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Abstract

In many situations it is behaviorally relevant for an animal to respond to co-occurrences of

perceptual, possibly polymodal features, while these features alone may have no impor-

tance. Thus, it is crucial for animals to learn such feature combinations in spite of the fact

that they may occur with variable intensity and occurrence frequency. Here, we present a

novel unsupervised learning mechanism that is largely independent of these contingencies

and allows neurons in a network to achieve specificity for different feature combinations.

This is achieved by a novel correlation-based (Hebbian) learning rule, which allows for linear

weight growth and which is combined with a mechanism for gradually reducing the learning

rate as soon as the neuron’s response becomes feature combination specific. In a set of

control experiments, we show that other existing advanced learning rules cannot satisfacto-

rily form ordered multi-feature representations. In addition, we show that networks, which

use this type of learning always stabilize and converge to subsets of neurons with different

feature-combination specificity. Neurons with this property may, thus, serve as an initial

stage for the processing of ecologically relevant real world situations for an animal.

Author summary

During foraging and exploration, the neural system of animals is flooded with numerous

sensory features. From this confusing signal repertoire, it needs to learn extracting rele-

vant events often encoded by specific perceptual feature combinations. For example, a

specific smell and some distinct visual attribute may be meaningful when occurring

together, while by themselves these features are irrelevant. Learning this is complicated by

the fact sensory signals occur with different intensity and occurrence frequency beyond

the control by the animal. Here we show that it is possible to train neurons with external

signals in an unsupervised way to learn responding specifically to different feature combi-

nations largely unaffected by such presentation contingencies. This is achieved by a novel

learning rule which achieves stable neuronal responses in a simple way by gradually

reducing the learning rate at its synapses as soon as the neuron’s response to the feature

combination exceeds a certain level. This allows neurons in a network to code for different
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feature combinations and may facilitate ecologically meaningful evaluation of perceived

situations by the animal.

Introduction

Coincident events or features can be highly relevant for animals and humans, and recognizing

feature combinations may make all the difference between danger and safety. The red color of

a mushroom paired with white surface dots as compared to a red one with a plain surface

makes the difference between the poisonous Amanita muscaria (toadstool) and the eatable

Amanita caesarea. While humans learn such feature combinations usually by supervision, ani-

mals often do so via trial and error. For example, rats and other animals perform scouting and

probing of novel food sources until found to be safe. Repeated exposure to sensor-perceivable

feature combinations in conjunction with no negative effects will then lead to the conclusion

that it should be safe to eat this.

A central problem that arises here is that features will not only occur in combination but

also on their own. This will happen with different individual- as well as coincidence-occur-

rence frequencies and, in addition, usually also with variable intensity. Thus, in order to learn

the meaning of combined features, the nervous system must learn this without being distracted

by this variability. While supervised learning methods, like LMS algorithm [1] could address

this problem in efficient way, here we investigate unsupervised learning. The latter is much

simpler from the point of view of biological implementation, as it does not require additional

evaluative sub-systems and mechanisms. As shown below, with unsupervised learning one can

detect feature combinations already at the level of a single neuron. To achieve this, neuronal

plasticity must come to a halt as soon as a combination has been recognized, otherwise ongo-

ing plasticity would lead to undesired responses to individual features.

Such an ecologically driven stopping of learning is a non-trivial problem for unsupervised

learning, though. For example, Hebbian learning leads to unbounded (divergent) weight

growth. Many stabilization methods and/or augmentations of the original Hebbian learning

rule have been suggested to prevent this, for example Oja’s rule [2], the Bienenstock, Cooper,

Munro rule (BCM, [3]), subtractive normalization methods [4] and several more. More

recently, learning rules had been introduced which combine Hebbian weight growth with a

homeostatic, balancing term, called synaptic scaling [5–7], for achieving convergence to a tar-

get activity [8]. However, below we will show that these methods cannot reliably address the

problem of differentiating cases with coincidences of two or more features.

As a consequence the issue of how to control weight development in an unsupervised way

such that a neuron will reliably code for multiple-feature combinations remains unresolved.

Here we suggest a rather simple solution to this. When growing weights in a network, combi-

nation-selective responses can be achieved by gradually dropping the learning rate to zero

(simulated annealing) as soon as the neuron’s activity is getting “large enough”, which happens

earlier for combined than for individual stimuli. Before describing details, this mechanisms

can best be understood by an example (Fig 1). Here two similar inputs (A,B) had been pre-

sented randomly with some coincidence between them (vertical dashed lines). Due to learning,

the neuron’s output (C) gradually gets bigger, where the response amplitudes that occur for

coincident inputs will always exceed individual ones. When a response passes the annealing

threshold the learning rate is reduced (red curve in D) and after some time, when the rate has

dropped to zero, weight growth will come to a standstill. This mechanism keeps the individual
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responses small as compared to the combined ones and the resulting output distributions

(inset) remain separate with a large gap between single and coincident responses.

Simulated annealing has become a textbook method in reinforcement learning (RL), for

example for step-size reduction [9] or for reducing exploration rates [10] as well as in deep-RL

[11]. Annealing is also widely used in supervised learning [12–14] as well as in different vari-

ants of Hebbian learning [15–18], the latter being most closely related to the investigations in

this study. However, annealing in those studies is applied as an additional mechanism to

ensure an efficient convergence of weights, while we are not aware of studies which would ana-

lyze annealing as the main factor for activity stabilization on its own.

Central to our approach is that the principle of using the neuron’s output as the determin-

ing variable for the annealing leads to the advantageous property that neurons in a network

will indeed develop specificity for different input (or feature) combinations. This differs from

mere spike-coincidence detection because—as discussed above—the learning of input combi-

nation specificity needs to be independent (within reason) of the intensity of the input, repre-

sented by its occurrence frequency and its amplitude (or input firing rate). Amplitude

invariance can to some degree be achieved using network-intrinsic normalization (e.g. [19])

by which differently strong activity, e.g. from external sensory features that converges onto a

cell, will still lead to similar, albeit not identical, responses. These could then serve as the nor-

malized inputs to the learning neuron. Another aspect that leads to problems is that learning

needs repetitions. However, the brain has little or no influence on the occurrence frequency of

any external stimulus or stimulus combination. Hence, to reliably learn input combination

specificity the system must tolerate quite some variability in the occurrence frequencies of the

different inputs as well as concerning their coincidences.

The central contribution of this study is showing that the annealing mechanism allows reli-

ably encoding coincident feature combinations of two or more features in spite of amplitude

and frequency variations of the input signals. This is achieved without having to adjust the

neuron’s parameters for different stimulus situations. In addition, we show that—for multiple

inputs—the neurons’ output distributions are ordered by the total (average) input intensities.

Fig 1. Exemplary development of the response (C), synaptic weights (D), and annealing characteristic (D, red) for a

neuron with two inputs (A,B) with mean amplitudes of 1 and 1.2, respectively, and same average occurrence

frequency; dashed lines show input coincidences. Inset shows the finally resulting distribution of neural responses

between an activation of zero (left) and one (right).

https://doi.org/10.1371/journal.pcbi.1011926.g001
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This is another factor, which could be ecologically relevant as those neurons this way represent

quite faithfully “what comes in from the environment”.

