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Abstract: Upper air temperature measurements are critical for understanding weather patterns, 

boundary-layer processes, climate change, and the validation of space-based observations. How-

ever, there have been growing concerns over data discrepancies, the lack of homogeneity, biases, 

and discontinuities associated with historical climate data records obtained using these technolo-

gies. Consequently, this article reviews the progress of utilizing radiosondes and space-based in-

struments for obtaining upper air temperature records. A systematic review process was performed 

and focused on papers published between 2000 and 2023. A total of 74,899 publications were re-

trieved from the Google Scholar, Scopus, and Web of Science databases using a title/abstract/key-

word search query. After rigorous screening processes using relevant keywords and the elimination 

of duplicates, only 599 papers were considered. The papers were subjected to thematic and biblio-

metric analysis to comprehensively outline the progress, gaps, challenges, and opportunities related 

to the utilization of radiosonde and space-based instruments for monitoring upper air temperature. 

The results show that in situ radiosonde measurements and satellite sensors have improved signif-

icantly over the past few decades. Recent advances in the bias, uncertainty, and homogeneity cor-

rection algorithms (e.g., machine learning approaches) for enhancing upper air temperature obser-

vations present great potential in improving numerical weather forecasting, atmospheric boundary 

studies, satellite data validation, and climate change research. 

Keywords: upper air temperature; radiosonde biases; satellite validation; weather forecasting;  

atmospheric boundary layer; climate change 

 

1. Introduction 

Upper air temperature is a fundamental atmospheric parameter that affects weather 

patterns and climate. To understand and predict weather patterns and severe weather 

events, it is crucial to have accurate temperature data from the upper atmosphere [1]. 

Identifying climate change signals in the upper atmosphere is also critical due to the rising 

temperature in the troposphere and the cooling of the stratosphere which has been 

strongly associated with anthropogenic activities [2,3]. Consequently, in situ measure-

ments of atmospheric temperature, between the surface and the top of the stratosphere 

(i.e., 50 km), provide high-quality data that are used to understand boundary layer pro-

cesses, radiative transfer calculations, air pollution meteorology, and to validate estimates 
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from space-based instruments [4]. In this context, high-quality data refer to observational 

data that are accurate, precise, reliable, and free from significant errors or biases [5]. For 

instance, high-quality RS data can be used to understand boundary layer processes such 

as vertical structure [6], Boundary Layer Height [7] evolution [8], and turbulence [9]. Fur-

thermore, to understand radiative transfer calculations, RS data provide crucial atmos-

pheric parameters such as temperature, humidity, and pressure which are used to validate 

and calibrate radiative transfer models [10]. For pollution meteorology, RSs are important 

for detecting temperature inversions, atmospheric stability and mixing, understanding 

the transport of pollutants, validation, and the improvement in air quality models [11,12]. 

The RS has the advantage of being a direct measurement of atmospheric variables in 

the troposphere and lower stratosphere (~25 km) with the necessary accuracy and detail, 

which are essential for numerical weather prediction (NWP) and the monitoring of re-

gional and global climate change [13]. The RS has the advantage of being a direct meas-

urement of temperature, especially in the upper atmosphere where other instruments, 

such as satellites, cannot reach it; there have been major drawbacks in its applications. For 

instance, there have been growing concerns over radiosonde (RS) data discrepancies, the 

lack of homogeneity, biases, and discontinuities associated with historical climate data 

records[14]. For instance, ref. [15] has documented these issues observed in the historical 

monthly upper air humidity dataset for Australia. Meanwhile, [16] expressed this issue 

when analyzing global subdaily radiosonde temperature data from 1958 to 2018. These 

studies have shown large discrepancies in global temperature trends, between trends de-

rived from space-based instruments, balloon-borne (RS) instruments, and expected trends 

diagnosed with the state-of-the-art models ([17,18]). The source of uncertainty in the 

trends of upper air (e.g., 10 m above the surface to the Karman line at approximately 100 

km above sea level) temperature records results from frequent and undocumented 

changes in instrumentation. These uncertainties are also caused by calibration errors or 

inhomogeneities in the RS dataset that occur over time as instrumentation is upgraded 

(e.g., from RS92 to RS41), observing practices are changed, processing code is improved, 

and due to the influence of solar and infrared radiation on the thermistor [19]. Several 

attempts were made to improve the quality of the measurement series by applying meth-

ods to remove apparent temperature discontinuities that occurred due to changes in in-

struments and practice [20,21]. Such methods include intercomparison (i.e., differencing) 

[22], homogenization (i.e., Pairwise Homogenization Algorithm (PHA)) [23], temperature 

bias corrections (i.e., dual RS launches) [24], empirical corrections (i.e., fit regressions) [25], 

and using reference data (GRUAN datasets) [26], statistical (i.e., RHARM homogeniza-

tion, [27]), and machine learning approaches to detect patterns and anomalies in the data 

[28]. It is important to note that the list is exhaustive. For example, the comparison of tem-

perature measurements from adjacent weather stations with RS data serves as one of the 

methods used to identify errors that come with changes in instrumentation. However, this 

technique fell short due to the low number of collocated observations and large atmos-

pheric variability [29]. The limited number of collocated observations, especially in remote 

or sparsely populated regions, results in gaps in the dataset and makes it challenging to 

capture the full range of atmospheric conditions, leading to uncertainties in analysis and 

modeling. Resultantly, the data still failed to meet the needs of climate scientists [29,30]. 

Therefore, it is essential to develop techniques that will separate temperature signals from 

unavoidable non-climatic effects caused by instrument instabilities, measurement biases, 

and network inhomogeneities [29]. 

Meteorological satellites provide an alternative means of obtaining upper air temper-

ature estimates which are assimilated into NWP models. Assimilating space-borne mete-

orological data into NWP models is a complex process that comes with its own set of 

challenges and limitations [31]. For instance, satellite data may have inherent biases, er-

rors, or uncertainties due to instrument calibration, orbital drift, or atmospheric condi-

tions [32]. In addition, variations in sensor characteristics, spatial resolution, and data pro-

cessing techniques can also introduce inconsistencies in the satellite observations leading 
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to errors [31]. Therefore, space-borne meteorological data need to undergo careful calibra-

tion, validation, and error estimation prior to assimilation in NWP models [31,33]. 

Space-borne meteorological instruments include passive sensors such as microwave 

sounders [34], infrared wave sounders [35], radio occultation (RO) systems [36], and ra-

dars [37]. However, satellite remote sensors are also imperfect and prone to errors. For 

instance, microwave sounders boost global coverage at a high sampling rate but suffer 

from coarse resolution (e.g., AMSU-A—48 km × 48 km), whereas infrared sounders (e.g., 

MTG-Sounders—4Km × 4 km) are sensitive to contamination by clouds and other aero-

sols. In addition, the potential of RO to provide high-quality temperature data is also lim-

ited by biases and uncertainties associated with each of the observation types [38]. For 

example, RO data suffer from the negative refractivity bias, especially pronounced in the 

lower atmosphere or planetary boundary layer [39]. In addition, RO retrieval algorithms 

rely on assumptions about the atmospheric properties and their vertical profiles [36]. 

Therefore, errors or uncertainties in the assumed atmospheric models can propagate into 

the retrieved data, affecting the accuracy of temperature and humidity profiles [40]. De-

spite shortcomings associated with these instruments, they have also been used exten-

sively to correct and characterize RS temperature biases in the upper and lower strato-

sphere [27,36]. 

For instance, ref. [4] compared RS with COSMIC atmospheric profile data to compute 

differences among RS types and the effects of imperfect collocations. Meanwhile, [36] de-

veloped a novel technique to correct RS temperature biases using RO data. Although var-

ious studies have been conducted to enhance the quality of upper air temperature meas-

urements to improve the validation of space-based observations and weather forecasting 

([21,41,42]), there is still a lack of literature review studies that focus on the uses of RS and 

space-based instruments for monitoring upper air temperature records despite their sig-

nificant contributions in providing data for studying atmospheric processes, climate 

change, and numerical weather forecasting. For instance, the previous reviews focused 

only on the uses of RSs in climate change studies (e.g., [43,44]). Ref. [45] provided a brief 

review of the global satellite dataset of air temperature derived from satellite remote sens-

ing and weather stations. The reviews by [46] focused only on RO for monitoring upper 

air temperature in the tropics. 

Therefore, this article sought to review the existing literature on the progress and 

developments of RS and space-based instruments for monitoring upper air temperature 

profiles. Additionally, it reviews the challenges and prospects of using RS and space-

based instruments for upper air temperature monitoring, given the immense scope of RS 

and space-based instruments for monitoring upper air temperature issues. We first review 

in situ measurements and remote sensing applications for monitoring upper air tempera-

ture records as well as their associated challenges. Then, we delve into niche areas 

whereby upper air temperature observations are used such as weather forecasting, atmos-

pheric boundary layer, and climate change studies. We then discuss the progress, chal-

lenges, and future directions of the research focusing on monitoring upper air tempera-

ture profiles using in situ and satellite observations. We conclude the review with a brief 

overview of the results obtained in the study, highlighting important findings and future 

research endeavors. 

