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1 Introduction

Dual numbers were first introduced by W.K. Clifford in 1873. This intriguing concept has numerous applications,
including screw systems, modeling plane joints, iterative methods for displacement analysis of spatial mechanisms,
inertial force analysis of spatial mechanisms, and more [1, 2].

Here are some general information about the applications of dual numbers.

• Engineering and Physics:

Used in electrical engineering and control systems.

Applied in wave analysis and signal processing.

Utilized in mechanical engineering for vibration analysis, among other applications.

• Mathematics and Geometry:

Alongside complex numbers, dual numbers contribute to the extension of mathematical structures.

Employed in geometry to represent various transformations.

• Computer Science:

Found in graphics and image processing.

Used in robotics and control systems for modeling and analysis.

• Finance and Economics:

Applied in risk analysis and financial engineering.

Utilized in option pricing and portfolio management.

• Optimization Problems:

Used for finding solutions in optimization problems.

Acts as a tool in linear programming and decision-making models.

• Quantum Mechanics:

Employed in quantum computers and quantum mechanics for mathematical representation.

Next, we give some information raleted to hypercomplex number system and then we give some properities about
dual number [3]-[7]. As discussed in [8], the hypercomplex numbers systems are extensions of real numbers. Some
examples of hypercomplex number systems ,which is commutative , are complex numbers, hyperbolic numbers
and dual numbers.

• Complex numbers are formed by extending the real number system with the imaginary unit, denoted as
”i”, which satisfies the equation i2 = −1. Complex numbers is defined as follows,

C = {z = a+ ib : a, b ∈ R, i2 = −1}.

• As discussed in [9], hyperbolic numbers extend the real number system with the hyperbolic unit j, where
j2 = 1. Hyperbolic numbers is defined as follows,

H = {h = a+ jb : a, b ∈ R, j2 = 1, j 6= ±1}.

• As discussed in[10], dual numbers extend the real number system by introducing a new element ε, where
ε2 = 0. Dual numbers is defined as follows,

D = {d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}.
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Let D ={d = a+ εb : a, b ∈ R, ε2 = 0, ε 6= 0}⊆ R×R is a set called dual numbers and we define following process
on D for every d1 = x+ x∗ε, d2 = y + y∗ε ∈ D as

+ : D× D→ D, d1 + d2 = (x+ x∗ε) + (y + y∗ε) = (x+ y) + (x∗ + y∗)ε,

· : D× D→ D, d1 · d2 = (x+ x∗ε) · (y + y∗ε) = xy + (xy∗ + x∗y)ε,

d1 = (x+ x∗ε) = (y + y∗ε) = d2 if only if x = x∗, y = y∗.

Using above expressions we have following definations,

• – (D,+) is an abelian grup,

– (D,+, ·) is commitative ring (where for every d ∈ D we have d · 1 = d so that 1 is unit eleman on ·
process),

– (D,+, ·) is not field because for every d ∈ D such that there is no element d · d′ = d′ · d = 1,

– the D is a vector space on R,

– D̃ = {a+ 0ε : a ∈ R},which is subspace of D, is isomorph R,

– (1, ε) is basis of D,

– for every d = (x+ x∗ε) ∈ D such that d = (x− x∗ε) ∈ D , 1
d

= ( 1
x

+ x∗

x
ε) ∈ D, d · d = x2,(d) = d

– for every d1 = x + x∗ε, d2 = y + y∗ε ∈ D,(y 6= 0), d1
d2

= (x
y

+ x∗−xy∗

y2 ε) ∈ D, ( d1
d2

) = ( d1
d2

),

(d1 + d2) = (d1 + d2) and (d1 · d2) = (d1 · d2). For more detail see [11]

• Dual hyperbolic number is a type of hypercomplex number, specifically a member of the hyperbolic
number system. A dual hyperbolic number is defined by

q = (a0 + ja1) + ε(a2 + ja3) = a0 + ja1 + εa2 + εja3

where a0, a1, a2, a3 ∈ R are real numbers.

The set of all dual hyperbolic numbers are defined as

HD = {a0 + ja1 + εa2 + εja3 : a0, a1, a2, a3 ∈ R, j2 = 1, j 6= ±1, ε2 = 0, ε 6= 0}.

where ε denotes the pure dual unit (ε2 = 0, ε 6= 0), j denotes the hyperbolic unit (j2 = 1), and εj denotes the
dual hyperbolic unit ((jε)2 = 0).

The {1, j, ε, εj} is linear independent and HD = sp{1, j, ε, εj} so that {1, j, ε, εj} is a basis of HD.For more
detail see [12]. The next properties are holds for the base elements {1, j, ε, εj} of dual hyperbolic numbers
(commutative multiplications):1.ε = ε, 1.j = j, ε2 = ε.ε = (jε)2 = 0, j2 = j.j = 1, ε.j = j.ε, ε.(εj) = (εj).ε = 0,
j(εj) = (εj)j = ε.

Next, we will introduce a range of expressions associated with generalized Guglielmo numbers.

A generalized Guglielmo sequence, with the initial values W0,W1,W2 not all being zero, {Wn}n≥0

= {Wn(W0,W1,W2)}n≥0 is defined by the third-order recurrence relations as follow

Wn = 3Wn−1 − 3Wn−2 +Wn−3; W0,W1,W2 (n ≥ 2). (1.1)

Therefore reccurance relation of {Wn}n≥0 can be given to negative subscripts by defining

W−n = 3W−(n−1) − 3W−(n−2) +W−(n−3)

for n = 1, 2, 3, .... As a result, recurrence (1.1) is true for all integer n.

In the Table 1 We provide the initial set of generalized Guglielmo numbers, both with positive and negative
subscripts.
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Table 1. A few generalized Guglielmo numbers

n Wn W−n

0 W0 W0

1 W1 3W0 − 3W1 +W2

2 W2 6W0 − 8W1 + 3W2

3 W0 − 3W1 + 3W2 10W0 − 15W1 + 6W2

4 3W0 − 8W1 + 6W2 15W0 − 24W1 + 10W2

5 6W0 − 15W1 + 10W2 21W0 − 35W1 + 15W2

6 10W0 − 24W1 + 15W2 28W0 − 48W1 + 21W2

Throughout this paper we obtainWn is the nth generalized Guglielmo numbers with the initial valuesW0,W1,W2

where n is an integer.