We start this investigation in the first part of the paper by analysing a simple case of a neu-

ron with only two inputs and compare our rule to other, conventional learning mechanisms.

Then we address the aspect of multi-input ordering. We show that other rules fail to achieve

these properties and provide also a detailed analysis of the BCM rule, which could be seen as a

contender to our approach. This is then extended to a recurrent network to address the issue

of multiple coincidences. We finally discuss possible biological mechanisms that might sup-

port this function and also other issues concerning the learning of input coincidences.

Materials and methods

In this section we will first describe our neuron model, then the learning rule that we are pro-

posing. Afterwards we briefly specify the traditional learning rules to which we are comparing

the newly proposed method. Finally, we describe a setup, where we have embedded this rule in

a recurrent neural network.

Neuron model

To obtain the neuronal response, first we calculate the weighted sum of the inputs:

y ¼ ωTu; ð1Þ

where u = (u1, . . ., un)T are inputs, ω = (ω1, . . ., ωn)T are weights, and n is the number of inputs.

In analogy to real neurons, we will call y the membrane potential. We will first analyze the sim-

plest neuron that can detect co-incidences with n = 2, but will increase the number of inputs in

the later-shown recurrent network example. To calculate the actual neuronal response v, called

spike rate or rate, we apply a nonlinear function:

v ¼ fsðyÞ ¼
1

0:9

1

1þe� bðy� 0:5Þ � 0:1
� �

; if � 0;

0 ; otherwise:

8
<

:
ð2Þ

where b = 10 if not indicated differently. Coefficients were set to obtain the response character-

istic shown in Fig 2A. This represents a sigmoidal function with a threshold yT� 0.281,

beneath which the firing rate will be zero:

Fig 2. Functions used in model equations. A: Neural activation, see Eq (2); we use a saturating function, where in

case of small membrane potential (y) the activation v is zero, which is based on empirical observations, e.g., see. [20,

21]; B: Annealing function, which renders a close to zero annealing rate until threshold value va is reached, and

afterwards increases abruptly, see Eqs (4) and (5); note that this function is additionally scaled by the annealing rate ρ
in Eq (4).

https://doi.org/10.1371/journal.pcbi.1011926.g002
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The Hebb rule

We investigate the effect of learning rate annealing on the Hebb rule given by:

dω
dt
¼ mðtÞugðyÞ; ð3Þ

with u the input vector of the neuron, g(y) the influence of the neuron’s output on the learning

and μ(t) the learning rate, which will change over time due to annealing.

Learning rate annealing

Central to our method, however, is that the spike rate v guides the annealing of the learning

rate μ(t), where we start annealing, as soon as the neuron has reached “high enough” outputs

v. The annealing equation is as follows:

dm
dt
¼ � ρSaðv � vaÞm; ð4Þ

where ρ is a rate factor, va the annealing threshold, and Sa(x) is another sigmoidal function:

SaðxÞ ¼
1

1þ e� bx
; ð5Þ

where we used β = 100 to obtain a steep step-like transition (see Fig 2B). However, the method

will work in a similar way with several times bigger or smaller β. Learning starts at t = 0 with

μ(0) = μ0. The sigmoidal function leads to the following effect: at the time when v exceeds va,

the annealing rate abruptly increases. The value for va is expected to be around or higher than

the inflection point of v. We have investigated va� 0.45. Note that, if annealing happens too

early, the neuron’s differentiation capability remains low, as its activation function non-linear-

ity will not play any role.

Hebbian learning rules with annealing

We define for Eq 3 different characteristics for g. First, there is a rule, which we call annealed
membrane Hebb (AMH) rule, defining g(y) = y, hence:

dω
dt
¼ mðtÞuy ð6Þ

This rule leads to exponential weight growth (see Eq 15) due to the fact that the neuronal

output coupled with the learning-equation creates a positive feedback loop.

To avoid this problem, we have replaced this rule with one that is largely output indepen-

dent and leads to linear weight growth (see Eq 13). This so-called annealed Linear Learning
(ALL) rule uses g(y) = H(y − η) with H being the Heaviside function:

Hðy � ZÞ ¼
1 ; if y � Z > 0;

0 ; otherwise:

(

ð7Þ

Hence, the ALL-rule is given by:

dω
dt
¼ mðtÞuHðy � ZÞ ð8Þ

This learning rule augments traditional Hebbian learning by the assumption that weight

change will not depend on the actual activation of the neuron. Instead learning will start as
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soon as the membrane potential y exceeds a threshold η and then only depends on the incom-

ing input(s). Analysis of the experimental literature shows (see Discussion) that—especially at

dendritic spines—this type of learning may be biophysically more realistic than other variants

of the Hebb rule.

Below, we will also show that the ALL rule works best for the here-investigated task of coin-

cidence detection. For simplicity, we used η = 0 but results will not change much as long as

one uses reasonably small values for η. Note, that the weight update routine described above in

case of η = 0 holds some similarity to Rosenblatt’s perceptron learning rule [22]. However, dif-

ferent from Rosenblatt’s perceptron, where knowledge on the desired outputs is assumed and

error terms are used, we analyze unsupervised learning, where self-organization happens with-

out supplying knowledge about the desired output of the neuron. For more considerations on

supervised vs. unsupervised learning see Discussion section, subsection “Comparing to other

learning principles”.

Note that, in principle, one can also define a Hebb rule that relies on the actual rate v and,

hence, considers the output transform (Eq 2) by setting g(y) = v. However, this case, which is

governed by the sigmoid output function of the neuron, can be tuned to either approximate

the annealed membrane Hebb (AMH) or the annealed linear learning (ALL) rule. Hence, we

will not consider it any further.

Reference models

We compared our method to the BCM-rule [3] and the Oja-rule [2] as well as to a newer

approach called synaptic scaling [8].

For BCM, there exist several linear as well as non-linear versions in the literature (e.g. [3,

23, 24]). We had analyzed these rules, but here we show results only for the (non-linear) for-

mulation introduced by Intrator and Cooper [23], which superseded the others for the here-

investigated tasks. However, in the Results section we will also briefly discuss results from the

other BCM rules.

The Intrator-Cooper BCM rule is given by (see [25]):

dω
dt
¼ mvðv � YMÞu

dv
dy
; ð9Þ

with ΘM = E(v2), where E represents the expectation value.

We obtain the average described above as given by Toyoizumi et al [24], where also a refer-

ence activation value v0 is used (note, the BCM rule works poorly for our task without this var-

iable, see S2 Appendix):

dYM

dt
¼ gmð� YM þ v

v
v0

Þ: ð10Þ

where γ is a factor relating the time constants of the two differential equations (Eqs 9 and 10)

and γ needs to be big enough to avoid instabilities. Note that parameterizing it this way makes

it easier to focus on the influence of the ratio between the time constants in our analyses.

For the Oja rule, we use the standard formulation from [2]:

dω
dt
¼ myðu � ayωÞ; ð11Þ

where we set α = 1. This factor leads to the asymptotic convergence of |ω|2 = 1/α and is dis-

cussed in “Results” section.
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For synaptic scaling, we use the following equation taken from [8]:

dω
dt
¼ myuþ xðy0 � yÞω2; ð12Þ

with ξ< μ< 1 and where the parameter y0 determines the value at which the output is stabiliz-

ing (for concrete values see figure legends).