2. Research Method and Literature Search 

This study adopted a systematic review method [47] to identify rigorously, critically 

appraise, and summarize empirical studies published between 2000 and 2023 reporting 

on the use and developments of RS and space-based instruments for monitoring upper air 

temperature profiles. The studies included in this systematic review were appraised based 

on a recognized set of criteria such as the study design, methodological rigor, bias assess-

ment, outcome measures, data collection and analysis, reporting quality, and publication 

bias, following the approach by [48]. This criterion was used to ensure the methodological 

quality and reliability of the findings. 
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The approach taken to querying the literature consisted of a selective title/ab-

stract/keyword search in specific scientific libraries such as Google Scholar, Scopus, and 

Web of Science databases, targeting peer-reviewed international journals related to the 

use of radiosondes and satellites for monitoring upper air temperature records. A regres-

sive reference list assessment was also utilized to identify supplementary journal articles 

from relevant literature reviews and the corresponding references. 

Terms from the initial search query included “radiosonde”, “satellites” AND “atmos-

pheric temperature measurements” for studies published between 2000 and 2023. Then, a 

total of 74,899 publications were retrieved from the search with 36,800 from Google 

Scholar, 31,670 from Scopus, and 6429 from Web of Science. Using level 2 search parame-

ters which included terms like “atmospheric temperature trends”, “radiosonde chal-

lenges”, “radio occultation”, “temperature retrieval”, algorithm evaluation”, and “satel-

lite validation”, the retrieved publications were subjected to additional screening. Level 2 

search parameters were used to refine the search results and focus on the most relevant 

studies that discuss the obstacles and problems faced in monitoring upper air tempera-

tures. This filtering approach resulted in a total of 2566 articles, with 1210 articles from 

Google Scholar, 1050 articles from Scopus, and 306 articles from Web of Science. The third 

level was performed to further refine and focus on relevant papers that identify challenges 

and issues while presenting practical applications of upper air temperature data. There-

fore, the screening included keywords such as “discontinuities”, “errors”, “uncertainties”, 

“inhomogeneities”, “biases”, “weather forecasting”, “atmospheric boundary layer”, and 

“climate change”. The chosen keywords align closely with the objectives of the systematic 

review, which aims to assess the current state of knowledge, identify gaps and challenges, 

and explore the prospects of using remote sensing and space-based instruments for upper 

air temperature monitoring. 

As a result, 599 articles (see Figure 1) were eventually included in the analysis after 

removing duplicates, papers that were not in English, grey literature, extended abstracts, 

conference proceedings, and publications that were not published between 2000 and 2023. 

All the remaining 599 articles were saved in Microsoft Excel and a thematic analysis was 

performed to comprehensively outline the progress, gaps, challenges, and opportunities 

related to using radiosonde and space-based instruments for monitoring upper air tem-

perature for the validation of space-based observations, weather forecasting, atmospheric 

boundary, and climate change studies. Furthermore, the papers were exported to the 

“Bibtex” format and were subjected to a bibliometric analysis in R studio [49]. The key 

metrics considered in the bibliometric analysis of this study included publication trends, 

keyword analysis, and co-citation analysis. These metrics provided insights into the land-

scape of the research on the topic, highlighting influential works, emerging trends, and 

the overall impact of the literature. Finally, Figure 1 shows a flow diagram of the method-

ology adopted to screen, select, and analyze the relevant publications covered in this 

study, as also illustrated by [50]. 
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Figure 1. Shows the methodology used to choose the publications that were reviewed. 

3. Results 

3.1. In Situ Measurements for Monitoring Upper Air Temperature Profiles 

Upper air includes the atmospheric regions which cannot be determined or described 

solely on surface observations [36]. These regions extend from just about 20 m above the 

surface to the Karman line which is about 100 km above sea level. The Karman line forms 

a boundary between the atmosphere and outer space [36]. This demarcation is significant 

because it marks the altitude at which the atmosphere becomes extremely thin and the 

distinction between “air” and “space” becomes less clear [51]. In the context of upper air 

observations, the Kármán line serves as a reference point for the uppermost reaches of 

Earth’s atmosphere that are typically studied [51]. Upper air observations date back to the 

mid-19th century, when meteorologists started experimenting with the use of a kite to 

carry aloft thermometers and barometers [52], and much progress has been made ever 

since. Between the 1920s and 1930s, radiosondes were invented by Vilho Vaisala in Fin-

land and independently by Pavel Molchanovin in the Soviet Union [44] and have since 

enabled meteorologists to obtain important information about the behavior of the winds 

above the Earth’s surface through the troposphere and stratosphere. These exercises were 

previously expensive, sporadic, and difficult to monitor using ground-based instruments 

[53]. 

The longest existing in situ upper air RS records (Integrated Global Radiosonde ar-

chive) date back to 1958 [54] and provide unique information on essential climate varia-

bles that is not available from remote sensors. RSs play a vital role in the provision of 



Atmosphere 2024, 15, 387 6 of 31 
 

 

upper air temperatures that are assimilated into NWP models, along with other observa-

tional data from, for example, surface stations and space-based instruments [53,55]. RSs 

incorporate a battery-powered telemetry instrument package that is carried into the at-

mosphere typically by a weather balloon [33]. Telemetry instruments play a crucial role in 

radiosondes by enabling the transmission of data from the radiosonde instrument to the 

ground station [56]. This capability allows meteorologists and scientists to receive real-

time information about atmospheric conditions at various altitudes, contributing signifi-

cantly to upper air measurements and weather forecasting [57]. RS instruments measure 

temperature, pressure, altitudes, wind (both speed and direction), relative humidity, and 

cosmic ray readings at high altitudes [33,55]. There are other classes of radiosondes such 

as rawinsondes and dropsondes [58]. A rawinsonde is a class of radiosondes whose posi-

tion is tracked as it ascends in the atmosphere to provide wind speed and direction, alt-

hough, in practice, radiosonde and rawinsonde are frequently used interchangeably 

[33,53]. On the other hand, dropsondes are released from airplanes and fall rather than 

being carried by weather balloons [33]. These instruments are normally employed for dif-

ferent applications; for instance, radiosondes are used primarily for obtaining vertical pro-

files of the atmosphere and numerical weather prediction models [56]. Meanwhile, rawin-

sondes are used to obtain detailed wind data at various altitudes, especially for studying 

the behavior of jet streams, fronts, and other weather systems. On the other hand, drop-

sondes are used in situations where precise atmospheric data are needed in a specific lo-

cation or along a specific path (e.g., detailed structure and the intensity of storms) [59]. 

In situ measurements for upper air temperature have also been observed from air-

craft [60], drones [61], and sounding rockets [62]. These instruments present their 

strengths and weaknesses compared to balloon-borne radiosondes. For example, aircraft 

offer flexibility to be deployed rapidly, with various instruments for specific locations and 

altitudes, providing targeted measurements where needed [63]. However, they are expen-

sive to maintain, weather-dependent (i.e., not operating under severe storms), and limited 

to lower- and mid-level altitudes, unable to reach the upper atmosphere like balloons or 

sounding rockets [64]. Concurrently, drones are more cost-effective for localized measure-

ments and can fly at lower altitudes than balloons, providing detailed data closer to the 

Earth’s surface [65]. Some drawbacks associated with drones include that they can only 

go up to 10 km altitude, are weather-dependent, and have limited flight endurance, which 

can restrict the duration of data collection [65]. Sounding rockets can reach much higher 

altitudes with larger sophisticated payloads than balloons or aircraft, providing data from 

the upper atmosphere and even into space [62]. However, sounding rocket missions are 

expensive and complex to plan and execute [62]. 

While much has changed in the capabilities of the instruments over the years, bal-

loon-borne RSs are still one of the primary means by which in situ upper air weather in-

formation is collected globally. For instance, in the Northern Hemisphere, ref. [66] com-

pared the use of the Atmospheric InfraRed Sounder (AIRS) and radiosonde observations 

over West Africa. Meanwhile, ref. [28] assessed the contrasts between upper temperature 

profiles and multiple reanalysis datasets in China. In the Southern Hemisphere, [26] com-

bined RS data from the distributed GRUAN site Lauder–Invercargill, New Zealand, to 

provide a site atmospheric state best estimate (SASBE) [67] of the temperature. The latter 

studies have underscored the critical significance of improving RS data quality irrespec-

tive of location and the pivotal role it plays in validating and calibrating other datasets, 

such as space-based and ERA5 reanalysis data. Ref. [44] provided a review of upper air 

temperature trends and then highlighted the current problems and results. A review by 

[68] showed that the spatial density and accuracy of RS data widely vary according to 

climate variables, the region of the world, and the layer of the atmosphere. For instance, 

regions with more significant temperature and humidity variations tend to have denser 

radiosonde networks [68]. Furthermore, the accuracy of radiosonde data can also be in-

fluenced by the calibration of the instruments used [68]. Table 1 summarizes the other 

studies on in situ upper air temperature observations and their associated accuracies.
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Table 1. Summary of studies on in situ upper air temperature observations. 