When the initial values are W0 = 0,W1 = 1,W2 = 3 we generate the triangular sequence, known as {Tn}, when
the initial values are W0 = 3,W1 = 3,W2 = 3 we generate the Triangular-Lucas sequence, known as {Hn},
when the initial values are W0 = 0,W1 = 2,W2 = 6 we generate the oblong sequence {On} and when the initial
values are W0 = 0,W1 = 1,W2 = 5 we generate the pentegonal sequence, known as {pn}. In other words,
triangular sequence {Tn}n≥0, triangular-Lucas sequence {Hn}n≥0, oblong sequence {On}n≥0 and pentegonal
sequence {pn}n≥0 are determined by the third-order recurrence relations

Tn = 3Tn−1 − 3Tn−2 + Tn−3, T0 = 0, T1 = 1, T2 = 3, (1.2)

Hn = 3Hn−1 − 3Hn−2 +Hn−3, H0 = 3, H1 = 3, H2 = 3, (1.3)

On = 3On−1 − 3On−2 +On−3, O0 = 0, O1 = 2, O2 = 6, (1.4)

pn = 3pn−1 − 3pn−2 + pn−3, p0 = 0, p1 = 1, p2 = 5. (1.5)

The sequences {Tn}n≥0, {Hn}n≥0, {On}n≥0 and {pn}n≥0 can be extended to negative subscripts by defining,

T−n = 3T−(n−1) − 3T−(n−2) + T−(n−3),

H−n = 3H−(n−1) − 3H−(n−2) +H−(n−3),

O−n = 3O−(n−1) − 3O−(n−2) +O−(n−3),

p−n = 3p−(n−1) − 3p−(n−2) + p−(n−3),

for n = 1, 2, 3, ... respectively. As a result, recurrences (1.2)-(1.5) hold for all integer n.

We have the option to several essential properties of generalized Guglielmo numbers that are required.

• Binet formula of generalized Guglielmo sequence can be calculated using its characteristic equation given
as

x3 − 3x2 + 3x− 1 = (x− 1)3 = 0.

The roots of the characteristic equation are given as follow

α = β = γ = 1.

Binet formula are given, using these roots and the recurrence relation, as follow

Wn = A1 +A2n+A3n
2 (1.6)

where the coefficients of n above equality as

A1 = W0, (1.7)

A2 =
1

2
(−W2 + 4W1 − 3W0),

A3 =
1

2
(W2 − 2W1 +W0).
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Here, Binet formula of triangular, triangular-Lucas, oblong and pentagonal sequences are

Tn =
n(n+ 1)

2
,

Hn = 3,

On = n(n+ 1),

pn =
1

2
n (3n− 1) .

• The generating function of {Wn} = {Wn(W0,W1,W2)}, for any integer n, is

∞∑
n=0

Wnx
n =

W0 + (W1 − 3W0)x+ (W2 − 3W1 + 3W0)x2

1− 3x+ 3x2 − x3 . (1.8)

• The Cassini identity for {Wn} = {Wn(W0,W1,W2)}, for any integer n, is

Wn+1Wn−1 −W 2
n = −1

2

(
A+Bn+ Cn2) (1.9)

where

A = 2W 2
0 + 6W 2

1 − 6W0W1 − 2W1W2,

B = −3W 2
0 − 8W 2

1 −W 2
2 + 10W0W1 − 4W0W2 + 6W1W2,

C = W 2
0 + 4W 2

1 +W 2
2 − 4W0W1 + 2W0W2 − 4W1W2.

If you require further information regarding generalized Guglielmo numbers, see [13]

Now, we give some information, related to dual ,hyperbolic, dual hyperbolic and other sequences, published in
litarature.

• Cockle [14] studied the hyperbolic numbers with complex coefficients.

• Eren and Soykan [15] studied the generalized Generalized Woodall Numbers.

• Cheng and Thompson [16] introduced dual numbers with complex coefficients.

• Akar, Yüce and Şahin [12] presented the dual hyperbolic numbers.

• Soykan, Gümüş, Göcen [17] presented dual hyperbolic generalized Pell numbers given by

V̂n = Vn + jVn+1 + εVn+2 + jεVn+3

where generalized Pell numbers are given by Vn = 2Vn−1 + Vn−2, V0 = a, V1 = b (n ≥ 2) with the initial values
V0, V1 not all being zero.

• Cihan, Azak, Güngör, Tosun [18] studied dual hyperbolic Fibonacci and Lucas numbers given by, respectively,

DHFn = Fn + jFn+1 + εFn+2 + jεFn+3,

DHLn = Ln + jLn+1 + εLn+2 + jεLn+3

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, Ln = Ln−1 +
Ln−2, L0 = 2, L1 = 1.

• Soykan, Taşdemir and Okumuş [19] studied dual hyperbolic generalized Jacopsthal numbers given by
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Ĵn = Jn + jJn+1 + εJn+2 + jεJn+3

whereJn = Jn−1 + 2Jn−2, J0 = a, J1 = b.

• Bród, Liana, W loch [20] studied dual hyperbolic generalized balancing numbers as

DHBn = Bn + jBn+1 + εBn+2 + jεBn+3

where Bn = 6Bn−1 −Bn−2, B0 = 0, B1 = 1.

• Soykan, Yilmaz [21] studied dual hyperbolic generalized Guglielmo numbers as

Ŵn = Wn + jWn+1 + εWn+2 + jεWn+3

where Wn = 3Wn−1 − 3Wn−2 +Wn−3 with the initial condition W0,W1,W2.

• Soykan, Yilmaz [22] studied hyperbolic generalized Guglielmo numbers as

HWn = Wn + jWn+1

where Wn = 3Wn−1 − 3Wn−2 +Wn−3 with the initial condition W0,W1,W2.

• Gürses, Şentürk, Yüce [23] studied dual-generalized complex Fibonacci and Lucas numbers, respectively,
as

F̃n = Fn + jFn+1 + εFn+2 + jεFn+3,

L̃n = Ln + jLn+1 + εLn+2 + jεLn+3,

where Fibonacci and Lucas numbers, respectively, given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, Ln = Ln−1 +
Ln−2, L0 = 2, L1 = 1.

• Nurkan ,Guven, [24] studied Dual Fibonacci Quaternions as

Q̃n = (Fn + Fn+1) + i(Fn+1 + Fn+2) + j(Fn+2 + Fn+3) + k(Fn+3 + Fn+4)

where Fibonacci given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.

• Aydın [25] studied Dual Jacobsthal Quaternions as

QJk;n = Jk;n + i1Jk;n+1 + i2Jk;n+2 + i3Jk;n+3

where Jn = Jn−1 + 2Jn−2, J0 = 0, J1 = 1.

• Halici [26] studied Dual Fibonacci Octonions as

p =

7∑
s=0

Fn+ses

where Fibonacci given by Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1.

Next section, we present the dual hyperbolic generalized Guglielmo numbers and give some properties of these
numbers.
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2 Dual Generalized Guglielmo Numbers and their Generating
Functions and Binet’s Formulas

In this section, we define dual generalized Guglielmo numbers then we present generating functions and Binet
formulas for these numbers.