Experimental settings

Neuron with two inputs. In the first part of the results section, we focus on the investiga-

tion of the ALL-rule on a neuron with only two inputs with varying input amplitudes and

occurrence frequencies. We vary amplitudes in the interval [1, 1.5] and the occurrence fre-

quencies using a ratio of 1 : 1 or 2 : 1. We also vary the standard deviation of input amplitude

(σ = 0.1 or σ = 0.2) as well as the coincidence rates between inputs (50, 30 and 10%, measured

in respect to the less frequent input in case of frequency difference). This is extended by

detailed statistics how our system behaves for different annealing-rates ρ and thresholds va.

Finally, we compare the results from the ALL-rule to results obtained from a set of the most

common learning rules under similar conditions.

Recurrent network. In the second part of the results section, we employed the ALL-rule

for generation of all possible coincident combinations of N external inputs (Fig 3) in a ran-

domly connected recurrent network of M neurons with sparse connectivity of c connections

per neuron on average. We use for connectivity a Gaussian distribution with standard devia-

tion of c/5. However we are limiting this to a minimum of at least one connection onto each

neuron. We also impose a limit on the maximally allowed connections, where for c = 2 this

amounts to allowing connection numbers in the interval [1, 3]. We analyse the cases M = 200

and M = 1000, with c = 2 and c = 10 (allowed interval [1, 19]). In addition to those connections,

15% of randomly selected neurons are supplied with one connection each from randomly cho-

sen external input neurons. We analyzed cases of N = 3 and N = 5 external inputs. Inputs can

take two values: 0 or 1. For this part of the study we did not vary input amplitudes or

Fig 3. Schematic diagram of the recurrent network with neurons responsive to different input combinations

indicated. “x” means input can be 0 or 1.

https://doi.org/10.1371/journal.pcbi.1011926.g003
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frequencies. The goal of this part of the study is to show that such a system can self-organize

into creating output neurons that respond to different possible combinations of active inputs.

Hence, one such neuron will then respond if a certain subset of k inputs is active at the same

time (AND operation) and not respond if any one of these k inputs is not present. In this case

the remaining n − k inputs will not be able to drive this output neuron whatsoever. We were

considering that a neuron is signaling for a certain input combination in case its activity is

above a “classification” threshold for this combination, but below threshold for any other com-

bination. We analyzed a set of thresholds from v = 0.4 to 0.8 in steps of 0.1.

This way, we measured how many neurons, which are signaling a possible combination,

appear within a network by calculating statistics from 100 trials to generate and train a net-

work. For this, we varied the network connection matrix trial by trial. Also, neurons in the net-

work were generated with an annealing threshold drawn from a uniform distribution in [0.75,

0.95], which also was re-generated for each trial. Then, we present results as percentage of neu-

rons in the network that represent a certain combination. Hence, 2% means that there were 4

neurons representing that combination in a neural network with M = 200 neurons and 20 neu-

rons representing that combination in the M = 1000 network.

Code for the different experiments is provided in the S1 Code Repository.

Results

First we analyze the properties of the annealing learning rules for a neuron that has only two

inputs and compare those to the reference methods (BCM, Oja, Synaptic Scaling). This is

started by an analytical calculation that compares annealed membrane Hebb (AMH) with

annealed Linear Learning (ALL) after which we show simulation results for a wide variety of

cases that cannot be captured by analytical approaches. The central finding here is that the

ALL-rule allows for reliable separation between coincidence and no-coincidence cases without

having to re-tune neuron parameters for different input situations. Only the BCM rule behaves

similarly. However, this part is then extended by analysing more than two inputs. Here we

observe now clear differences between BCM and ALL.

Finally this is followed by a study of recurrently connected networks also with more than

two inputs, where we ask how reliably such a network could detect various types of coinci-

dences. In addition to this we have performed a set of control experiments, where we added

inhibition with a similar characteristic as in the cortical networks (about 20%, with constant

synaptic weights and a wider convergence/divergence structure than excitation).

Separation properties

In the following we analyze how well does the ALL-rule, as compared to the AMH-rule, sepa-

rate the resulting output spike rates (coincidence case) relative to the individual rates obtained

from only one input. We can here obtain analytical arguments under the assumption of inde-

pendent constant inputs in the limit of few coincidences only (where the latter constraint is

needed for the AMH-rule only). Then, we also complement these analytical considerations by

some simulations that allow relaxing the above constraints.

Hence, we assume two constant inputs, u1 and ϕu1 with ϕ> 1. For the case of the ALL-rule

one can calculate weight growths over time as:

o1ðtÞ ¼ m0u1t þ o0

o2ðtÞ ¼ m0�u1t þ o0

ð13Þ

where μ0 is the learning rate before annealing and ω0 the start weight. Accordingly, the
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membrane potentials are:

y1ðtÞ ¼ m0u2
1
t þ o0u1

y2ðtÞ ¼ m0�
2u2

1
t þ o0�u1:

ð14Þ

For the AMH-rule we get for the weights:

o1ðtÞ ¼ o0em0u2
1
t

o2ðtÞ ¼ o0em0�
2u2

1
t;

ð15Þ

and the membrane potentials are given by:

y1ðtÞ ¼ o0u1em0u2
1
t

y2ðtÞ ¼ o0�u1em0�
2u2

1
t:

ð16Þ

If we allow for (rare) coincidences between the two inputs then the membrane potential

becomes y1 + y2 and the neuron’s output will be v1+2 = fs(y1+ y2) (see Eq (2)). Due to the defini-

tions of y1 and y2 the following conjecture holds: v1+2 > v2 > v1. As a consequence v1+2 will

eventually hit the annealing threshold va at time ta. If we now assume instantaneous annealing,

then all weight growth will stop and we can ask which values will the individual outputs v1 and

v2 have reached? This way we can assess the separation between the coincidence-driven output

(which is then at va) and the other two outputs. To be able to call such a neuron an AND-oper-

ator a clear separation is needed and here we are only concerned with v2, which is anyhow

larger than v1. Hence, we calculate for different parameters u1, μ0, ϕ and va how big the separa-

tion s(ta) between v1+2(ta) = va and v2(ta) is as s(ta) = va − v2(ta). This last step has to be calcu-

lated numerically as the resulting terms cannot any longer by analytically solved. Fig 4A shows

the results. Note, that μ0 has no influence on the separation, it only determines how early/late

the annealing threshold will be reached. The figure shows that only for identical amplitudes

the separation between the coincidence case and the individual input case will be the same for

the annealed membrane Hebb- and the annealed Linear Learning rule. For all other situations,

the ALL-rule leads to a far better separation. Furthermore, note that separation is largely inde-

pendent of the annealing threshold, which adds to the robustness of the annealing approach.

In panel B we show how the ALL- versus AMH-rules behave when using inputs with a

Gaussian distribution in amplitudes and the same presentation frequencies for both inputs.