Platform Sensor Type Launching Site Variables Accuracy Reference 

Balloon-born radio-

sonde 

Vaisala RS92 and RS41, 

and Meteomodem 
Global 

Temperature and rela-

tive humidity 

The systematic differences in the temperature profile for both Mete-

omodem and Vaisala were less than ±0.2 K up to 10 hPa; RH profile 

differences were less than 1% RH for the Sodankylä Vaisala dataset 

up to 300 hPa.  

[27] 

Drone (LUCA) HMP110 (Vaisala) 
Baltic Sea, Ger-

many 

Temperature, humid-

ity, and pressure 

The uncertainty of the pressure was 0.6 hPa, temperature was 1 k, and 

humidity yielded 5%.  
[65] 

Aircraft AVAPS 

Dropsonde 
RD41 and NRD41 

Tropical East Pa-

cific and Carib-

bean 

Temperature, pres-

sure, and relative hu-

midity 

The pressure was achieved with the uncertainty of 0.4 hPa, tempera-

ture with 0.2 K, and relative humidity with a bias of 2%. 
[69] 

Near-space sounding 

rocket 
n/a China Temperature 

The precision of the temperature measurements ranged between 1.58 

k below 50 km and 3.08 k between 50 and 60 km 
[70] 

Balloon-born radio-

sonde 

Various sensors ac-

cessed via NPROVS 

collocations  

Global Temperature 

The global average biases in the 15–70 hPa layer were 0.05–1.89 K 

standard deviation (~52,000 profiles) at night and 0.39–1.80 K stand-

ard deviation (~64,500 profiles) in the daytime (SEA > 7.5). 

[71] 

Balloon-born radio-

sonde 

Various sensors 

through the DACCIWA 

campaign  

West Africa Temperature 
The temperature biases range from 0.5 K to 1 K through the tropo-

sphere. 
[72] 
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3.2. Challenges of In Situ Radiosonde Measurements for Upper Air Temperature Observations 

Considerable progress (Figure 2) has been made over the last few decades in using 

in situ RS measurements for upper air temperature observations. For instance, the number 

of papers published between 2000 and 2023 (Figure 2) indicates that there has been a sig-

nificant surge in interest in using RS measurements for upper air temperature observa-

tions, and 2019 emerged as the most productive year. Figure 2 also portrays a steady de-

cline in the number of publications from 2020 to 2023 despite the expansion of the global 

operational upper air network over the years from about 800 stations in the year 2014 [73] 

to approximately 1723 stations in 2019 [54]. 

 

Figure 2. Progress of in situ radiosonde papers for monitoring upper air temperatures. 

However, the exact number of active RS launching sites that exist globally to date is 

still not clear as the number fluctuates due to a couple of factors. For instance, most of the 

RS stations are sparsely distributed and are densely concentrated in Northern Hemisphere 

land areas (see Figure 3), leaving large regions of the world’s oceans and the Southern 

Hemisphere essentially unmonitored [26,74]. Figure 3 shows that regions such as Africa, 

South America, the Southern Ocean, and the Antarctic are particularly underrepresented 

in terms of radiosonde observations. This leads to significant data gaps, and biases in cli-

mate models, and limits our understanding of the Southern Hemisphere weather and 

global atmospheric profile, especially in these crucial regions where severe weather events 

are becoming prevalent (e.g., tropical cyclones) [75]. 

This imbalance in the spatial distribution of RS launching sites can be attributed to 

the high cost of RS launches (approximately USD 500 per launch) which is too expensive 

for developing countries, thus limiting the number of upper air sites worldwide (800) 

[20,61,73,76]. In addition, since each station launches RSs twice (i.e., at 00:00 and 12:00 

UTC) per day for every day of the year, this standard practice has led to serious budget 

constraints, and some countries such as Russia, Mexico, and Brazil are cutting their RS 

programs from two ascents per day to one [77]. 

In addition, large-scale disruptions and movement restrictions such as the COVID-

19 pandemic also influenced the quantity of observations especially high-quality in situ 

observations that are made by commercial aircraft every day [78,79]. For more information 

on this subject, [79] reviewed the impacts of COVID-19 on commercial aircraft-based ob-

servations for NWP. The latter issues have led to the regional reduction in RS reports and 
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were reported to have a significant impact on forecast performance (i.e., increased errors 

and uncertainties), which then affected global forecast scores [77,79]. Furthermore, the re-

duction in these observations has been linked to challenges in predicting the onset and 

intensity of tropical cyclones and severe weather events [80]. 

 

Figure 3. Global distributions of radiosonde launching [81]. 

Despite the high launching costs, other factors that affect the spatial distribution and 

temporal resolution of the radiosondes illustrated in Figure 3, especially in Africa, are tel-

ecommunications issues rather than ascents not being made at all. These issues include 

inadequate internet connectivity, the lack of reliable phone lines, and the limited availa-

bility of satellite communication [82]. It is also important to note that radiosondes transmit 

data in real-time to ground stations using radio signals or satellite communication [83]. 

However, in areas with poor telecommunications infrastructure, delays or interruptions 

in data transmission can occur, resulting in a low and variable number of RS reports. 

Meanwhile, in remote islands, it is more expensive to maintain RS launching sites, and it 

takes longer to fix equipment failures, thus limiting the number of global active stations 

[77]. For instance, transporting personnel and equipment to these remote stations can be 

difficult and costly. This can lead to delays in maintenance visits or the infrequent servic-

ing of instruments. In addition, stations in remote islands, particularly in the tropics, may 

face harsh weather conditions such as tropical storms, high humidity, and corrosion from 

saltwater [84]. These conditions can lead to equipment degradation and malfunctions. 

This also shows that not all observational sites produce continuous series, since some sta-

tions constantly experience interruptions in soundings, resulting in the continuity of the 

series that is not ideal [20]. 

The value and quality of upper air observations have gained a lot of interest recently, 

due to their important role in weather forecasting and the validation of space-based ob-

servations. The RS has been providing profiles of the initial state of the atmospheric anal-

ysis which drives NWP models and improves forecast accuracy and the calibration of 

space-based estimates. The World Meteorological Organization has established require-

ments for the accuracy (Table 1) of the data gathered by RSs (see, e.g., [85]). For instance, 

operational standards allow for errors of 1 K in the tropospheric temperature and less than 

7.5% in the relative humidity (RH) [85]. However, many stations around the world are 

still struggling to comply with these requirements due to several factors such as defective 

RSs or ground equipment, the impact of solar/IR radiation on the RS temperature sensors, 
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and observer errors [81]. Compliance with WMO accuracy requirements is essential to 

ensure the quality and reliability of these observations [85]. Accurate and standardized 

upper air data not only improve the accuracy of weather forecasts but also enhance our 

understanding of climate variability and change. Meeting WMO standards ensures that 

meteorological observations are consistent, comparable, and trustworthy, benefiting 

global efforts in weather prediction, climate research, and disaster preparedness [85]. 

RS challenges have been extensively reviewed in the past few decades. For instance, 

a review by [44] highlighted RS issues related to vertical coverage, as opposed to only 

spatial coverage. It was reported that poor sampling in the stratosphere in contrast to the 

troposphere was associated with high uncertainty and gave rise to biases in the upper air 

temperature observation trends [44]. The biases resulting from the extremely dry and so-

lar radiation-influenced conditions and the low pressure at altitudes above the tropopause 

are still a challenge for RS sensor technologies [44]. Solar radiation-induced heating can 

lead to warmer temperature measurements in the upper atmosphere resulting in a dis-

torted view of the temperature profile, affecting weather forecasts and climate studies [86]. 

Moreover, low-pressure conditions at altitudes above the tropopause can lead to drift in 

the calibration of pressure sensors over time [87]. This drift can result in inaccuracies in 

pressure measurements, affecting the calculation of altitude and density [87]. Although 

manufacturers have attempted to develop algorithms for removing the effects of solar ra-

diation, it was reported to cause overcorrection [41] resulting in erroneous data. Biases 

associated with solar radiation effects also vary for different RS sensor types and heights 

[19]. For example, some sensors such as Vaisala RS90 undergo relatively objective radia-

tion correction, but it is still difficult to objectively trace, identify, and remove inherent 

sensor biases for the historical RS data and use the corrected RS temperatures to build 

long-term temperature climate records [19]. Recently, attempts have been made to reduce 

the influence of radiation on temperature measurements; for example, [86] adopted an 

approach whereby the external surfaces of the sensor plates were covered with aluminum 

foil to lessen the impact of solar radiation. Additionally, the interior surfaces of the plates 

were coated in black to lessen the effects of indirect radiation. Computational fluid dy-

namics (CFD) and neural network techniques were used to quantify temperature errors 

of the sensors fitted with the new radiation shield caused by different radiations (direct 

solar radiation, reflected radiation, diffused radiation, and long-wave radiation). The 

study managed to achieve the observed and anticipated temperature errors of 0.036 °C 

(correlation coefficient), 0.046 °C (mean absolute error), and 0.99 (root mean square error), 

respectively. 