On the set of HD, we will now explore dual generalized Guglielmo numbers on H.The nth generalized dual
Guglielmo numbers, with W̃0, W̃1, W̃2 being the initial conditions, are defined as follows

W̃n = Wn + εWn+1. (2.1)

in addition (2.1) can be written to negative subscripts by defining,

W̃−n = W−n + εW−n+1 (2.2)

so identity (2.1) holds for all integers n.

Now we define some special cases of dual generalized Guglielmo numbers. The nth dual triangular numbers,
the nth dual triangular-Lucas numbers, the nth dual oblong numbers and the nth dual pentegonal numbers,
respectively, are given as the nth generalized dual triangular numbers T̃n = Tn + εTn+1, with T̃0, T̃1, T̃2 being
the initial conditions, are defined as follows

T̃n = Tn + εTn+1

where
T̃0 = T0 + εT1, T̃1 = T1 + εT2, T̃2 = T2 + εT3,

the nth generalized dual triangular-Lucas numbers H̃n = Hn + εHn+1, with H̃0, H̃1, H̃2 being the initial
conditions, are defined as follows

H̃n = Hn + j Hn+1

where
H̃0 = H0 + ε H1, H̃1 = H1 + ε H2, H̃2 = H2 + ε H3,

the nth generalized dual triangular numbers Õn = On + εOn+1, with Õ0, Õ1, Õ2 being the initial conditions, are
defined as follows

Õn = On + εOn+1

where
Õ0 = O0 + εO1, Õ1 = O1 + εO2, Õ2 = O2 + εO3,

the nth generalized dual triangular numbers p̃n = pn + jpn+1, with p̃0, p̃1, p̃2 being the initial conditions, are
defined as follows

p̃n = pn + εpn+1

where
p̃0 = p0 + εp1, p̃1 = p1 + εp2, p̃2 = p2 + εp3.

For dual triangular numbers, taking Wn = Tn, T0 = 0, T1 = 1, T2 = 3, we get

T̃0 = 3ε, T̃1 = 1 + 6ε, T̃2 = 3 + 10ε,

for dual triangular-Lucas numbers, taking Wn = Hn, H0 = 3, H1 = 3, H2 = 3, we get

H̃0 = 3 + 3ε, H̃1 = 3 + 3ε, H̃2 = 3 + 3ε,

for dual oblong numbers,taking Wn = On, O0 = 0, O1 = 2, O2 = 6, we get

Õ0 = 6ε, Õ1 = 2 + 12ε, Õ2 = 6 + 20ε,
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and for dual pentegonal numbers, taking Wn = pn, p0 = 0, p1 = 1, p2 = 5, we get

p̃0 = 5ε, p̃1 = 1 + 12ε, p̃2 = 5 + 22ε,

Thus, by using (2.1), we can formulate the following identity for non-negative integers n,

W̃n = 3W̃n−1 − 3W̃n−2 + W̃n−3. (2.3)

Hence the sequence {W̃n}n≥0 can be given as

W̃−n = 3W̃−(n−1) − 3W̃−(n−2) + W̃−(n−3),

for n∈{1, 2, 3....} by using (2.2). Accordingly, recurrence (2.3) is true for all integer n.

In the Table 2, We provide the initial dual generalized Guglielmo numbers with both positive and negative
subscripts.

Table 2. Some dual generalized Guglielmo numbers

n W̃n W̃−n

0 W̃0 W̃0

1 W̃1 3W̃0 − 3W̃1 + W̃2

2 W̃2 6W̃0 − 8W̃1 + 3W̃2

3 W̃0 − 3W̃1 + 3W̃2 10W̃0 − 15W̃1 + 6W̃2

4 3W̃0 − 8W̃1 + 6W̃2 15W̃0 − 24W̃1 + 10W̃2

5 6W̃0 − 15W̃1 + 10W̃2 21W̃0 − 35W̃1 + 15W̃2

6 10W̃0 − 24W̃1 + 15W̃2 28W̃0 − 48W̃1 + 21W̃2

Note that

W̃0 = W0 + εW1,

W̃1 = W1 + εW2,

W̃2 = W2 + εW3.

Some dual triangular numbers, dual triangular-Lucas numbers, dual oblong numbers, and dual pentagonal
numbers with positive or negative subscripts are presented tables which is given below.

Table 3. dual triangular numbers

n T̃n T̃−n

0 ε
1 1 + 3ε 0
2 3 + 6ε 1
3 6 + 10ε 3 + ε
4 10 + 15ε 6 + 3ε
5 15 + 21ε 10 + 6ε
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Table 4. dual triangular-Lucas numbers

n H̃n H̃−n

0 3 + 3ε
1 3 + 3ε 3 + 3ε
2 3 + 3ε 3 + 3ε
3 3 + 3ε 3 + 3ε
4 3 + 3ε 3 + 3ε
5 3 + 3ε 3 + 3ε

Table 5. dual oblong numbers

n Õn Õ−n

0 2ε
1 2 + 6ε
2 6 + 12ε 2
3 12 + 20ε 6 + 2ε
4 20 + 30ε 12 + 6ε
5 30 + 42ε 20 + 12ε

Table 6. dual pentegonal numbers

n p̃n p̃−n

0 ε
1 1 + 5ε 2
2 5 + 12ε 7 + 2ε
3 12 + 22ε 15 + 7ε
4 22 + 35ε 26 + 15ε
5 35 + 51ε 40 + 26ε

Now, we will establish Binet’s formula for the dual generalized Guglielmo numbers, and for the remainder of the
study, we will utilize the following notations:

α̃ = 1 + ε, (2.4)

β̃ = ε. (2.5)

Note that the following identities are true:

α̃2 = 1 + 2ε,

β̃2 = 0,

α̃β̃ = β̃.

Theorem 2.1. (Binet’s Formula) For any integer n, the nth dual generalized Guglielmo number can be expressed
as follows

W̃n = (α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)n+ ãA3n
2 (2.6)

where α̃, β̃ are given as (2.4)-(2.5)
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Proof. Using (1.6) and (1.7)) we can write following identity

W̃n = Wn + εWn+1,

= A1 +A2n+A3n
2 + (A1 +A2 (n+ 1) +A3 (n+ 1)2)ε

= (α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)n+ ãA3n
2.

This proves (2.6). �

As special cases, for any integer n, the Binet’s Formula of nth dual triangual numbers, the Binet’s Formula of
nth dual triangular-Lucas numbers, the Binet’s Formula of nth dual oblong numbers and the Binet’s Formula
of nth dual pentegonal numbers, respectively, are

T̃n =
1

2
(β̃ + (α̃+ 2β̃)n+ α̃n2),

Ĥn = 3α̃,

Õn = 2β̃ +
(
α̃+ 2β̃

)
n+ α̃n2,

p̃n =
1

2
(2β̃ +

(
6β̃ − α̃

)
n+ 3α̃n2).