Coincidence rate was 10%. Responses to the individual inputs are shown in orange and blue

and the coincident case in green. The results are consistent with the analytics in panels A

except for a slight increase in separation values due to more balanced weight growth in the

simulation, because of the 10% coincidences, where the analytics could only be calculated for

the limit case of 0%. The ALL-rule leads to a much stronger separation. Numbers at the bottom

show the distance between the mean values of the orange and green distributions, where sepa-

rability entirely ceases towards the right for AMH. Furthermore, note that the AMH-rule

shows the expected exponential run-away property for the stronger (orange) distributions and

the blue ones do not develop any firing rate v above zero for unequal amplitudes. Using a rate-

based Hebb rule (hence g(y) = v), would mitigate these effects as soon as the membrane poten-

tial to rate transformation approaches the Heaviside property.

Annealed Linear Learning rule: Neuron output analysis

In the following we focus on the ALL-rule, which provides a better separation than the the

AMH-rule as shown above. In Fig 5 we present histograms of neuron outputs for different

input combinations. Input amplitudes are drawn from a Gaussian distribution and are
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characterized by mean and standard deviation (see first column in Fig 5A). We use mean

amplitudes of 1, 1.2 and 1.5 and a standard deviation of std = 0.1 for Fig 5. (Cases with

std = 0.2, i.e., higher input variance, had been shown already in Fig 4 above).

In addition to the amplitude distribution, inputs are characterized by their presentation fre-

quency, which could be understood as how often stimuli are delivered to the neuron by the

external world. In Fig 5A, we show results in case both inputs are presented with the same fre-

quency, while in Fig 5B results are shown in which the first stimulus is twice more frequent.

Another important input parameter is how frequently two inputs coincide at the neuron.

We consider 50, 30 and 10% coincidence. When the presentation frequency of the two inputs

differs, we calculate the percentage of coincidence with respect to the input with smaller pre-

sentation frequency.

In Fig 5 we show the input distributions of the neuron (left column) and the neuron output

v in case of coincidence in green, while the response to single inputs are blue and orange. All

neuron outputs are limited to the interval [0, 1], due to the non-linear response curve (see Fig

2A).

Fig 4. A: Separation properties calculated analytically B: Histograms of numerical results for ALL- and AMH-rules in case of Gaussian distribution of input

amplitudes. In all cases, input presentation frequencies are equal. In B input coincidence is 10% everywhere; input amplitudes: mean for the blue distributions was

normalized to 1.0 and for the orange ones to ϕ; standard deviations indicated above the plots. Annealing parameters are va = 0.7, ρ = 0.2. Initial weights are ω(0) =

[0.001, 0.001]T and initial learning rate μ0 = 0.0005; Euler integration with step dt = 1. Disks in A mark the points with the corresponding plots in B. Tilted lines are

truncation marks for the blue histograms.

https://doi.org/10.1371/journal.pcbi.1011926.g004
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As expected, the output for coincident inputs (green) is always the highest. We can also

observe that the gap between the blue or orange histograms and the green histogram is in

almost all cases quite big. Furthermore, this gap “sits at the same location” such that a unique

discrimination threshold vd could be defined to differentiate coincident from non-coincident

responses (e.g. vd = 0.6). These properties are, thus, largely independent of input amplitudes,

frequencies, and percentages of coincidence. Thus, only due to these invariances such a neuron

can indeed be called “input coincidence detector” (AND operation-like). Next we will quantify

the robustness of these properties.

Fig 5. Histograms of neuron inputs (first column) and outputs v for the ALL-rule. A: Equal presentation frequency; B: Different presentation

frequency. Parameters: va = 0.7, ρ = 0.1, std = 0.1. Mean amplitudes of the inputs are indicated in the first column. Initial weights are ω(0) = [0.001,

0.001]T and initial learning rate is μ0 = 0.0005; Euler integration with step dt = 1. For other parameters: see plots. Response histograms (blue or yellow)

in case of amplitude or presentation frequency difference are grouping very close to zero, where we truncate the zero bin to optimize for visibility (see

truncation marks).

https://doi.org/10.1371/journal.pcbi.1011926.g005
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In Fig 6 we show for the ALL-rule, how the separation of coincidence vs no coincidence

varies with different annealing parameters, where we vary the annealing onset threshold and

the annealing rate va and ρ (Eq (4)). We show the classification error for coincidence vs no

coincidence. Classification threshold is kept at v = 0.5. First, in Fig 6A and 6B we present error

plots in parameter space in case both inputs have the same presentation frequency and both

amplitudes are equal: mean = 1, std = 0.1, with 30% (A) or 50% (B) coincidence. These are the

most favorable cases from all cases shown here and one can see that the error is zero (or very

small) in a very big region of the parameter space (white and light colored patch in the middle

of the plots). This patch slightly decreases when amplitudes (E, F), or frequencies (C, D) of the

two inputs differ, but differences between the plots remain small. Amplitude increase of the

less frequent input can compensate for the frequency decrease (see G, H). The errors in the

plots “above-left” the white patch are false positives, while for “bottom-right” they are false

negatives.

Fig 6. Classification error (coincidence vs. not coincidence) of the ALL-rule in respect to parameter variations.

Parameters are annealing onset threshold and annealing rate. Decision threshold is 0.5. Panels (A-L) variable

amplitude, coincidence and presentation frequency; panels (M-P) extreme cases: bigger variance, smaller coincidence,

bigger amplitude difference, bigger frequency difference. Averages over 20 trials are shown. Initial weights are ω(0) =

[0.001, 0.001]T and initial learning rate μ0 = 0.0005; Euler integration with step dt = 1.

https://doi.org/10.1371/journal.pcbi.1011926.g006
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In the third row (panels I-L) the same type of representation is shown, but for a set of ampli-

tude differences, where the first input average amplitude is always at one, while the second

input average amplitude is drawn from a set {0.8, 0.9, 1.0, 1.1 and 1.2} (uniform probability),

std = 0.1 everywhere. Also in this case the error is zero in a big patch of the parameter space.

In Fig 6M–6P we present various less favorable cases to investigate the limits of the ALL-

rule: higher input variance (std = 0.2, panel M), small coincidence (just 10%, panel N), wide

amplitude range in the interval [0.5,1.5] (panel O), as well the case when one input is five times

less frequent (30% coincidence, panel P). Except for the last, five times less frequent case, we

always get a parameter region where errors are zero. In the case where one input is five times

less frequent (P), however, we still get low classification errors for a large range of parameters.

Note, that in this case the coincidence percentage is very small as we calculate the 30%-per-

centage from the less frequent input. Thus, this case is, indeed, very unfavorable.

Comparison to reference methods

In Fig 7 we show results obtained with the three reference methods. Presented results are char-

acteristic for the problems that these methods have with the task of input coincidence detection.

For synaptic scaling and Oja no unique separation threshold can be found and it depends

on the stimulus situation. This could be resolved by using additional mechanisms (e.g. for Oja

by adapting the α factor for each stimulus situation individually). However, case-by-case adap-

tation of parameters is an undesirable feature for biological systems. The Oja rule, in addition,

has unfavorably overlapping distributions when input amplitudes or frequencies differ (see

third and fifth columns). Note also, that Oja as well as synaptic scaling are in the existing

Fig 7. Comparison to reference methods: Results for BCM, Oja and Synaptic Scaling. Two inputs with coincidence 30% everywhere. Amplitudes

and standard deviation (std) are shown above each column. Presentation frequency is equal, except in the last column where it is 2:1. Parameters: μ =

0.001. For Oja and Syn.Scaling: ω(0) = [0.001, 0.001]T, for BCM: ω(0) = [0.2, 0.2]T, ΘM(0) = 0.2, γ = 10 and v0 = 0.2; Synaptic Scaling: y0 = −200, ξ =

0.01.

https://doi.org/10.1371/journal.pcbi.1011926.g007
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literature normally used in a linear regime and cannot be satisfactorily applied after output

transform (2), which we also observed (See S1 Appendix).