The issue of uncertainties that exist within long-term temperature climate records 

constructed from in situ measurements and satellite estimates remains the most challeng-

ing problem for climate change research. Inhomogeneities associated with temperature 

records are mainly due to changes in instruments, data transfer or processing algorithms, 

and site locations [88,89]. For instance, over the years, there have been changes in the types 

of instruments used to measure temperature. This includes shifts from mercury thermom-

eters to electronic sensors, which can introduce biases if not properly adjusted for [28] . 

Moreover, weather stations are sometimes moved to different locations over time due to 

changes in land use, urbanization, or logistical reasons. Such relocations can create artifi-

cial temperature trends or discontinuities in the data [89]. Some regions, especially in de-

veloping countries or remote areas, may have sparse or incomplete temperature records. 

Missing data can introduce uncertainties in regional climate analyses [89]. Climate models 

rely on accurate historical data for calibration and validation [90]. Biases or uncertainties 

in temperature records can lead to discrepancies between model projections and observed 

trends [90]. 

Several approaches have been developed in the past few decades to detect, estimate, 

and eliminate these apparent inhomogeneities. For example, [91] performed intercompar-

isons between the radiosonde-based and satellite (e.g., Microwave Sounding Unit (MSU)) 

radiance to detect and remove most of the mean warm bias from the RS records. The study 
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managed to achieve a robust warming maximum of 0.2–0.3 K (10 yr)−1 for the 1979–2006 

period in the tropical upper troposphere using homogenized radiosonde datasets. Ref. 

[92] used the statistical modeling of the collocation uncertainty of atmospheric tempera-

ture profiles and achieved 85% of the total collocation uncertainty and 0.2% measurement 

error. Both studies managed to achieve the acceptable bias standards according to the 

WMO (<1 K) [85]. Meanwhile, [13] combined metadata (i.e., to determine the candidate 

dates when inhomogeneities could be introduced in the datasets) and statistical inference 

to create the HadAT datasets. The study produced only parametric uncertainty, because 

of their methodological choices, and not structural uncertainty which relates to sensitivity 

to the choice of approach [13]. More recently, [22] also compared two RSs (i.e., iMS-100 

and RS92) and reanalysis data using statistical approaches for the detection of steplike 

changes in upper air temperature records. The results of the study managed to produce a 

difference of around −0.1 K, and the data were mostly in agreement [22]. 

Although much has been done to detect inhomogeneities and remove biases in the 

upper air temperature time series, the subject remains open for further investigations [44]; 

despite all these efforts, resultant data still fails to meet the needs of climate scientists [29]. 

In an attempt to avert the radiosonde’s drawbacks, primarily the low sampling frequency 

and balloon drift, ref. [36,67] developed an atmospheric state best estimate (SASBE) for 

humidity and temperature. The SASBE methodology employs an optimal estimation 

framework, which integrates different data sources while considering their uncertainties 

to derive the best estimate of atmospheric state variables [67]. By integrating multiple data 

sources and accounting for uncertainties, the SASBE provides a more accurate and reliable 

estimation of humidity and temperature profiles [26]. Therefore, the SASBE can lead to 

improved forecast accuracy, especially for short-range and severe weather events. How-

ever, ensuring the accuracy and reliability of data from multiple sources is a key challenge 

when developing an SASBE. Strict data quality control procedures must be adopted to 

identify and correct errors or biases [26]. The optimal estimation framework used in the 

SASBE involves complex mathematical algorithms and computations, requiring substan-

tial computational resources [26]. Although the SASBE serves as a promising framework 

to improve the value of temperature and humidity measurements by combining data rec-

ords from collocated sites or multi-source instruments, further investigations are required 

to realize its potential. Lastly, it is essential to acknowledge that the compilation of chal-

lenges and proposed solutions presented in this review paper is not exhaustive. This re-

view draws upon the studies that were included and analyzed within the scope of this 

work. As the study of upper air temperature continues to evolve, new insights and per-

spectives may emerge, thereby offering additional dimensions to the challenges faced and 

the strategies proposed. The limitations of this review lie in its reliance on the available 

literature up to the time of writing. Future research endeavors are encouraged to explore 

further aspects and potential solutions for addressing the complexities discussed herein. 

3.3. Remote Sensing Applications for Upper Air Temperature Observations 

Remote sensing has gained enormous traction and evolved (Figure 4) over the years 

for monitoring upper temperature profiles, whenever direct measurements are expensive 

or difficult to execute [93]. For example, Figure 4 illustrates a thematic evolution of remote 

sensing concepts associated with upper air temperature observations with the objective of 

the detection and identification of essential topics between 2000 and 2023, including the-

matic change and evolution in the remote sensing of upper air research field. The period 

of 23 years considered for our collection of papers was split into five periods: 2000–2007, 

2008–2014, 2015–2017, 2018–2020, and 2021–2023, as shown in Figure 4. Furthermore, pa-

pers on remote sensing applications on upper air temperature (shown in orange and 

brown color) became more prevalent between 2008 and 2004, 2015 and 2017, 2018 and 

2020, and 2021 and 2023, evolving from studies on modeling, data assimilation, absorption 

cross-sections, and energy fluxes. 
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This suggests that the number of papers on the remote sensing of upper air temper-

ature has progressively increased over time, and thematic evolution has been ongoing 

since the introduction of satellites in the 1960s for different meteorological applications 

[33]. This evolution has revolutionized weather observations and forecasting [53]. In this 

context, remote sensing involves collecting or capturing information about the upper air 

without being in physical contact with the explored region of the atmosphere [94]. Remote 

sensing sensors do not directly measure atmospheric variables, instead, information about 

atmospheric conditions is retrieved from raw satellite properties such as absorption spec-

tra [95], radiance derived from radiometers [96], and the time delay of signal data from 

RO [97]. In most cases, the extraction of upper air climate variables such as temperature 

from the raw satellite data requires state-of-the-art retrieval algorithms (e.g., RO—Abel 

transform [98]) and, most importantly, validation [56]. For instance, refs. [93],[99] pro-

vided an extensive review of retrieval algorithms for extracting atmospheric variables 

from satellite estimates and their associated inverse problems. The retrieval algorithms 

can be derived from statistical relationships between satellite radiance and target param-

eters or the inversion of a system [99]. 

 

Figure 4. Theme evolution of remote sensing applications in upper air temperature observations 

from 2000 to 2023. 

Remote sensing observations of upper air temperatures have been made using a wide 

range of instruments (i.e., ground-based and satellite-based) and measurement techniques 

[93]. For instance, ground-based measurements include Raman lidar, differential absorp-

tion lidars (DIALs), radio acoustic sounding systems (RASSs), and radiometers [100]. A 

Raman lidar is a type of lidar (Light Detection and Ranging) system that utilizes the Ra-

man scattering effect to measure atmospheric properties including temperature [101]. Li-

dar systems use laser pulses to probe the atmosphere, and the Raman lidar specifically 

employs Raman scattering to obtain information about the composition and structure of 

the atmosphere [101]. On the other hand, differential absorption lidars (DIALs) are remote 

sensing instruments used to measure the concentration of trace gases and aerosols in the 

atmosphere [102]. They employ the principle of laser-induced absorption spectroscopy to 

detect specific molecules by measuring the absorption of laser light at particular 
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wavelengths [102]. DIALs operate by transmitting two laser beams, typically referred to 

as the “on-line” and “off-line” wavelengths, into the atmosphere [102]. Meanwhile, a radio 

acoustic sounding system (RASS) is a remote sensing instrument designed to measure 

vertical profiles of the temperature and wind speed in the atmosphere [103]. It employs 

the principles of radar technology and acoustic sound waves to gather data on the atmos-

pheric conditions at various altitudes above the instrument’s location [103]. 

Furthermore, most satellite instruments measure electromagnetic radiation, some 

measure sound propagation. For example, ref. [104] has used the Hyperspectral Infrared 

Atmospheric Sounder (HIRAS) to retrieve upper air temperature and moisture profiles in 

China. The study managed to achieve temperature (relative humidity) accuracies ranging 

from 1 k to 1.5 k for low, mid, and high troposphere layers [104]. More recently, ref. [105] 

used satellite microwave sounders and a backward merging approach to monitor temper-

ature records in the mid-tropospheric regions. Nonetheless, Table 2 summarizes a variety 

of studies for monitoring atmospheric temperatures using remote sensing, ground-based 

(i.e., looking up), and satellite-based instruments (i.e., looking down). Table 2 also presents 

the various instrument types used, location of the study, climate variable investigated, 

and associated biases or accuracy of the variable investigated. 