Next, we will obtain the generating function of the dual generalized Guglielmo numbers.

Theorem 2.2. The generating function for the dual generalized Guglielmo numbers is

fW̃n
(x) =

W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x2

(1− 3x+ 3x2 − x3)
. (2.7)

Proof. Let the generating function of the dual generalized Guglielmo numbers is given below

fW̃n
(x) =

∞∑
n=0

W̃nx
n.

Following that, by utilizing the definition of the dual generalized Guglielmo numbers, and substracting xfW̃n
(x),

x2fW̃n
(x) and x3fW̃n

(x) from fW̃n
(x), we get

(1− 3x+ 3x2 − x3)fGW̃n
(x) =

∞∑
n=0

W̃nx
n − 3x

∞∑
n=0

W̃nx
n + 3x2

∞∑
n=0

W̃nx
n − x3

∞∑
n=0

W̃nx
n,

=

∞∑
n=0

W̃nx
n − 3

∞∑
n=0

W̃nx
n+1 + 3

∞∑
n=0

W̃nx
n+2 −

∞∑
n=0

W̃nx
n+3,

=

∞∑
n=0

W̃nx
n − 3

∞∑
n=1

W̃n−1x
n + 3

∞∑
n=2

W̃n−2x
n −

∞∑
n=3

W̃n−3x
n,

= (W̃0 + W̃1x+ W̃2x
2)− 3(W̃x+ W̃1x

2) + 3GW0x
2

+
∞∑

n=3

(W̃n − 3W̃n−1 + 3W̃n−2 − W̃n−3)xn,

= W̃0 + W̃1x+ W̃2x
2 − 3W̃0x− 3W̃1x

2 + 3W̃0x
2,

= W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x2.

Note that we use the recurrence relation W̃n = 3W̃n−1 − 3W̃n−2 + W̃n−3. We rearrange equation which is given
above then we obtain (2.7). � As specific cases, the generating functions of the dual triangular, triangular-Lucas,
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oblong and dual pentegonal numbers are given by

fT̃n
(x) =

(j + 3ε+ 6jε) + (1− 8jε− 3ε)x+ (ε+ 3jε)x2

(1− 3x+ 3x2 − x3)
,

fH̃n
(x) =

(3 + 3j + 3ε+ 3jε) + (−6− 6j − 6ε− 6jε)x+ (3 + 3j + 3ε+ 3jε)x2

(1− 3x+ 3x2 − x3)
,

fÕn
(x) =

(2j + 6ε+ 12jε) + (2− 16jε− 6ε)x+ (2ε+ 6jε)x2

(1− 3x+ 3x2 − x3)
,

fp̃n(x) =
(j + 5ε+ 12jε) + (1 + 2j − 3ε− 14jε)x+ (2 + ε+ 5jε)x2

(1− 3x+ 3x2 − x3)
,

respectively. �

3 Deriving Binet’s Formula from the Generating Function

Next, we will explore the Binet’s formula for the dual generalized Guglielmo numbers {W̃n} by utilizing
generating function fW̃n

(x).

Theorem 3.1. (Binet formula of dual generalized Guglielmo numbers)

W̃n = (α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)n+ ãA3n
2. (3.1)

Proof. We write

∞∑
n=0

W̃nx
n =

W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x2

(1− 3x+ 3x2 − x3)
=

d1
(1− x)

+
d2

(1− x)2
+

d3
(1− x)3

, (3.2)

so that

∞∑
n=0

W̃nx
n =

d1
(1− x)

+
d2

(1− x)2
+

d3
(1− x)3

,

=
d1(1− x)2 + d2(1− x) + d3

(1− x)3
,

then, we get

W̃0 + (W̃1 − 3W̃0)x+ (W̃2 − 3W̃1 + 3W̃0)x2 = (d1 + d2 + d3) + (−2d1 − d2)x+ d1x
2.

Ensuring equality of coefficients for the terms x of the same degree, we obtain

W̃0 = d1 + d2 + d3, (3.3)

W̃1 − 3W̃0 = −2d1 − d2,
W̃2 − 3W̃1 + 3W̃0 = d1.

Solving the (3.3), we can derive the following identities

d1 = 3W̃0 − 3W̃1 + W̃2,

d2 = 5W̃1 − 3W̃0 − 2W̃2,

d3 = W̃0 − 2W̃1 + W̃2.
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Thus (3.2) stated as follows

∞∑
n=0

W̃nx
n = d1

∞∑
n=0

xn + d2

∞∑
n=0

(n+ 1)xn + d3

∞∑
n=0

n2 + 3n+ 2

2
xn,

=

∞∑
n=0

(d1 + d2(n+ 1) + d3
n2 + 3n+ 2

2
)xn,

=

∞∑
n=0

(W̃0 +
1

2
(−W̃2 + 4W̃1 − 3W̃0)n+

1

2
(W̃2 − 2W̃1 + W̃0)n2)xn.

Consequently, we get
W̃n = Ã1 + Ã2n+ Ã3n

2

where

Ã1 = W̃0,

Ã2 =
1

2
(−W̃2 + 4W̃1 − 3W̃0),

Ã3 =
1

2
(W̃2 − 2W̃1 + W̃0).

Take note that the following equalities are valid.

Ã1 = W̃0 (3.4)

= W0 + εW1

= (1 + ε)W0 + ε(
1

2
(−W2 + 4W1 − 3W0)) + (ε)(

1

2
(W2 − 2W1 +W0))

= α̂A1 + β̂A2 + γ̂A3,

Ã2 =
1

2
(−W̃2 + 4W̃1 − 3W̃0) (3.5)

=
1

2
((−3W0 + 4W1 −W2) + ε(−W0 +W2)

= (1 + ε)(
1

2
(−W2 + 4W1 − 3W0)) + ε((W2 − 2W1 +W0))

= (âA2 + 2β̂A3),

Ã3 =
1

2
(W̃2 − 2W̃1 + W̃0) (3.6)

=
1

2
((W2 − 2W1 +W0) + ε(W2 − 2W1 +W0)

= ãA3.

The following equality can be written by using (3.4), (3.5) and (3.6).

W̃n = (α̂A1 + β̂A2 + γ̂A3) + (âA2 + 2β̂A3)n+ âA3n
2. �

4 Some Identities Related to Dual Generalized Guglielmo
Numbers

We will now introduce some specific identities, i.e Simpson’s formula, Catalan’s identity and Cassini’s identity,
for the dual generalized Guglielmo sequence {W̃n}. The next theorem gives the Simpson’s formula for the dual
generalized Guglielmo numbers.

