model when βa={0.001,1.92,2.10,3.00}.

FIGURE 4

When µr=86, bar graph of power of each frequency band within α frequency band of the signal output from the model when

βa={0.01,1.92,2.10,3.00}.
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FIGURE 5

When µr = 86, βa = {2.10}, the power spectral of the signal output from the model varying with C1.

FIGURE 6

When µr = 86,βa = {2.10}, the time series of the signal output from the model varying with C1.

3.3 Regulate Gaussian white noise mean µr

The mean µr of Gaussian white noise is a key parameter

in the sensory pathway of thalamic cortical model. Higher input

value means that the activity of sensory pathway increases, which

may indicate the recovery of sensory information related to

eye opening. Therefore, this section explores the effect of µr

on the peak power of the alpha band by adjusting the mean

µr of Gaussian white noise in the moderately to severely ill

states.
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FIGURE 7

When βa = {2.10}, the power spectral of the signal output from the model varying with µr .

FIGURE 8

When βa = {2.10}, the time series of the signal output from the model varying with µr .

This section mainly simulates the enhancement of external

stimuli by increasing the mean value of Gaussian white noise based

on µr = 86. The corresponding changes of EEG signal and peak

power spectrum is observed under different mean values µr . With

the increase of µr , the growth of the peak power in the alpha band

can be seen from Figure 7. The result shows that in moderate to

severe diseases, the increase of external stimulation of TCR neurons

could significantly increase the peak power spectrum of alpha band.
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It can be observed in Figure 8 that the time series corresponding to

the mean values of different input noise.

4 Conclusions

This study mainly consideres the neurotoxicity of Aβ amyloid

deposition to thalamic reticular nucleus, giving rise to damage on

TRN inhibitory function. This study firstly consideres the effect of

Aβ amyloid deposition on the inhibition time constant of thalamic

reticular nucleus, and integrated it into the thalamic cortical circuit

model. By increasing the parameter βa related to the content

of Aβ amyloid deposition, the disinhibitory neuropathology of

Alzheimer’s disease caused by Aβ amyloid deposition is simulated.

Then the power spectrum of the signal output from the thalamus is

analyzed to explore the potential neural mechanism related to the

abnormal changes of alpha band.

The results show that thalamic reticular nucleus neuron

population play an important role in maintaining normal thalamic

concussion. Aβ amyloid deposition will produce neurotoxicity

to thalamic reticular nucleus neuron population, resulting in

inhibitory damage. The peak power spectral as well as dominant

frequency in the α band are reduced.

In addition, in moderate to severe disease, the increase of

excitatory synaptic activity in the afferent pathway from TCR to

TRN promotes the increase of the peak power in the α band. This

may indicate that increasing the excitatory input in the afferent

pathway of TRN neuron population can enhance the inhibitory

function of TRN neuron population. By increasing the mean value

µr of excitatory input in the sensory pathway, the power spectral in

the α band also increased significantly.

5 Despite the notable findings, the
study has limitations

This study investigates the impact of Aβ amyloid deposition

on the inhibition time constant of the thalamic reticular nucleus

(TRN) and utilizes power spectrum analysis to explore the

potential neural mechanisms related to abnormal changes in the

alpha band, providing a valuable perspective for understanding

the neuropathology of Alzheimer’s disease (AD). Although this

research offers important insights into the role of Aβ amyloid

deposition in AD, the pathology of AD involves a broader range

of factors, including tau protein aggregation, neuroinflammation,

and oxidative stress. This study focuses on the effects of Aβ

amyloid and does not account for these factors that could offer

additional insights into the causes of AD. In future research, a more

comprehensive model will be developed that includes key factors

beyond Aβ amyloid deposition to more fully simulate the complex

pathology of AD. The development of such an integrated model

will aid in a deeper understanding of the multifactorial pathological

mechanisms of AD and in exploring new therapeutic strategies.
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