For the BCM rule we have investigated different variants, but we will only show the best

results. In summary, when using the classical BCM-rule [3] for a 2-input system (linear case),

fixed points for the synaptic weights exist, albeit one of which is always negative. Thus, this

leads to unrealistic results (see S1 Appendix). This problem can be addressed by using a more

advanced version of BCM introduced by Toyoizumi et al. [24]. Their formulation contains

several additional parameters, which prevent negative weights. However, here distributions for

single features and combinations tend to overlap and the shape and overlap of the distributions

depends on those additional parameters.

Different from this, the (non-linear) version introduced by Intrator and Cooper [23] ren-

ders results which are—at a first glance—quite satisfactory and robust against input- as well as

parameter variations. Thus, in all panels the same separation threshold can be used. (For this

rule, however, the value v0 needs to be chosen correctly, see S2 Appendix). A general observa-

tion here, though, is that the single-input distributions heavily overlay each other. Hence, dif-

ferent input characteristics get lost in the output. This is clearly visible when considering, for

example, three inputs (Fig 8A). Here 7 different output distributions exist: 3 represent the

responses for one input each, another 3 for two inputs and 1 for all three inputs. We show

here three examples obtained with the BCM rule with the same parameters and same input

statistics, where differences arise due to randomness in stimulus sequencing. Here always 5

distributions cluster at small activation values and 2 near an activation of 1.0. The latter con-

sists of the 3-input case “123” and one two-input case, which is, however, not the same in the

here-shown three BCM examples. The actual outcome, thus, depends on the stimulus

sequences, which are randomized and, thus, different in these three examples. Different from

this, the ALL-rule renders an input-output transformation which much better reflects the

stimulus combinatorics, where single input responses are on the left, those for two inputs in

the middle and the one that belongs to all three inputs is found on the right side of the activa-

tion axis. In Fig 8B we show, in addition the weight development for one 3-input case each for

ALL and BCM, where the latter converges only after about 35,000 iterations and shows oscil-

lations during convergence. This type of behavior of BCM for multiple inputs is generic and

has also been observed by others [26]. Convergence speed can be increased by changing

parameter in BCM at the cost of stronger oscillations. Note that for five inputs BCM conver-

gence can take above 1 million iterations. Different from this, ALL converges for three inputs

smoothly after about 100 iterations only and this number does not significantly increase for

more inputs.

We further evaluate coincidence sorting in the three input case for the ALL and BCM rules

in Fig 8C, where we investigate parameter spaces of both rules. We set two thresholds, one at

0.25 and the other at 0.75 (based on approximate boundaries of distributions in the panel A)

and evaluate classification error with the assumption that responses to single inputs would

remain to the left of the first threshold, two input combinations would be positioned in the

middle and three input combinations would reside to the right of the second threshold. For

the ALL rule, we vary parameters: annealing threshold va and annealing rate ρ for the BCM

rule we vary parameters: target value v0 and the time scale ratio γ; for both methods we vary

steepness of the non-linear activation function by manipulating b in Eq (2). Zero and small

errors are visible as white-ish patches in the plots.

One can see that for the ALL rule there is an area in the parameter space with small errors

and, thus, input differentiation can be obtained. Such an area is present for all three response

function steepness values, though it is smaller for the very steep function. The latter is

expected, as a very steep function tends to “squeeze” outputs into two classes more strongly.
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By contrast, for the BCM no parameter combination brings small classification errors. Also, a

different steepness of response function does not mend the situation. As already shown in

Panel A, BCM tends to divide outputs into two extremes, thus no combination sorting prop-

erty in case of more than two inputs is obtained by BCM.

In Fig 9 we further analyze ALL rule in case of amplitude variations. We investigate cases

where mean amplitudes for the three inputs are (1.0, 1.0, 1.2), (1.0, 1.0, 1.5) and (1.0, 1.2, 1.5).

One again can see substantial areas (light color) in parameter space where correct input sorting

is happening (see top row in Panel A). At the bottom of Panel A we show two output histo-

grams for instances marked by two circles in the parameter space above. In those instances

outputs can be differentiated between “one active input”, “two active inputs” and “three active

inputs” given chosen thresholds with a small error.

Finally, we investigate five input cases for ALL and BCM (Intrator-Cooper) rules. In Fig 9B

we show outputs after learning obtained for different input combinations (there are 31 possible

combinations with at least one active input for five inputs). In this case all inputs have a value

of 1 (no amplitude variation) and in the learning phase all input subsets are provided with

equal probability. For the ALL rule we reliably and consistently obtain outputs sorted by the

number of active inputs, as shown in the left plot in Fig 9B. By contrast, for BCM the situation

Fig 8. Three input coincidence sorting for ALL and BCM rules. A: Output histograms. Note that 3 examples for

BCM are shown using the same intrinsic parameters but different stimulus sequencing. B: Weight development. Note

the different x-axis scales. C: Parameter space analysis: Errors for classification “one active input”, “two active inputs”,

“three active inputs” are based on response thresholds 0.25 and 0.75, averages over 20 trials are shown. Light color

corresponds to good coincidence sorting. Circles in the error plots show parameter combinations for which

histograms are shown in panel (A). Parameters: mean amplitude is 1 in case the input is active, STD = 0.1, ω(0) = [0.2,

0.2, 0.2]T, μ = 0.001, pair-coincidence 30% for every possible combination (12, 13, 23) in respect to that pair, triple co-

incidence for 123: 6%; for BCM: ΘM(0) = 0.1; Euler integration with dt = 1 in all cases.

https://doi.org/10.1371/journal.pcbi.1011926.g008
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is different ás can be seen on the right in Fig 9B. Note, where there is no blue column, the out-

put is zero. Outputs by BCM are essentially sorted into two classes, close to zero and close to

one, similar to the result shown in Fig 8A. Also in a similar manner, the outcome is variable

and depends heavily on the actual input sequence. Thus, the BCM rule cannot sort five input

coincidences.

Hence, ALL-rule has unique properties in respect to other rules in coincidence sorting or

detection.