46



Yılmaz and Soykan; Asian J. Prob. Stat., vol. 26, no. 4, pp. 35-57, 2024; Article no.AJPAS.115493

Theorem 4.1. (Simpson’s formula for dual generalized Guglielmo numbers) For all integers n we have,∣∣∣∣∣∣∣
W̃n+2 W̃n+1 W̃n

W̃n+1 W̃n W̃n−1

W̃n W̃n−1 W̃n−2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

∣∣∣∣∣∣∣ . (4.1)

Proof. First we assume that n > 0. For the proof, we employ mathematical induction on n. For n = 0 identity
(4.1) is true. Now we take (4.1) is true for n = k. Therfore, the following identity can be written∣∣∣∣∣∣∣

W̃k+2 W̃k+1 W̃k

W̃k+1 W̃k W̃k−1

W̃k W̃k−1 W̃k−2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

∣∣∣∣∣∣∣ .
If we take n = k + 1, we can get∣∣∣∣∣∣∣

W̃k+3 W̃k+2 W̃k+1

W̃k+2 W̃k+1 W̃k

W̃k+1 W̃k W̃k−1

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
3W̃k+2 − 3W̃k+1 + W̃k W̃k+2 W̃k+1

3W̃k+1 − 3W̃k + W̃k−1 W̃k+1 W̃k

3W̃k − 3W̃k−1 + W̃k−2 W̃k W̃k−1

∣∣∣∣∣∣∣
= 3

∣∣∣∣∣∣∣
W̃k+2 W̃k+2 W̃k+1

W̃k+1 W̃k+1 W̃k

W̃k W̃k W̃k−1

∣∣∣∣∣∣∣− 3

∣∣∣∣∣∣∣
W̃k+1 W̃k+2 W̃k+1

W̃k W̃k+1 W̃k

W̃k−1 W̃k W̃k−1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
W̃k W̃k+2 W̃k+1

W̃k−1 W̃k+1 W̃k

W̃k−2 W̃k W̃k−1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
W̃k+2 W̃k+1 W̃k

W̃k+1 W̃k W̃k−1

W̃k W̃k−1 W̃k−2

∣∣∣∣∣∣∣ .
Attention that if we take n < 0 the proof can be conducted in a similarly. Thus, the proof is concluded. �

From Theorem (4.1), we get following corollary.

Corollary 4.2. (a)

∣∣∣∣∣∣∣
T̃n+2 T̃n+1 T̃n

T̃n+1 T̃n T̃n−1

T̃n T̃n−1 T̃n−2

∣∣∣∣∣∣∣ = −(3ε+ 1)

(b)

∣∣∣∣∣∣∣
T̃n+2 T̃n+1 T̃n

T̃n+1 T̃n T̃n−1

T̃n T̃n−1 T̃n−2

∣∣∣∣∣∣∣ = 0.

(c)

∣∣∣∣∣∣∣
Õn+2 Õn+1 Õn

Õn+1 Õn Õn−1

Õn Õn−1 Õn−2

∣∣∣∣∣∣∣ = −8(3ε+ 1).

(d)

∣∣∣∣∣∣
p̃n+2 p̃n+1 p̃n
p̃n+1 p̃n p̃n−1

p̃n p̃n−1 p̃n−2

∣∣∣∣∣∣ = −27(3ε+ 1).

In the following theorem, we define Catalan’s identity of dual generalized Guglielmo numbers.

Theorem 4.3. (Catalan’s identity) The following identity is true considering all integers n and m

W̃n+mW̃n−m − W̃ 2
n = m2(A2

3

(
2β̃ + ã2m2 − 2ã2n2 − 4nβ̃

)
− 2A2A3

(
β̃ + ã2n

)
− ã2

(
A2

2 − 2A1A3

)
). (4.2)
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Proof. the proof can be done easily using identity (3.1). �

Next we give Catalan’s identity of dual triangular, Lucas-triangular, Oblong, pentegonal numbers by using above
theorem.

We present Catalan’s identity of dual triangular numbers.

Corollary 4.4. (Catalan’s identity for the dual triangular numbers) The following identity is true considering
all integers n and m

T̃n+mT̃n−m − T̃ 2
n = −m2(−1

4
ã2
(
−2n+m2 − 2n2 − 1

)
+ β̃n).

Proof. If we get W̃n = T̃n in Theorem 4.3)we obtain the result required. �

We give Catalan’s identity of dual triangular-Lucas numbers.

Corollary 4.5. (Catalan’s identity for the dual Lucas-triangular numbers) For all integers n and m, the following
identity holds

H̃n+mH̃n−m − H̃2
n = 0.

Proof. If we get W̃n = H̃n in Theorem 4.3 we obtain the result required. �

We give Catalan’s identity of dual oblong numbers.

Corollary 4.6. (Catalan’s identity for the dual oblong numbers) The following identity is true considering all
integers n and m

Õn+mÕn−m − Õ2
n = −m2

(
−ã2(−2n+m2 − 2n2 − 1) + 4β̃n

)
.

Proof. If we get W̃n = Õn in Theorem 4.3 we obtain the result required. �

We give Catalan’s identity of dual pentegonal numbers.

Corollary 4.7. (Catalan’s identity for the dual pentegonal numbers) The following identity is true considering
all integers n and m

p̃n+mp̃n−m − p̃2n =
1

4
m2(ã2

(
6n+ 9m2 − 18n2 − 1

)
− 12β̃ (3n− 2)).

Proof. If we get W̃n = p̃n in Theorem 4.3 we obtain the result required. �

By setting m = 1 in Catalan’s identity, we obtain Cassini’s identity for the dual generalized Guglielmo numbers.
Thus, we present the following corollary.

Corollary 4.8. (Cassini’s identity for the dual generalized Guglielmo numbers) For all integers n, the following
identities holds.

(a) T̃n+1T̃n−1 − T̃ 2
n = 1

4
ã2
(
−2n− 2n2

)
− β̃n.

(b) H̃n+1H̃n−1 − H̃2
n = 0.

(c) Õn+1Õn−1 − Õ2
n = ã2(−2n− 2n2)− 4β̃n.

(d) p̃n+1p̃n−1 − p̃2n = 1
4
ã26n− 18n2 + 8− 3β̃ (3n− 2)).