In addition, Global Navigation Satellite Systems (GNSS) radio occultation (RO) has 

been used to retrieve temperature and water vapor profiles that are then used to study 

weather events in recent years [106]. RO occurs when a radio signal from a transmitter on 

a global positioning system (GPS) satellite propagates through the atmosphere and they 

are bent and delayed due to atmospheric moisture gradients for minutes [107]. The accu-

mulated bending angle can be retrieved using the observed phase data on the receiver and 

the orbits of GNSS and Low Earth orbit (LEO) satellites [107]. 

Based on the bending angle, a profile can be retrieved using statistical algorithms 

such as Abel inversion [36], ray tracing [108], Monte Carlo simulations [109], optimal esti-

mation [110], Fourier Transform [111], and Chirp Z-Transform [112]. Normally, Abel in-

version is used when the occulting atmosphere is assumed to be spherically symmetric. 

This method is based on the principle that the integral of a function over a line can be used 

to reconstruct the function itself [98]. In the context of atmospheric science, this integral 

equation relates the measured quantity (such as refractivity or density) along a line of 

sight to the desired vertical profile. The Abel inversion formula mathematically relates the 

measured integral of the function f(r) along the line of sight to the desired function f(z) as 

follows [98]: 

𝑓(z) =
1

𝜋
∫

𝑓(𝑟)

√𝑟2−𝑧2

∞

𝑧
ⅆ𝑟  (1) 

whereby f(z) is the desired vertical profile, f(r) is the measured quantity along the 

line of sight at radial distance r, and z is the altitude or height at which the vertical profile 

is being retrieved [98]. Meanwhile, the ray tracing approach is an integration of the equa-

tions describing the optical rays across a layered barotropic atmosphere [109]. It provides 

a detailed simulation of the paths of rays, considering interactions such as reflection, re-

fraction, and scattering. In atmospheric science, it involves simulating the propagation of 

radio waves emitted by GNSS satellites as they pass through the Earth’s atmosphere [109]. 

Ray tracing models simulate the bending of these radio waves as they pass through dif-

ferent atmospheric layers, and then calculate the bending angles of radio waves at various 

altitudes in the atmosphere [109]. Although ray tracing was reported to be easier to exe-

cute, it is also computationally intensive and time-consuming [109]. Figure 5 illustrates 

the common RO temperature retrieval techniques used in the literature analyzed in this 

review from 2000 to 2023. The results show that Abel transform (44.17%) has been the 

most widely used retrieval algorithm (e.g., [36,108]) despite the need for a priori infor-

mation. This is because of its efficiency, stability, physical interpretability, and extensive 

validation in the RO community [98]. Furthermore, it proved to be a robust and trusted 

method for RO data analysis in meteorological research, climate studies, and operational 
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weather forecasting [113]. Meanwhile, Chirp Z-Transform and Monte Carlo simulations 

were the least used retrieval algorithms. For instance, Chirp Z-Transform was used by 

[112] to estimate Mars’ atmospheric and ionospheric profiles from Tianwen-1 radio occul-

tation, and as a result, its applications on Earth’s atmosphere are not yet well understood. 

Finally, this diverse array of techniques and instruments provides essential data for un-

derstanding atmospheric dynamics and improving weather prediction models. Therefore, 

more studies are needed to further understand their potential and challenges in different 

scenarios. 

 

Figure 5. Radio occultation retrieval approaches for upper air temperature observations.
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Table 2. Summary of studies on remote sensing applications for upper air temperature observations. 

Platform Instrument Type Area of Interest Variables Accuracy Reference 

Space-borne 
FY-3E—Microwave Tempera-

ture Sounder (MWTS-III) 
China Temperature  

The bias between the observed and simulated temperature 

(O–B) was less than 2.0 K in the study.  
[114] 

Space-borne 

NOAA-Microwave Sounding 

Unit (MSU) and the Ad-

vanced Microwave Sounding 

Unit (AMSU) 

Global and tropical re-

gions 
Temperature 

The uncertainty for all MSU/AMSU tropospheric channels 

(e.g., TLT (temperature lower troposphere), TMT (tempera-

ture middle troposphere), TTS (temperature troposphere 

stratosphere), and TLS (temperature lower stratosphere)) 

ranged from 0.044 to 0.012 K/decade for both global and 

tropical regions.  

[115] 

Space-borne and 

ground-based  

FengYun-4 (FY-4)-Geosta-

tionary Interferometric Infra-

red Sounder (GIIRS), AERI 

and Ground-Based—NCAR 

DIAL 

Perdigão, Brazil 
Temperature and wa-

ter vapor 

Temperature biases for all tested instruments ranged from 

0.1 to 1.6 °C at different altitudes. 
[116] 

Space-borne and air-

borne 

COSMIC GPS radio occulta-

tion and radiosondes  

South Asia, Asian 

summer monsoon re-

gion 

Temperature 

An intercomparison of the COSMIC-2 and radiosonde meas-

ured temperature yielded an absolute mean difference and 

standard deviation of less than 0.5 K and 2.5 K, respectively. 

[117] 

Space-borne 

Suomi National Polar-orbit-

ing Partnership (S-NPP), 

NOAA-20 satellites and 

Cross-track Infrared Sounder 

observations 

North America Temperature 

NOAA-20 and S-NPP VIIRS temperature observations corre-

lated with collocated Cross-track Infrared Sounder observa-

tions, with daily averaged biases within 0.1 K at the nadir. 

[118] 

Ground-based 
Hyperspectral Infrared At-

mospheric Sounder 

South Great Plain 

(SGP) site 

Temperature and rel-

ative humidity 

In comparison with radiosonde data, the Hyperspectral In-

frared Atmospheric Sounder demonstrated good retrieval 

ability with a root mean square error (RMSE) of 0.87 K for 

temperature and 1.06 g/kg for the water vapor mixing ratio.  

[119] 
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3.4. Challenges of Using Remote Sensing Sensors in Upper Air Temperature Observations 

When comparing operational satellite retrievals for temperature with other ground-

based and RS instruments, satellite observations boost with global coverage [115]. How-

ever, due to their large field of view (FOV), satellite observations suffer from poor vertical 

resolution and high levels of errors and inconsistencies over larger geographic regions 

that can cause problems in numerical weather forecasting [56]. In addition, since most 

satellite-borne multispectral infrared radiometers use radiance for atmospheric moisture 

and temperature profiles, cloud contamination complicates the retrieval of sounding pro-

files from radiance. Clouds normally absorb infrared radiation introducing biases or er-

rors to atmospheric temperature measurements from space-based instruments rendering 

them useless, since most operational numerical weather prediction centers only assimilate 

cloud-free data [33]. 

Early satellite instruments of poor vertical resolution have also been associated with 

low spectral resolution [56]. For instance, the high-resolution infrared radiation sounder 

and vertical temperature profile radiometer onboard the NOAA satellites had limited 

channels and provided a coarse vertical resolution and lower accuracy [104]. The vertical 

smearing of the atmospheric structure caused by low spectral resolution in satellites am-

plifies errors and uncertainties in the datasets [56]. However, with current technological 

advancements, high spectral resolution space-based instruments such as the Cross-track 

Infrared Sounder (CrIS) onboard the S-NPP satellite, China’s Hyperspectral Infrared At-

mospheric Sounder (HIRAS) onboard the FengYun (FY)-3D satellite, and the Atmospheric 

Infrared Sounder (AIRS) onboard NASA’s EOS Aqua satellite are now used for atmos-

pheric temperature observations, thus improving accuracy [104]. 

Similar to the RS, inhomogeneities associated with a specific sensor on a single satel-

lite and with the combining of data from other satellite platforms taint satellite tempera-

ture records [44]. Biases can have a variety of sources, such as instrument faults that can 

include orbital bias or scan bias. For instance, biases in temperature data derived from 

satellite observation can be introduced by the radiative transfer model. A review by [33] 

explains in detail how the radiative transfer model introduces biases. Lastly, another po-

tential cause of biases is radiance, which may occasionally resolve a dynamical scale that 

the radiative transfer and numerical model are unable to solve [120]. 

The calibration and validation of satellite sensors remain a core activity to ensure 

they provide a clear picture of the state of the atmosphere. For instance, to effectively as-

similate satellite data such as RO into a weather prediction model, one needs to correctly 

process them and properly account for the measurement characteristics and measurement 

errors . RO suffers from negative refractivity biases, especially in the planetary boundary 

layer [28]. Studies by [39,121] have also indicated that negative “N” biases occur due to a 

none-unique inversion problem in the traditional Abel inversion that is utilized to extract 

the RO refractivity from the bending angle (BA). 