Recurrent networks with the ALL-rule

First we demonstrate that we can obtain cells representing all possible input combinations in a

recurrent network. In Fig 10 we provide a box plot for the number of different combinations

Fig 9. Input coincidence sorting properties under more variable conditions. A: Results for the ALL rule for the

three input case with amplitude variation. Errors for classification “one active input”, “two active inputs”, “three active

inputs” are based on thresholds 0.25 and 0.75. Light color corresponds to good coincidence sorting. Parameters:

average amplitude provided above the plots, STD = 0.1, ω(0) = [0.2, 0.2, 0.2]T, μ(0) = 0.001, pair-coincidence 30% for

every possible combination (12, 13, 23) in respect to that pair, triple co-incidence for 123: 6%; plots show averages over

20 trials. Histograms of individual runs below correspond to the two circles in parameter plots above. B: Results on

input coincidence sorting for ALL and BCM (Intrator-Cooper) rule for a five input case. For 5 inputs there are 31

possible combinations of neurons driven by n� 1 inputs: 5 × 1, 10 × 2, 10 × 3, 5 × 4 and 1 × 5 inputs as indicated

beneath the abscissa. Parameters: ω(0) = [0.1, 0.1, 0.1, 0.1, 0.1]Tμ = 0.001, binary subsets of five presented in equal

probability, random order, Euler integration with dt = 1 in both cases, for ALL: va = 0.7, ρ = 0.1, for BCM: ΘM(0) = 0.2,

v0 = 0.4, γ = 10.

https://doi.org/10.1371/journal.pcbi.1011926.g009
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obtained for N = 3 or N = 5 external inputs in case of M = 200 neurons in a network. Statistics

are shown for 100 randomly generated networks. For this we count, after learning, how many

neurons respond, for example, to an input combination of “x11xx”. Such a neuron, shown

with green index “12” (decimal for the binary code 01100) in the panel B, thus, requires inputs

2 and 3 (encoded as “1”) to be active, where the other inputs may or may not be present

(encoded as “x”), but they will not be able to drive this neuron on their own. One can see that

for N = 3 the number of cells representing different combinations is essentially uniformly dis-

tributed, while for N = 5 the number of neurons representing single inputs is higher than the

rest. As expected standard deviations are high but, in spite of this, for any of the possible com-

binations there are always at least a few cells that represent them.

It is here important to note that this network does not produce an excess of neurons that

respond to the condition “other” (about 7 aut of 200 cells do this in the 5-input case, panel B).

“Other” means that a neuron would code, for example, for “x1x1x” as well as for “11xxx” and

possibly for even more different combinations. If self-organization were driven by a pure ran-

dom process a very strong excess of such neurons would be expected, which is not the case

here. Hence, our networks, indeed, self-organize into a set of input-combination selective

neurons.

In Fig 11 we analyze how the proportion of different combinations change with varying

decision threshold (A,C) and for the same decision threshold but in different network archi-

tectures (B,D). We quantify how many neurons are—on average—selective for any input com-

bination. To achieve this, we first sum the number of neurons that represent the same type of

input combination: e.g. single input. Then we divide this sum by the number of possible type-

identical combinations. For example, for the N = 5-case there are 5 single, 10 double, 10 triple,

5 quadruple and 1 quintuple possible combinations existing. Hence, percentage plots in Fig 11

Fig 10. Box plots for the number of neurons representing different combinations for the ALL-rule. A: Input number N = 3. B: Input number N = 5.

Combinations are aligned in ascending order of active inputs, with color code indicating the number of inputs, see legend at the bottom. Combinations

are indicated by decimal numbers corresponding to binary set notation (e.g. “3” means the combination: 00011, where only the two last inputs are

active). “o” means other, where this denotes occurrences of cells signaling several different combinations. The size of the neural network is M = 200,

average connectivity c = 2, annealing parameters are: annealing rate ρ = 0.3, where the annealing threshold va for each neuron individually is drawn

from a uniform distribution [0.75,0.95]. Decision threshold is 0.7. Initial weights are chosen from Gaussian distribution with mean = 0.001 and

std = 0.0002. Initial learning rate μ(0) = 0.0005. Euler integration with dt = 1. Median, mean and standard deviation are shown on the basis of 100 trials.

https://doi.org/10.1371/journal.pcbi.1011926.g010
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do not sum up to 100. However, to also be able to show the strong difference between combi-

nation-selective versus non-selective (“other” + “sub-threshold” + “sustained”) neurons, we

provide the total percentage of the combination-selective neurons, too (numbers in italics at

the top of each plot). Standard deviations are of the same order of magnitude, as shown in the

box-plot above and omitted here to make the diagrams better readable.

Decision threshold dependence is analyzed in parts A and C for N = 3 and N = 5, respec-

tively. All combinations are represented with an increasing prevalence of more-complex com-

binations for higher threshold values. Single cases are over-represented for smaller thresholds,

where this over-representation decreases with increasing decision threshold. However, the

qualitative outcome remains the same, that different combinations exist in a network, irrespec-

tive of threshold value.

While all combinations are present, architectures with a bigger number of inputs (200–10,

1000–10) favor higher-order combinations of inputs (see prevalence of 3-combinations in Fig

11B for architecture 200–10 and 1000–10 and prevalence of 5-combinations in Fig 11D, appro-

priate architectures).

Fig 11. Different combination distribution based on decision threshold and neural network architecture. A and B: three input case; C and D: five

input case. Numbers 1 to 5 indicate combinations responsive to corresponding number of inputs; “Other” represent cells signaling more than one

combination (see text for explanation), “Sub.” denotes sub-threshold cases, while “Sust.” denotes sustained activity, which does not subside after

switching off the inputs, which does not happen here (but in the baseline, see Fig 12). Neural network (NN) architecture notation: “No of neurons”-

“connectivity” (M-c). Numbers above column groups denote percentage of combination-selective neurons (vs. “Other” and “Sub.” neurons). Initial

settings and learning parameters as in Fig 10. Note, Fig 10 corresponds to the results indicated by ovals.

https://doi.org/10.1371/journal.pcbi.1011926.g011
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The green columns in the histograms show “Other” cases, which count all the cells in the

network that are active with two or more combinations, where one is not the subset of the

other. This number is not substantial when connectivity is low c = 2 and higher if we use con-

nectivity c = 10 in five input case (see panel D). However, note that also in this case there are

still around 80% of combination specific cells existing and only 20% others. If the decision

threshold becomes too high (see for the threshold value 0.8 in A and C), sub-threshold cases

emerge (black column). These are cases where the neuron may “fire” but never reaches deci-

sion threshold. None of the networks that we trained this way showed sustained activity,

which is a type of activity that persists after the inputs have been switched off (but see next).

Results can be compared to baseline performance, where the weights obtained by the ALL-

rule are randomly reshuffled (permuted) in between connections in the network, while the

general network connectivity pattern (which neuron connects to which other neuron) remains

the same. The percentage of different cases is shown in Fig 12, column group “permuted”.

Here we see that both, for N = 3 (A) and N = 5 (B), we only have a few percent of neurons

responding to single inputs only, whereas essentially no more-complex combinations emerge

(compare to columns “learned” plotted on the left). Instead, for baseline most of the cells

remain sub-threshold. The question naturally arises whether this is just a scaling effect? Hence,

to investigate if we can get more useful above-threshold combinations with bigger weights, we

increased all weights in the baseline by 1.5 or by 2 (columns “permuted x 1.5” and “permuted x

2”). Here we get a few more single responses and, as discussed above, also more “Other”

responses (numbers in green), but now also sustained activity emerges (brown column in the

diagrams) and dominates for “permuted x 2”. Hence, the network activity does not come to

rest after stimuli have been removed. Thus, this baseline shows that the ALL-method, sug-

gested in this study, allows generating in an unsupervised manner neurons selective for specific
combinations of inputs (low number of random=“other” combinations) in a stable way,

hence, without leading to sustained activation.

Network with inhibition

This study focuses on the stabilizing effects of annealing in excitatory networks, which other-

wise would be prone to effects like sustained activity as shown in the baseline study above.