Theorem 4.9. We assume that n and m are integers, Tn is triangular numbers, the following identity is true:

W̃m+n = Tm−1W̃n+2 + (Tm−3 − 3Tm−2)W̃n+1 + Tm−2W̃n. (4.3)
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Proof. The identity (4.9) can be proved by mathematical induction on m. First we take n,m > 0. If m = 0 we
get

W̃n = T−1W̃n+2 + (T−3 − 3T−2)W̃n+1 + T−2W̃n

which is true by seeing that T−1 = 0, T−2 = 1, T−3 = 3. We assume that the identity given holds for m = k. For
m = k + 1, we get

W̃(k+1)+n = 3W̃n+k − 3W̃n+k−1 + W̃n+k−2

= 3(Tk−1W̃n+2 + (Tk−3 − 3Tk−2)W̃n+1 + Tk−2W̃n)

−3(Tk−2W̃n+2 + (Tk−4 − 3Tk−3)W̃n+1 + Tk−3W̃n)

+(Tk−3W̃n+2 + (Tk−5 − 3Tk−4)W̃n+1 + Tk−4W̃n)

= (3Tk−1 − 3Tk−2 + Tk−3)W̃n+2 + ((3Tk−3 − 3Tk−4 + Tk−5)

−3(3Tk−2 − 3Tk−3 + Tk−4))W̃n+1 + (3Tk−2 − 3Tk−3 + Tk−4)W̃n

= TkW̃n+2 + (Tk−2 − 3Tk−1)W̃n+1 + Tk−1W̃n

= T(k+1)−1W̃n+2 + (T(k+1)−3 − 3T(k+1)−2)W̃n+1 + T(k+1)−2W̃n.

The other cases on n,m the proof can be done easily. Consequently, by mathematical induction on m, this
proves (4.9). �

5 Linear Sum Formulas of Dual Generalized Guglielmo Numbers

In this section we give some details summation formulas for dual hyperbolic generalized Guglielmo numbers,
covering cases with positive and negative subscripts.

Proposition 5.1. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0Wk = 1
12

(n+ 1)
((

2n2 − 2n
)
W2 − 2

(
2n2 − 5n

)
W1 +

(
2n2 − 8n+ 12

)
W0

)
.

(b)
∑n

k=0Wk+1 = 1
12

(n+ 1)
((

2n2 + 4n
)
W2 − 2

(
2n2 + n− 6

)
W1 +

(
2n2 − 2n

)
W0

)
.

Proof. For the proof, see Soykan [13]. �

Proposition 5.2. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0W2k = 1
12

(n+ 1) (
(
8n2 − 2n

)
W2 − 2

(
8n2 − 8n

)
W1 +

(
8n2 − 14n+ 12

)
W0).

(b)
∑n

k=0W2k+1 = 1
12

(n+ 1) (W2

(
8n2 + 10n

)
− 2W1

(
8n2 + 4n− 6

)
+W0

(
8n2 − 2n

)
).

(c)
∑n

k=0W2k+2 = 1
12

(n+ 1) (
(
8n2 + 22n+ 12

)
W2 − 2

(
8n2 + 16n

)
W1 +

(
8n2 + 10n

)
W0).

Proof. For the proof, see Soykan [13]. �

Proposition 5.3. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0W−k = 1
12

(n+ 1) (
(
2n2 + 4n

)
W2 − 2

(
2n2 + 7n

)
W1 +

(
2n2 + 10n+ 12

)
W0).

(b)
∑n

k=0W−k+1 = 1
12

(n+ 1) (
(
2n2 − 2n

)
W2 − 2

(
2n2 + n− 6

)
W1 +

(
2n2 + 4n

)
W0).

Proof. For the proof, see Soykan [13]. �

Proposition 5.4. For the generalized Guglielmo numbers, we have the following formulas:

(a)
∑n

k=0W−2k = 1
12

(n+ 1) (
(
8n2 + 10n

)
W2 − 2

(
8n2 + 16n

)
W1 +

(
8n2 + 22n+ 12

)
W0).

(b)
∑n

k=0W−2k+1 = 1
12

(n+ 1) (
(
8n2 − 2n

)
W2 − 2

(
8n2 + 4n− 6

)
W1 +

(
8n2 + 10n

)
W0).

(c)
∑n

k=0W−2k+2 = 1
12

(n+ 1)
((

8n2 − 14n+ 12
)
W2 − 2

(
8n2 − 8n

)
W1 +

(
8n2 − 2n

)
W0

)
.
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Proof. For the proof, see Soykan [13]. �

Now, we will introduce the formulas that allow us to find the sum of dual generalized Guglielmo numbers.

Theorem 5.5. For n ≥ 0, dual generalized Guglielmo numbers have the following formulas:

(a)
∑n

k=0 W̃k = 1
6
(n+1)((−n+εn2 +2εn+n2)W2 +(6ε+5n−2εn2−εn−2n2)W1 +(−4n+εn2−εn+n2 +6)

W0).

(b)
∑n

k=0 W̃2k = 1
6

(n+ 1) ((−n+4εn2+5εn+4n2)W2+(6ε+8n−8εn2−4εn−8n2)W1+(−7n+4εn2−εn+4n2+6)
W0).

(c)
∑n

k=0 W̃2k+1 = 1
6

(n+ 1) ((6ε + 5n + 4εn2 + 11εn + 4n2)W2 + (6 − 8εn2 − 16εn − 8n2 − 4n)W1 + (−n +
4εn2 + 5εn+ 4n2)W0).

Proof.

(a) Note that using (2.1), we get
n∑

k=0

W̃k =

n∑
k=0

Wk + ε

n∑
k=0

Wk+1

and using Proposition (5.1) the proof can be done easily.

(b) Note that using (2.1), we get
n∑

k=0

W̃2k =

n∑
k=0

W2k + ε

n∑
k=0

W2k+1

and using Proposition (5.2) the proof can be done easily.

(c) Note that using (2.1), we get
n∑

k=0

W̃2k+1 =

n∑
k=0

W2k+1 + ε

n∑
k=0

W2k+2

and using Proposition (5.2) the proof can be done easily. �

As a special case of the theorem 5.5 (a), we present following corollary.

Corollary 5.6.

(a)
∑n

k=0 T̃k = 1
6

(n+ 1) (6ε+ (5ε+ 2)n+ (ε+ 1)n2).

(b)
∑n

k=0 H̃k = (3ε+ 3) (n+ 1) .

(c)
∑n

k=0 Õk = 1
6
(n+ 1)(12ε+ (10ε+ 4)n+ (2ε+ 2)n2).

(d)
∑n

k=0 p̃k = 1
6

(n+ 1) (6ε+ 9εn+ (3ε+ 3)n2).

As a special case of the theorem 5.5 (b), we present following corollary.

Corollary 5.7.

(a)
∑n

k=0 T̃2k = 1
6

(n+ 1) (6ε+ (5 + 11ε)n+ (4 + 4ε)n2).

(b)
∑n

k=0 H̃2k = (3ε+ 3) (n+ 1) .

(c)
∑n

k=0 Õ2k = 1
6

(n+ 1) (12ε+ (10 + 22ε)n+ (8 + 8ε)n2).

(d)
∑n

k=0 p̃2k = 1
6

(n+ 1) (6ε+ (3 + 21ε)n+ (12 + 12ε)n2).

As a special case of the theorem 5.5 (c), we present following corollary.

Corollary 5.8.
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(a)
∑n

k=0 T̃2k+1 = 1
6

(n+ 1) ((6 + 18ε) + (11 + 17ε)n+ (4 + 4ε)n2).