Intercomparisons of satellite data against laboratory-based data and high-quality RS 

data are important for the calibration and validation of space-based instruments (see more 

studies in Table 2). These intercomparisons help to minimize the impact of systematic bi-

ases on long-term observations and are important for establishing reference quality meas-

urement time series. For instance, ref. [122] compared the estimates made from the Micro-

wave Sounding Unit channel 2 and the Advanced Microwave Sounding Unit channel 5 to 

evaluate the agreement made by the two co-orbiting satellites. Meanwhile, in another 

study, ref. [4]’s collocated global atmospheric temperature profiles were compared with 

RS data to quantify error characteristics of the RS and determine the effects of the imper-

fect temporal and spatial collocation of the two observations. In conclusion, ongoing ef-

forts in validating and improving the quality of satellite observations, alongside continued 

intercomparisons with ground-based RS data, are essential steps towards enhancing the 

accuracy and reliability of global temperature monitoring. These endeavors will further 

complement in situ observations and contribute to a clearer understanding of the Earth’s 

atmospheric dynamics. 
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3.5. Upper Air Observations in Weather Forecasting, Atmospheric Boundary Layer, and Climate 

Change Studies 

3.5.1. Weather Forecasting 

There have been substantial advances in weather forecasting over the past few dec-

ades mainly due to the improvements in instruments used for upper air observations, 

computer technology, and data assimilation techniques [123]. Weather forecasting is con-

ducted using mathematical representations of the atmosphere and oceans in NWP. NWP 

helps in anticipating extreme weather events such as floods, tropical cyclones, heatwaves, 

and strong winds which are becoming more prevalent due to climate change. In situ and 

upper air satellite data have steadily taken the lead as the main sources of information 

ingested into NWP models through data assimilation techniques [123]. Data assimilation 

involves the process of combining a variety of measurements that are unevenly distrib-

uted in time and space, with prior knowledge of the state provided by an NWP model, to 

create the grid data as the best estimate of the true initial state of a considered system 

[124]. 

A review by [33] highlighted different types of data assimilation techniques such as 

objective analysis, successive correction methods, optimum interpolation, variational 

methods, etc. However, it is not the scope of this review to discuss them in greater detail. 

Good data assimilation provides the initial point for weather/climate predictions and can 

also be used as a foundation for subsequent research into the mechanisms underlying 

weather/climate evolution [125]. To ensure proper data assimilation into NWP, most up-

per air observation data must be corrected for systematic biases by employing variational 

bias corrections (i.e., 1D, 2D, 3D, and 4DVAR) (see [33]). However, adequate anchor meas-

urements are necessary to perform variational bias correction in a forecasting model [120]. 

RS and satellite data serve as anchors in NWP, and they ensure the stability of the assim-

ilation system. Therefore, these two observation categories must be consistent with one 

another. For example, the estimated temperature fields may have spurious characteristics 

because of biases between various RS instrument types [126]; this is normally correct using 

various approaches including data homogenization [127]. Subsequently, the forecast skill 

of NWPs can be enhanced by homogenizing satellite and RS measurements before being 

assimilated into the models. However, there are a few exceptions such as RO estimates 

which can be assimilated into the NWP model as raw as they are without bias corrections, 

hence they act as anchors to models to “keep the models from drifting toward their cli-

mates” [19]. Despite recent developments (see [33,123]) in the use of upper air observa-

tions in numerical weather prediction modeling, it is important to note that the models 

are not perfect, since they are dissipative discretized and suffer from dispersion errors and 

the exclusion of subgrid processes [128]. Consequently, further studies are still required 

to correct RS and satellite observations to ensure data homogenization before being as-

similated into NWP to enhance weather forecasting. 

3.5.2. Atmospheric Boundary Layer 

Upper air observations made using RS and satellite sensors have been instrumental 

in the understanding of the atmospheric boundary layer (ABL) processes. The atmos-

pheric boundary layer or planetary boundary layer (PBL) is the lowest portion of the trop-

osphere that interacts directly with the Earth’s surface [129]. The ABL responds to some 

forcings such as frictional drag, solar heating, and evapotranspiration with a timescale of 

an hour or less [130]. Therefore, spatiotemporal information on ABL height is important 

for numerical weather forecasting, air quality forecasting, and greenhouse gas concentra-

tion budgets. In addition, the ABL has diurnal variations and can be classified into four 

categories such as the convective boundary layer (CBL) in the daytime, the more stable 

nocturnal boundary layer (NBL) at night, the early morning transition (EMT) period, and 

the early evening transition (EET) period. The top height of the ABL can be determined 

from vertical profiles of temperature, humidity, wind, and pollutants such as aerosol 
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papers [130]. For instance, ref. [131] used RS, space-borne lidar and European Centre for 

Medium-Range Weather Forecasts (ECMWF) model data to determine the ABL’s top 

height in South Africa. Meanwhile, [58] studied the relationship between the temperature 

inversion layer and the ABL and their aerosol capture capabilities with the aid of RS and 

micropulse lidar data in the United States of America. 

Despite the greater significance of ABL height information in operational forecasting, 

there is still no single, reliable, and widely accepted approach for retrieving mixing [9]. In 

addition, it is still challenging to acquire accurate ABL information over complex terrain 

[9] and cloud-topped ABL predominantly in sea regions. The latter is mainly due to sparse 

observations and technical difficulties in measuring turbulent fluctuations of wind veloc-

ity, temperature, or humidity with acceptable spatial and temporal resolution [9]. Meas-

uring fluctuations in the atmospheric boundary layer presents several challenges due to 

the dynamic and complex nature of this region of the atmosphere [100]. The ABL is char-

acterized by turbulent air motions caused by irregularities in the Earth’s surface, such as 

buildings, trees, and terrain. These turbulent motions lead to rapid and unpredictable 

fluctuations in temperature, humidity, wind speed, and direction [100]. Understanding 

these fluctuations is crucial for various applications, ranging from weather forecasting to 

air quality monitoring and climate research. 

Furthermore, studies by [132],[133] have demonstrated that there is still a knowledge 

gap among scientists concerning the strongly nonhomogeneous and nonstationary ABL. 

The latter motivates further studies on the use of in situ and satellite observations for tack-

ling the ABL’s grand challenges, in order to improve weather forecasting, air quality, 

and/or numerical modeling. 

3.5.3. Climate Change 

Climate change is one of the biggest challenges ever faced by the current political, 

social, economic, and environmental sectors of society. Climate change can be described 

as a significant long-term alteration to the expected patterns of the planet’s typical weather 

over an extended period [134,135]. Owing to the latter, weather patterns are shifting due 

to warming temperatures, which is also upsetting the natural order. This puts both hu-

manity and all other kinds of life on Earth in grave danger [134]. Therefore, it is crucial to 

understand where, how quickly, and how much the climate is changing to mitigate and 

adapt to climate change impacts. Over the past few decades, upper air observations have 

contributed immensely to understanding climate change processes. For example, vertical 

profiles of essential climate variables such as temperature, humidity, and pressure derived 

from RS and satellite observations have been used to study atmospheric stability, lapse 

rates, and other climate-related parameters [20]. However, strict criteria must be met by 

observing systems to accurately monitor climate change, particularly regarding measure-

ment accuracy and long-term stability [136]. Unfortunately, most upper air observations 

have historically been made for short-term numerical weather forecasting, and these data 

frequently have limited value for climate research [13]. This is reported to have been 

caused by several factors such as undocumented changes in instrumentation, the lack of 

instrument calibration, and lower requirements for long-term stability and traceability 

[29]. In addition, despite great advances in upper air observations in the last few decades, 

it is still difficult to link the RS errors of the new systems with the old systems, due to the 

complexity of the errors in the older systems [136]. This drawback is caused by spurious 

discontinuities (i.e., changes in the mean and variance) of the RS emanating from changes 

in observational practices, instruments, and manufacturer processing methods [21]. 

Several attempts have been made to ensure the homogenization of upper air records 

of the RS to be able to accurately characterize temperature changes which are associated 

with climate change. Homogenization in climate data refers to the process of removing 

artificial biases or inconsistencies introduced into the data due to changes in observation 

practices, instruments, or station locations over time. It aims to create a more consistent 

and reliable dataset by adjusting for these non-climatic influences. For example, ref. [21] 
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used an automatic homogenization approach to quantify uncertainties in historical tropi-

cal tropospheric temperature records from the RS ranging from 1979 to 2003. The auto-

matic homogenization approach yielded conflicting results whereby the models per-

formed better for earlier periods but were uncertain in recent periods. This study high-

lighted the general difficulties in simulating long-term global warming problems using 

RS data which include data quality issues, spatial coverage, vertical resolution, and ho-

mogenization. Addressing these difficulties is crucial for producing reliable climate pro-

jections, improving climate models, informing policy decisions, understanding climate 

feedback, validating satellite data, and enhancing climate resilience. More recently, ref. 

[16] developed a novel approach to homogenize discontinuities in both the mean and var-

iance of global RS networks. The method showed great potential in improving homoge-

neities in global RS records by clearly portraying a warming maximum of around 300 hPa 

which the [21] approach failed to achieve. In other attempts to ensure long-term reference 

quality datasets of essential climate variables (e.g., including temperature) suitable for de-

tecting climate changes, the GCOS (Global Climate Observing System) Reference Upper-

Air Network (GRUAN) was established [30]. The GRUAN is a global network of high-

quality reference stations for upper air measurements that aims to provide long-term, con-

sistent, and high-quality observations of essential climate variables in the atmosphere [30]. 