Fig 12. Comparison to baseline. A: Three input case, B: Five input case. The column group “learned” shows performance of the ALL-rule, M = 200, c = 2; copied from

Fig 11; “permuted” is for the case with learned weights randomly permuted; “permuted x 1.5” and “permuted x 2” for cases with permuted weights multiplied by 1.5

and 2, respectively. Decision threshold kept at 0.7 everywhere. Abbreviations: “Sub.” = sub-threshold, “Sust.” = sustained activity. Green numbers denote percentage of

“Other”.

https://doi.org/10.1371/journal.pcbi.1011926.g012
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Intuitively, inhibition should not interfere (rather help) with stabilization, but will it affect

responses to the input combinatorics?

In Fig 13 we show a boxplot for the number of cells signaling different input combinations

in a network with 200 excitatory cells and 40 inhibitory cells (20%). We use a connectivity of

the excitatory network c = 2, and N = 5 inputs. In addition, each excitatory cell receives input

from ten randomly chosen inhibitory cells. Inhibitory connections are not trainable and their

weights are set to 0.01 each. This leads to a total inhibitory strength converging at any target

cell, which is only moderately smaller than the learned excitatory weights for which we calcu-

lated that we get an average total excitatory weight of*0.5. Each inhibitory cell receives inputs

from 20 randomly chosen excitatory cells in the network. The plot in Fig 13, shown here, is sim-

ilar to the one obtained without inhibition (see Fig 10B), where the numbers of cells responsible

for combinations are only slightly lower in the case of inhibition. This shows that realistic inhi-

bition, added to the network, does not fundamentally change the behavior of such networks.

Discussion

In this study we have introduced an unsupervised synaptic plasticity rule with learning rate

annealing that leads to weight stabilization and useful output sorting in case of different input

Fig 13. Box plot for different combinations of inputs for the cases N = 5 inputs for the ALL-rule with 20%

inhibitory cells. Combinations are aligned in ascending order of active inputs, with color code indicating the number

of inputs, see legend at the bottom. Combinations are indicated by decimal numbers corresponding to binary set

notation (e.g. “3” means the combination: 00011, where only the two last inputs are active). “o” means other, where

this denotes occurrences of cells signaling several different combinations. The size of the neural network is M = 200

(excitatory cells) with 40 inhibitory cells added. Average connectivity of excitatory cells onto excitatory cells is c = 2;

connectivity onto inhibitory cells c = 20. Each excitatory cell, in addition, is given 10 inhibitory connections, with a

fixed weights of 0.01. Annealing parameters are: annealing rate ρ = 0.3, where the annealing threshold va for each

neuron individually is drawn from a uniform distribution [0.75,0.95]. Decision threshold is 0.7. Initial weights for

excitatory inputs are chosen from Gaussian distribution with mean = 0.001 and std = 0.0002. Initial learning rate μ(0)

= 0.0005. Euler integration with dt = 1. Median, mean and standard deviation are shown on the basis of 100 trials.

https://doi.org/10.1371/journal.pcbi.1011926.g013
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coincidences even for different input amplitudes and occurrence frequencies. To achieve this

we have made two modifications of the traditional Hebb rule:

• We reduced the influence of the neuronal output onto learning to an all-or-none behavior

by using the Heaviside function with a threshold η� 0. This way learning starts as soon as

the neuronal activity is larger than this threshold but does not depend on the actual magni-

tude of the neuronal activity.

• We used annealing of the learning rate, as soon as the neuron has reached a certain output

level. While annealing is a well-known supplementary technique in many, also unsupervised,

approaches [15–18] we use it as the main mechanism to stabilize learning.

We have shown that with the ALL-rule neurons can learn coincident feature detection, sim-

ilar to an AND operator (Fig 5). When restricted to two inputs from the here analyzed other

rules it is only the BCM rule that achieves this reliably, too. However, we found that BCM can-

not sort more than two inputs. This is due to its intrinsic multiple non-linearities. While

weights will converge, the actual location of the BCM fixed points can not be predicted in the

general case, and neurons may respond too strongly to few inputs and too weakly to combina-

tions of more (see Figs 8A and 9B). The ALL rule, on the other hand, can solve the sorting

problem, too.

In addition, we found that different neurons in a network become specific for different fea-

ture combinations when using the ALL rule. Remarkably, this happens reliably even in net-

works that exclude balancing effects due to inhibition and we have shown that such excitatory

networks do not run into a regime of uncontrolled sustained activity. Somewhat expected,

when adding realistic inhibition to the network findings remain similar and the here-observed

characteristics only change for overly strong point-wise acting inhibition, which appears unre-

alistic when considering cortical networks.

Biophysics

All-or-non learning. The use of the Heaviside function for Hebbian learning (Eq 8) pro-

vides, from a theoretical perspective, several clear advantages because it leads only to linear

weight growth. Different from this, the membrane Hebb rule, which uses the membrane

potential to drive learning (Eq 6), leads to exponential weight growth and a strong run-away

effect of the weights that belong to the stronger inputs (see Fig 4B). Furthermore, (especially at

dendritic spines) it appears that the post-synaptic depolarization effects, that influence Ca+ +

influx through NMDA channels, which determine LTP, have an all-or-none effect on plastic-

ity. The absolute values for Ca++ within the dendrite required for the induction of synaptic

plasticity have been estimated as 150–500 nM for LTD and>500 nM for LTP [27]. Further-

more, it has been measured that a single EPSP can raise the Ca++-level to 700 nM, where a pair-

ing of post-synaptic depolarization with synaptic stimulation would even drive it up to as

much as 12 μM [28].

Based on these findings [29] had designed a model of plasticity in spines that predicts that

an EPSP resulting from the activation of a single synapse is sufficient to cause a significant

Ca++ influx through NMDA receptors. This is in line with experimental data [30–32]. As a

consequence, it appears that every post-synaptic back-propagating spike or dendritic spike will

be enough to lead to substantial Ca++ influx to trigger plasticity (at a spine). This argues for a

sharp transition of the post-synaptic learning influence, where the use of the Heaviside func-

tion would represent a limit case. Sigmoidal transition functions similar to Eq (2) could be

used instead, where results for this study will be little affected if the sigmoid is steep enough.
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Learning Rate Annealing. In 1998, Bi and Poo [33] had shown that the change in EPSP

amplitude is inversely related to the size of the EPSP when employing a plasticity protocol.

Hence, large synapses grow less than small synapses. This is potentially a ceiling (saturation)

effect of LTP and could, in theoretical terms, indeed be captured by a learning rate annealing

mechanism. This, however, points to a core problem: For theoreticians the learning rate is just

a single variable and learning rate annealing is essentially just an abstraction of meta-plasticity.

Linking this to complex multi-faceted biophysical processes, thus, remains difficult. There is a

wealth of literature that suggests that the reduction of LTP, due to meta-plasticity, could rely

on effects that influence NMDA receptors [34–38]. However, the time course of this might be

too fast as these effects seem to decay within about one hour [34]. Stimulus driven annealing

ought to be able to act rather on longer time-scales because the animal may only now and then

encounter the relevant stimuli. Longer lasting reduction of LTP could be obtained by mecha-

nisms that operate on its later phases (late-LTP) [39–42] suspected to be essential for establish-

ing synaptic consolidation. However, any potential role of this mechanisms in meta-plasticity

related to annealing effects remains unknown. Nevertheless, it seems conceivable that neurons

reduce their ‘learning-efforts’ by reducing the synthesis of some relevant biochemical compo-

nents using a saturation-driven kinetics, as soon as the neuron’s activity has grown enough,

which could be understood as learning rate annealing.