(b)
∑n

k=0 H̃2k+1 = (3ε+ 3) (n+ 1) .

(c)
∑n

k=0 Õ2k+1 = 1
6

(n+ 1) ((12 + 36ε) + (22 + 34ε)n+ (8 + 8ε)n2).

(d)
∑n

k=0 p̃2k+1 = 1
6

(n+ 1) ((6 + 30ε) + (21 + 39ε)n+ (12 + 12ε)n2).

Now, we present the formula that yield the summation formulas of the generalized Guglielmo numbers with
negative subscripts.

Theorem 5.9. For n ≥ 0, dual generalized Guglielmo numbers have the following formulas:

(a)
∑n

k=0 W̃−k = 1
6

(n+ 1) ((2n+εn2−εn+n2)W2 +(6ε−7n−2εn2−εn−2n2)W1 +(5n+εn2 +2εn+n2 +6)
W0).

(b)
∑n

k=0 W̃−2k = 1
6

(n+ 1) ((5n + 4εn2 − εn + 4n2)W2 + (6ε − 16n − 8εn2 − 4εn − 8n2)W1 + (11n + 4εn2 +
5εn+ 4n2 + 6)W0).

(c)
∑n

k=0 W̃−2k+1 = 1
6

(n+ 1) ((6ε−n+4εn2−7εn+4n2)W2 +(−4n−8εn2 +8εn−8n2 +6)W1 +(5n+4εn2−
εn+ 4n2)W0).

Proof.

(a) Note that using (2.1), we get
n∑

k=0

W̃−k =

n∑
k=0

W−k + ε

n∑
k=0

W−k+1

and using Proposition (5.3) the proof can be done easily.

(b) Note that using (2.1), we get
n∑

k=0

W̃−2k =

n∑
k=0

W−2k + ε

n∑
k=0

W−2k+1

and using Proposition (5.4) the proof can be done easily.

(c) Note that using (2.1), we get using Proposition (5.4), we get

n∑
k=0

W̃−2k+1 =

n∑
k=0

W−2k+1 + ε

n∑
k=0

W−2k+2

and using Proposition (5.4) the proof can be done easily. �

As a special case of the theorem 5.9 (a), we obtain the following corollary.

Corollary 5.10.

(a)
∑n

k=0 T̃−k = 1
6

(n+ 1) (6ε+ (−1− 4ε)n+ (1 + ε)n2).

(b)
∑n

k=0 H̃−k = (3ε+ 3) (n+ 1) .

(c)
∑n

k=0 Õ−k = 1
6

(n+ 1) (12ε+ (−2− 8ε)n+ (2 + 2ε)n2).

(d)
∑n

k=0 p̃−k = 1
2

(n+ 1) (2ε+ (1− 2ε)n+ (1 + ε)n2).

As a special case of the theorem 5.9 (b), we obtain the following corollary.

Corollary 5.11.

(a)
∑n

k=0 T̃−2k = 1
6

(n+ 1) (6ε+ (−1− 7ε)n+ (4 + 4ε)n2).

(b)
∑n

k=0 H̃−2k = (3ε+ 3) (n+ 1) .
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(c)
∑n

k=0 Õ−2k = 1
3

(n+ 1) (6ε+ (−1− 7ε)n+ (4 + 4ε)n2).

(d)
∑n

k=0 p̃−2k = 1
6

(n+ 1) ((6ε) + (9− 9ε)n+ (12 + 12ε)n2).

As a special case of the theorem 5.9 (c), we obtain the following corollary.

Corollary 5.12.

(a)
∑n

k=0 T̃−2k+1 = 1
6

(n+ 1) ((6 + 18ε) + (−7− 13ε)n+ (4 + 4ε)n2).

(b)
∑n

k=0 H̃−2k+1 = (3ε+ 3) (n+ 1) .

(c)
∑n

k=0 Õ−2k+1 = 1
3

(n+ 1) ((6 + 18ε) + (−7− 13ε)n+ (4 + 4ε)n2).

(d)
∑n

k=0 p̃−2k+1 = 1
6

(n+ 1) ((6 + 30ε) + (−9− 27ε)n+ (12 + 12ε)n2).

We will now provide a different theorem that allows us to calculate the finite sum of dual generalized Gaussian
numbers.

Theorem 5.13. Suppose that x, y,m be integers. The sum formula given below is true

m∑
k=0

W̃xk+y = (α̃A1+β̃(A2+A3))(m+1)+(α̃A2+2β̃A3)
(m+ 1)

2
(xm+2y)+ãA3

(m+ 1)

2
(x2

m(2m+ 1)

3
+2xym+2y2).

Proof. For the proof we use Binet’s formula of dual generalized Guglielmo numbers and we can write following
identity

m∑
k=0

W̃xk+y =

m∑
k=0

(α̃A1 + β̃(A2 +A3)) + (ãA2 + 2β̃A3)

m∑
k=0

(xk + y) + ãA3

m∑
k=0

(xk + y)2

= (α̃A1 + β̃(A2 +A3))(m+ 1) + (ãA2 + 2β̃A3)
(m+ 1)

2
(xm+ 2y)

+ãA3
(m+ 1)

2
(x2

m(2m+ 1)

3
+ 2xym+ 2y2).

Thus, the proof has been completed. �

From the theorem (5.13) we can write the following corollary.

Corollary 5.14.

(a)
∑m

k=0 T̃xk+y = β̃(m+ 1) + ( 1
2
α̃+ β̃) (m+1)

2
(xm+ 2y) + ã (m+1)

4
(x2 m(2m+1)

3
+ 2xym+ 2y2).

(b)
∑m

k=0 H̃xk+y = 3α̃(m+ 1).

(c)
∑m

k=0 Õxk+y = 2β(m+ 1) + (α̃+ 2β̃) (m+1)
2

(xm+ 2y) + ã (m+1)
2

(x2 m(2m+1)
3

+ 2xym+ 2y2).

(d)
∑m

k=0 p̃xk+y = β̃(m+ 1) + (− 1
2
α̃+ 3β̃) (m+1)

2
(xm+ 2y) + 3ã (m+1)

4
(x2 m(2m+1)

3
+ 2xym+ 2y2).

6 Matrices related with Dual Generalized Guglielmo Numbers

In this section, we give some identities related to matrices using dual generalized Guglielmo Numbers.

Here, we examine the triangular sequence {Tn} defined by the third-order recurrence relation as follows

Tn = 3Tn−1 − 3Tn−2 + Tn−3

with the initial conditions
T0 = 0, T1 = 1, T2 = 3.
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We write the third order square matrix A as

A =

 3 −3 1
1 0 0
0 1 0


such that detA = 1. Then, we have the following Lemma.