The GRUAN focuses on the vertical profile of temperature, humidity, and atmospheric 

pressure from the surface to the stratosphere. All known biases are accounted for in 

GRUAN data products [30]. The ability to reprocess is made possible by the GRUAN’s 

long-term storing of raw measurements together with a variety of metadata, which is cru-

cial given the evolving understanding of measurement and bias. Although the GRUAN 

has been operational for more than a decade, there are still a few upper launching stations 

certified by this organization, more specifically in the southern hemisphere. These impede 

efforts for ensuring good quality RS data to meet the needs of earth system scientists for 

accurately predicting climate change in developing countries. 

Furthermore, global positioning systems’ RO estimates offer immense potential in 

providing climate records that are unrestricted by the limitations imposed by other in situ 

and satellite instruments. RO boasts with characteristics such as long-term stability and 

self-calibration and has a very good height resolution and can be assimilated into NPW 

without bias corrections [137] when compared to other in situ and satellite instruments. 

Several studies have been conducted to explore the applications of RO technology in cli-

mate change studies. For instance, ref. [138] has studied temperature uncertainties from 

GNSS-RO using a novel rOPS L1a excess phase processing retrieval approach. The rOPS 

L1a processing approach offers the potential to produce reliable long-term data records, 

with uncertainty estimations, and this can benefit climate change applications [138]. On 

the other hand, ref. [139] developed a novel approach to observe rapid stratospheric 

warming (SSW) under climate change using ECMWF Reanalysis 5 and RO data in the 

polar regions. Meanwhile, [137] used RO and fingerprinting methods to detect atmos-

pheric climate change. All the latter studies agreed that observed RO trends were able to 

detect global warming, in particular, the widespread cooling of the lower stratosphere and 

the warming of the troposphere. However, spatial and temporal coverage are still limita-

tions of this technique. In addition, the quality of GNSS-RO estimates is still poor in the 

lower troposphere, especially in the subtropics, and this limits their usefulness in climate 

change studies. Subsequently, more studies are required to solve the issues such as the 

need for a priori information, bending angle errors, and ionospheric effects-induced errors. 

4. Discussion 

This study provided a comprehensive review of the advancements in utilizing both 

in situ and satellite estimates for monitoring upper air temperature profiles. Additionally, 

it explored challenges and potential future directions for the monitoring of upper air tem-

perature profiles through in situ and satellite observations. The findings based on the 

search keywords indicate that the use of RS and satellite observations has advanced 
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significantly over the past 23 years. For instance, RS and satellite observations have un-

dergone significant advancements ranging from sensor [140,141] and algorithm develop-

ment [140,142] to calibration and validation improvements [61,142,143] to application 

changes [61,144]. These findings are further discussed in Sections 4.1 and 4.2. 

4.1. Challenges of Using In Situ Radiosondes and Satellites for Upper Air Temperature Observa-

tions 

The results of this review in Sections 3.1 and 3.2 highlighted that RS temperature data 

quality remains an important topic of interest in atmospheric sciences. The quality of at-

mospheric temperature data is foundational for a wide range of applications in atmos-

pheric sciences, climate research, weather forecasting, ecosystem management, human 

health, and policy development [145]. It underpins our understanding of climate change, 

weather patterns, and atmospheric processes, ultimately contributing to informed deci-

sions and actions for a sustainable future [146]. Many studies illustrated that despite RS 

data quality being of paramount importance, there have been growing challenges such as 

data discrepancies [147], the lack of homogeneity (in time and space) [148], biases [149], 

and discontinuities [15] associated with current and historical climate data records ob-

tained using these technologies. It is anticipated that these challenges will continue in the 

future due to factors such as inadequate documentation on instrumentation changes [150], 

calibration drifts [151], measurement errors [152], biases in correction methods [153], and 

variations in data processing techniques [154], among others. 

In attempts to address the latter challenges, many studies (e.g., [155-157]) have per-

formed intercomparison studies to compare RS observations and data from other different 

instruments, platforms, or measurement techniques. This was conducted to assist in accu-

rately identifying inconsistencies, biases, or systematic errors between datasets. By quan-

tifying the differences and understanding their sources, scientists can improve the relia-

bility and consistency of the data [155]. Other studies use various techniques such as ma-

chine learning [158,159], statistical (e.g., temperature profile mean differences approach 

[88]), data assimilation [160], and data homogenization [161] to calculate biases or system-

atic errors between datasets. Despite rigorous attempts to calculate and correct RS tem-

perature biases, errors still range between 0.2 and 7 K, as illustrated in Table 1 in Section 

3.2. Some of the latter studies in Table 1 showed promising results and managed to achieve 

bias values ranging from 0.2 to 2 k which are widely accepted biases in kelvins for RS 

temperature observations [162,163]. It is also important to note that the variations in tem-

perature biases (K) depend on the instrument type, calibration procedures, and specific 

atmospheric conditions [150]. This highlights the need for further studies to estimate and 

correct both RS biases and systematic errors between datasets. 

Furthermore, this review has highlighted the issue of the scarcity of RS launching 

stations, particularly in developing countries (i.e., Africa), over oceans, and polar regions 

compared to other parts of the globe [56]. Sparse RS launching leads to a lack of data 

points across different regions and altitudes in the atmosphere [79]. This data sparsity 

hampers the ability to create a comprehensive and detailed picture of atmospheric condi-

tions for NWP model initialization and the validation of space-based observations [159]. 

These issues might also worsen due to the decrease in the number of global RS sites be-

cause of budget constraints [77]. Therefore, enhancing the quality of the few available RS 

launching sites is imperative to safeguard the future of numerical weather forecasting and 

climate change studies by developing longer independent temperature measurement se-

ries to monitor temperature evolution and better evaluate temperature biases. 

In addition, the findings of this review showed that the reliance on satellite technol-

ogy for meteorological operations especially in areas with few or no RS launches has in-

creased over the years (see Figure 4, theme evolution) but has been limited by a myriad of 

challenges such as orbit changes [164], sensor evolutions [165], and resolutions (e.g., ver-

tical resolution) [143] that make it difficult for their harmonization into a single time series, 

thus making them insufficient to study climate change. RSs are commonly utilized for 
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calibrating satellite observations and vice versa. However, the vertical resolution of the in 

situ measurements should ideally match that of the satellite retrieval, achieved through 

the suitable application of averaging kernels [145]. The retrieval process relies on a series 

of assumptions and prior data, leading to potential impacts on the comparison. In addi-

tion, it is more challenging to characterize error in a priori information and retrieval tech-

niques than in RS observations [166]. For instance, to reduce the need for prior information 

as input in radio occultation extraction and to lessen the reliance of retrieved products on 

a priori knowledge, a new tangent linear retrieval algorithm was developed [36]. How-

ever, more studies are needed to test the efficacy and repeatability of this new approach 

under different atmospheric conditions, since instrument biases at one location may not 

be the same for another different location due to variations in atmospheric conditions. 

Furthermore, other challenges that emanate when comparing satellite observations 

and RSs include spatial variability and collocation [156,167]. For example, the horizontal 

drift of RS, which can vary significantly with the season, needs to be taken into account 

by small footprint nadir-looking satellite equipment when comparing the two datasets. 

Compared to polar-orbiting satellites, geostationary satellites offer more temporally re-

solved observations but lower horizontal resolution. To build a complete RS profile, they 

might have to take into account the comparatively slow balloon rise [145]. Moreover, to 

overcome RS data sparsity, more studies are now exploring the use of ERA5 data acquired 

from global analysis systems such as that at the European Center for Medium-Range 

Weather Forecasting (ECMWF) to calculate and reduce some collocation errors by explic-

itly considering the dynamics of the atmosphere [168,169]. 

This review has also demonstrated that radiation errors amongst multispectral infra-

red radiometers are still a problem that limits the accurate retrieval of upper air tempera-

ture data from satellite sensors [145,170]. Furthermore, cloud contamination, instrument 

faults, orbital or scan biases, and radiative transfer models can complicate the retrieval of 

sounding profiles from satellite radiance data, introducing biases or errors in atmospheric 

temperature estimates [33]. The results depicted in Table 2 (see Section 3.3) underscore the 

impact of these challenges on the biases and errors observed in satellite temperature esti-

mates, which ranged from 0.1 to 2.0 K [114]. Therefore, more studies are needed to explore 

different approaches to accurately estimate and correct these biases using advanced ma-

chine learning algorithms, such as neural networks or random forests, which are increas-

ingly used to correct, interpolate, or assimilate atmospheric data. Finally, improving the 

homogeneity, temporal resolution, and accuracy of the upper air temperature records is 

imperative to make them appropriate for weather forecasting, atmospheric boundary 

layer, and climate change studies. 