Summary. The above discussion provides evidence that the here-assumed novel mecha-

nisms of all-or-non learning paired with annealing are compatible with the biophysics of syn-

apses (especially when considering spines). It is furthermore noteworthy that the biophysical

“machinery” to implement the ALL-rule is relatively simple, which is different for most other

advanced unsupervised rules (see next).

Other unsupervised rules

BCM. In the theoretical literature, learning rate annealing is a very widely used mecha-

nism applied with different learning rules and for different purposes [17, 18, 43, 44]. Notably,

the BCM rule also has a mechanism built in that could be understood as annealing. Its thresh-

old θ relies on the time-averaged level of postsynaptic firing. Thus, if firing levels are main-

tained at a high level, this threshold shifts, making LTP harder to obtain. With some tuning,

this rule was also able to solve the simple AND-operator task investigated in this study. The

weight development of BCM, however, does not reflect the ordering of input coincidences in

any reliable way (see Figs 8 and 9) and the location of the different output distributions in acti-

vation space cannot be predicted for neurons with several inputs. An additional undesired

aspect of BCM is that convergence can be very slow for multiple inputs. This had been

observed in a recent study [26] and we also found that for five inputs sometimes above one

million iterations were needed until convergence. Increasing the learning rate does not much

help here as this way quite strong weight oscillations can occur. When considering that we are

here dealing with the presentation of external stimuli that “come from the world”, it is impossi-

ble for an animal to learn feature constellations using BCM due to delayed convergence. By

contrast, the ALL rule converges (by construction always without oscillations) in about 100

iterations, where this number is not much affected by the number of inputs.

Given the complexity of more advanced versions of BCM (e.g. Intrator-Cooper), it is also

unclear how this could be modeled in biophysical terms. In particular, also in view of the fact

that saturation-driven kinetic mechanisms, which operate on one or more compounds needed

for LTP, do not map well to this rule.

Synaptic scaling. Synaptic scaling has been suggested as a possible mechanism to achieve

targeted weight-growth, too, and scaling operates on rather long time scales, slower than
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learning. Hence, one aspect concerns the question to what degree the ALL-rule might relate to

synaptic scaling [5]. Scaling assumes that neurons “want” to achieve a certain target activity [7]

and that synaptic changes are driven by this target. Hence, this is indeed related to the opera-

tion of the ALL-rule. Alas, the existing mathematical formulations where (Hebbian) plasticity

is combined with some scaling term [8], do not reliably lead to this property. Different from

this, the ALL-rule does achieve this in a robust manner, where—for the purpose of this study

—we have set the target activity to relatively high values, which allows getting the AND-opera-

tor property. However, due to the design of the annealing mechanism, other target values can

also be obtained by using a different (lower) annealing threshold va.

Oja’s rule. This rule did not allow us to obtain in any reliable way the simple AND-opera-

tor property and had—as a consequence—not been further investigated.

Summary. The central problem of the above discussed learning rules appears to be that,

while they all converge, the locations of the weights’ fix points are not directly coupled to the

(average) stimulus intensity given approximately by the product of amplitude with occurrence

frequency of the stimuli. Even in cases where the stimulus statistics are identical, different

stimulus sequencing will drive weight development into different fix points on their attractor

landscape. This is different for the ALL rule, which leads to a rigorous “sorting” of the outputs

according to their driving stimuli even for multiple inputs.

Comparing to other learning principles

Clearly, reinforcement learning and supervised learning would be able to achieve the tasks

investigated in this study, too. Both, however, require evaluative feedback in the form of

rewards or by use of an error function. While evaluative feedback can help achieving more dis-

criminative results in learning tasks, not excluding the here-addressed task of coincidence sort-

ing, the origin of error terms in biological systems is a large unresolved question in its own

right [45]. We had discussed that there are formal similarities between our rule (Eq 8) and

Rosenblatt’s perceptron [22], but for the perceptron an error term is needed. Note, that error

terms in biological systems do not come “for free”. Any system using evaluative feedback

needs additional components and complex processes. The multifaceted properties of the dopa-

minergic system in the animal brain (i.e. a reward-processing system which, however, also

strongly reacts to just a novelty signal) testifies to this complexity [46, 47]. Different from this,

our method is non-evaluative and performs a process of self-organized stimulus sorting in a

single neuron. Any potential ecologically meaningful evaluation could then come on top and,

for example, reinforcement learning of a beneficial behavioral policy could make use of the

responses of our feature-combination specific neurons.

Limitations

This study has focused on a stationary environment, where the statistics of the inputs does not

change between training and testing of the system. It is however, straightforward to comple-

ment this with a decay term (forgetting) of the weights with which the system can recover its

learning rate. Thus, given the fast convergence properties of the ALL-rule, changes in the envi-

ronment, which happen usually on a slow time-scale, could be accommodated this way.

Currently the ALL-rule leads only to weight growth. Forgetting would be a passive, possibly

slow, mechanisms to reduce weights. Different from this, active weight reduction can also be

achieved with a mechanism for long term depression (LTD). This can, for example, be done by

using a sigmoidal function G(y − η), η> 0 with values between −1 and + 1 (or the Sign func-

tion) instead of the Heaviside function, which will lead to weight reduction for y − η< 0. We
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are currently investigating both aspects (forgetting as well as LTD), but this goes beyond the

scope of the current study.

Furthermore, we found that the ALL-rule is quite robust to variable stimulus occurrence

frequencies and variable amplitudes. Only large amplitude differences will indeed harm per-

formance. However, there is strong evidence that input normalization is a powerful mecha-

nism in many different brain areas ([19], and see review [48]). Note that a factor of 1.5—like

for the amplitudes in our experiments—is clearly within the normalization regimes for many

of these experimental findings provided in the aforementioned studies [19, 48]. In an ecologi-

cal setting animals have no control over how often a stimulus will occur and robustness against

this kind of variability is useful for the learning process as also observed with the ALL-rule. In

addition to this, normalization mechanisms can be used to ameliorate negative effects of

amplitude variations.

The here investigated networks are small but their general connectivity pattern appears

realistic relative to the here-used neuron numbers. Furthermore, similar types of networks

have been used in many studies that address the problem of reservoir computing [49, 50]. The

focus on excitation had been chosen to demonstrate that even such networks will stabilize but

some general inhibitory connectivity had been introduced, too. More targeted inhibitory con-

nections (e.g. lateral inhibition) will begin to make sense only as soon as some topology is

introduced in such networks.

Conclusions

With the mechanisms employed here we demonstrated that neurons can learn to respond to

specific input combinations in an unsupervised manner. This can only be achieved if the sys-

tem reacts in a rather invariant way to stimuli of different amplitude and occurrence fre-

quency, which is assured by annealing. We believe that this specificity for input combinations

may be of ecological relevance for an animal, because it allows learning to respond to sets of

inputs that might indicate situations with different—positive or negative—valance, where—on

the other hand—individual features might be irrelevant.
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