Lemma 6.1. The following equality holds, for all integers n: W̃n+2

W̃n+1

W̃n

 =

 3 −3 1
1 0 0
0 1 0

n
 W̃2

W̃1

W̃0

 . (6.1)

Proof. First, we get n ≥ 0. Lemma (6.1) can be given by mathematical induction on n. If n = 0 we get W̃2

W̃1

W̃0

 =

 3 −3 1
1 0 0
0 1 0

0
 W̃2

W̃1

W̃0


which is true. We claim that the identity (6.1) given holds for n = k. Thus the following identity is true.

 W̃k+2

W̃k+1

W̃k

 =

 3 −3 1
1 0 0
0 1 0

k
 W̃2

W̃1

W̃0

 .

For n = k + 1, we get 3 −3 1
1 0 0
0 1 0

k+1
 W̃2

W̃1

W̃0

 =

 3 −3 1
1 0 0
0 1 0

 3 −3 1
1 0 0
0 1 0

k
 W̃2

W̃1

W̃0


=

 3 −3 1
1 0 0
0 1 0


 W̃k+2

W̃k+1

W̃k


=

 3W̃k+2 − 3W̃k+1 + W̃k

W̃k+2

W̃k+1


=

 W̃k+3

W̃k+2

W̃k+1

 .

For the case n < 0 the proof can be done similarly. Consequently, by mathematical induction on n, the proof is
completed.

Note that

An =

 Tn+1 −3Tn + Tn−1 Tn

Tn −3Tn−1 + Tn−2 Tn−1

Tn−1 −3Tn−2 + Tn−3 Tn−2

 .

For the proof and more detail see [27].

53



Yılmaz and Soykan; Asian J. Prob. Stat., vol. 26, no. 4, pp. 35-57, 2024; Article no.AJPAS.115493

Theorem 6.2. If we define the matrices NW̃ and EW̃ as follow

NW̃ =

 W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

 ,

EW̃ =

 W̃n+2 W̃n+1 W̃n

W̃n+1 W̃n W̃n−1

W̃n W̃n−1 W̃n−2

 .

then the following identity is true:
AnNW̃ = EW̃ .

Proof. For the proof, we can use the following identities

AnNW̃ =

 Tn+1 −3Tn + Tn−1 Tn

Tn −3Tn−1 + Tn−2 Tn−1

Tn−1 −3Tn−2 + Tn−3 Tn−2


 W̃2 W̃1 W̃0

W̃1 W̃0 W̃−1

W̃0 W̃−1 W̃−2

 ,

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33


where

a11 = W̃2Tn+1 + W̃1 (Tn−1 − 3Tn) + W̃0Tn,

a12 = W̃1Tn+1 + W̃0 (Tn−1 − 3Tn) + W̃−1Tn,

a13 = W̃0Tn+1 + W̃−1 (Tn−1 − 3Tn) + W̃−2Tn,

a21 = W̃2Tn + W̃1 (Tn−2 − 3Tn−1) + W̃0Tn−1,

a22 = W̃1Tn + W̃0 (Tn−2 − 3Tn−1) + W̃−1Tn−1,

a23 = W̃0Tn + W̃−1 (Tn−2 − 3Tn−1) + W̃−2Tn−1,

a31 = W̃2Tn−1 + W̃1 (Tn−3 − 3Tn−2) + W̃0Tn−2,

a32 = W̃1Tn−1 + W̃0 (Tn−3 − 3Tn−2) + W̃−1Tn−2,

a33 = W̃0Tn−1 + W̃−1 (Tn−3 − 3Tn−2) + W̃−2Tn−2.

Using the Theorem (4.9) the proof is done. �

From Theorem (6.2), the following corollary can be written.

Corollary 6.3.

(a) We assume that the matrices NT̃ and ET̃ are defined as following

NT =

 T̃2 T̃1 T̃0

T̃1 T̃0 T̃−1

T̃0 T̃−1 T̃−2

 ,

ET̃ =

 T̃n+2 T̃n+1 T̃n

T̃n+1 T̃n T̃n−1

T̃n T̃n−1 T̃n−2

 ,

so that the identity given below is true for An, NT̃ , ET̃ ,

AnNT̃ = ET̃ ,
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(b) Let’s suppose that the matrices NH̃ and EH̃ are defined as following

NH̃ =

 H̃2 H̃1 H̃0

H̃1 H̃0 H̃−1

H̃0 H̃−1 H̃−2

 ,

EH̃ =

 H̃n+2 H̃n+1 H̃n

H̃n+1 H̃n H̃n−1

H̃n H̃n−1 H̃n−2

 ,

so that the identity given below is true for An, NH̃ , EH̃ ,

AnNH̃ = EÕ.

(c) Let’s suppose that the matrices NÕ and EÕ are defined as following

NÕ =

 Õ2 Õ1 Õ0

Õ1 Õ0 Õ−1

Õ0 Õ−1 Õ−2

 ,

EÕ =

 Õn+2 Õn+1 Õn

Õn+1 Õn Õn−1

Õn Õn−1 Õn−2

 ,

so that the identity given below is true for An, NÕ, EÕ,

AnNÕ = EÕ.

(d) Let’s suppose that the matrices Np̃ and Ep̃ are defined as following

Np̃ =

 p̃2 p̃1 p̃0
p̃1 p̃0 p̃−1

p̃0 p̃−1 p̃−2

 ,

Ep̃ =

 p̃n+2 p̃n+1 p̃n
p̃n+1 p̃n p̃n−1

p̃n p̃n−1 p̃n−2

 .

so that the identity given below is true for An, Np̃, Ep̃,

AnNp̃ = Ep̃.

7 Conclusion

In the literature, there have been numerous studies on sequences of numbers, which have been extensively
studied and applied in various research fields, from physics to art. In this study, we investigate the generalized
dual Guglielmo numbers and then various special cases are explored (including dual triangular numbers, dual
triangular-Lucas numbers, dual oblong numbers, and dual pentagonal numbers)

• In section 1, we introduce dual numbers and provide a brief overview of their applications in scientific
fields like physics and engineering. We give some properties, needed rest of our study, on generalized
Guglielmo numbers. Also, we review some papers presented in the literature.
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• In section 2, we define dual generalized Guglielmo numbers and then we present generating functions and
Binet’s formula of dual generalized Guglielmo numbers.

• In section 3, we present some identeties for the generalized Guglielmo sequence that named Simpson’s
formula, Catalan’s identity and Cassani’s.

• In section 4, we present summation formulas for dual generalized Guglielmo numbers.

• In section 5, we give some matrices related to dual Guglielmo numbers.
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[17] Soykan Y, Gümüş M, Göcen M. A study on dual hyperbolic generalized Pell numbers. Malaya Journal of
Matematik. 2021;09(03):99-116.
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