4.2. Progress and Future Directions in the Use of Radiosondes and Satellites for Upper Air Tem-

perature Observations 

Significant progress has been made to enhance upper air temperature records ac-

quired utilizing in situ and satellite-based instruments to improve weather forecasting 

[171], the understanding of atmospheric boundary layer processes [172], and climate 

change studies [140]. Studies have demonstrated that RSs are still by far the most effective 

tools for in situ atmospheric temperature observations, but operational meteorological 

satellites are gradually closing the gap despite their reliance on in situ data for their cali-

bration and validation [77,146,151]. For instance, there have been great advances in RS 

[141,173] and satellite technology [174]. Manufacturers have been at the forefront of these 

developments, and they incorporate new models into the market as soon as they become 

available. For instance, ref. [141] developed a new microbead thermistor, encapsulated 

with an insulation layer and reflective layer to enhance the response speed of the temper-

ature sensors in the RS. 

These advances have been shown to improve the inherent biases and uncertainties 

that come with instrumentation. In addition, studies have demonstrated that Vaisala Ra-

diosonde RS41 introduces improvements to data accuracy and consistency since more 
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stations are transitioning from Vaisala Radiosonde RS92 [24,150]. Intercomparisons of RS 

datasets of old and new models are critical for long-term high-quality reference observa-

tions of upper air essential climate variables (ECVs) such as temperature and water vapor 

[150]. This is important to ensure that the change of measurement instruments does not 

introduce inhomogeneities to the data record [150]. Unfortunately, this practice is not uni-

versally adopted, particularly in developing countries where conducting dual measure-

ments of upper air climate variables can be cost-prohibitive. Resultantly, this leads to a 

lack of documentation of instrument changes. Therefore, more studies need to be con-

ducted to compare different radiosonde instruments (models) for monitoring upper air 

temperature in developing countries to ensure long-term continuity and homogeneity and 

to aid in climate change studies. In addition, to maintain a reference-quality record of up-

per air essential climate variables such as temperature, international initiatives such as 

GRUAN [10] should be supported, and GRUAN-certified sites should be expanded in the 

Southern Hemisphere. For instance, currently, there is no GRUAN-certified site in the Af-

rican continent (mainland), and this is a setback for climate change studies. 

Many new concepts and methods have been proposed in recent years to improve 

upper air temperature quality, but the methods are not yet mature and are usually not 

generalized, so they may only be valid for limited scenarios. For example, many novel 

techniques (e.g., the tangent retrieval algorithm developed by [36] or rOPS L1a processing 

approach developed by [138]) still need to be tested in different environmental conditions 

to enhance upper air observations. Moreover, a variety of satellite-based atmospheric tem-

perature retrieval algorithms including statistical, neural network [175], machine learning 

[175], and physical-based methods [100] have been developed to date and have improved 

accuracy. One example includes NOAA’s unique combined atmospheric processing sys-

tem (NUCAPS) which was developed to retrieve environmental data records such as tem-

perature, greenhouse gases, and relative humidity from hyperspectral infrared sounders 

(e.g., Cross-track Infrared Sounder) [176]. The potential of the data assimilation of NOOA-

20 and SOUMI NPP VIIRS clear sky surface temperatures [118] into numerical weather 

forecasting has been demonstrated; although this is still in the experimental phase, it 

seems promising. With the recent launch of GPS reflectometry and refractometry mis-

sions, such as the FORMOSAT-7/COSMIC-2 mission, CICERO, and TechDemoSat-1, the 

potential of RO estimates for providing temperature records for numerical weather pre-

diction, atmospheric boundary layer studies, and climate change studies will be realized. 

RO presents more prospects than other upper air temperature instruments because it can 

be assimilated into numerical weather prediction without bias corrections [166]. However, 

serious processing is required before data assimilation because it also suffers from nega-

tive refractivity biases, especially in the planetary boundary layer [177]. Thus, this there-

fore warrants more studies on the correction of negative refractivity biases. Several atmos-

pheric retrieval algorithms were reviewed in this study such as Abel inversion [36], ray 

tracing [108], Monte Carlo simulations [109], optimal estimation [110], Fourier Transform 

[111], and Chirp Z-Transform [112]. This study has demonstrated that Abel transform is 

widely preferred despite the need for prior information due to several key advantages 

such as physical interpretability, and it allows for the retrieval of multiple atmospheric 

profiles simultaneously. It provides a well-defined mathematical framework for inver-

sion, leading to reliable and consistent results for radio occultation studies. 

The future applications of radio occultation (RO) for upper air temperature observa-

tions appear promising with the development of new inversion models, such as the tan-

gent linear retrieval method [36]. This innovative algorithm aims to reduce the require-

ment for extensive prior knowledge, such as scale heights, in RO data extraction. It seeks 

to minimize the dependence of retrieved products on a priori information. However, fur-

ther studies are warranted to assess the retrieval performance under varied scenarios. Ad-

ditionally, comparisons between new and traditional methods like tangent linear re-

trieval, Gauss–Newton Optimization, and neural network approaches are necessary to 

determine the optimal approach. 
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The utilization of Artificial Intelligence (AI) [178] and drones [179] in upper air ob-

servations and quality improvement has been really limited. For instance, AI methods will 

allow us to capture the intricate nonlinear relationships between essential climate varia-

bles and different instrumentation types and environmental conditions, for meaningful 

comparison and better interpretation [180]. AI has demonstrated considerable potential in 

addressing a variety of statical and environmental challenges, ranging from weather fore-

casting [181] and pinpointing critical scenarios to assisting human interpretation and un-

covering novel relationships within extensive datasets [49]. This presents fresh possibili-

ties for accelerating the analysis of vast datasets, enhancing models, and effectively revo-

lutionizing the utilization of upper air climate data in the coming years. Meanwhile, drone 

applications in upper air temperature observations can be more cost-effective for localized 

or short-duration observations when compared to manned aircraft or satellite missions 

and can be reused; when compared to RSs, their potential has not been realized yet. With 

technological advancements, drones are most likely to reach a greater altitude in the at-

mosphere, and this will enhance their usefulness in the future for atmospheric studies. 

These advances are critical to improve data quality standards (SI), thus improving 

weather forecasting, atmospheric boundary layer, and climate change studies. 

5. Conclusions 

This current study conducted a systematic review to examine and assess the global 

scientific production on the progress and developments of RS and space-based instru-

ments for monitoring upper air temperature profiles, as well as highlight the limitations 

and successes associated with these instruments. The literature has indicated that alt-

hough much progress has been made to improve upper air temperature observations from 

RS and space-based instruments, there has been a steady decline in the number of publi-

cations using RSs for upper air temperatures in the past four years (2019–2023), and the 

results show that more focus has shifted towards the use of space-based instruments 

based on the scientific production rate. Despite space-based instruments closing the gap, 

RSs remain crucial for in situ temperature observations used for weather forecasting, 

boundary layer studies, climate research, and satellite data validation. 

For instance, recent advances in radiosonde technology include radiosondes that are 

equipped with miniaturized temperature sensors that boast remarkable improvements in 

response times and accuracy. These sensors often use advanced thermistor or platinum 

resistance thermometer technologies, and they can achieve resolutions as fine as 0.1 °C. 

Their reduced size and improved calibration methods ensure precise temperature meas-

urements throughout the radiosonde’s ascent through the atmosphere. These improve-

ments show promising prospects, although radiosonde data quality improvements re-

quire a multifaceted approach due to the various sources of errors and biases that can be 

introduced during the measurement process, as discussed in Section 4.1. The pressing 

need for multifaceted approaches anchored in research and innovation to enhance the 

quality of radiosonde (RS) data cannot be overstated, given its pivotal role in weather 

forecasting, climate change research, and the validation of spaceborne instruments. 

The findings of this review also revealed a vast number of emerging methods de-

signed to enhance RS temperature data quality. These methods include RS data intercom-

parisons, homogenization techniques, temperature bias corrections, empirical adjust-

ments, the utilization of reference data and metadata, as well as statistical and machine 

learning approaches. However, most of these emerging techniques (e.g., SASBE) are still 

in the preliminary stages of development and are often tailored to specific conditions and 

scenarios. Hence, further studies are warranted to assess the repeatability and accuracy of 

these proposed methods across varied atmospheric conditions and sensor platforms. In 

addition, machine learning approaches are increasingly employed in weather forecasting 

and surface temperature retrievals. However, there remains a paucity of research on their 

application for in situ and space-based atmospheric temperature retrievals and quality 

improvement. The adoption of machine learning and AI presents a wide range of 
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opportunities such as assisting in improving data quality (i.e., cleaning up noisy data from 

radiosondes by identifying and filtering out erroneous readings caused by instrument er-

ror or interference), optimizing calibration, and promoting data fusion and integration. 

Initiatives like the GCOS Reference Upper-Air Network (GRUAN) are vital for main-

taining quality upper air climate data; however, there is a need for expansion, particularly 

in developing countries like many in Africa. The absence of any GRUAN-accredited sta-

tions on the African mainland poses a significant challenge for the continent’s atmospheric 

science community and research. The potential expansion of the GRUAN to areas that are 

currently not available presents new prospects for the future of climate change studies 

and numerical weather forecasting. Furthermore, the expansion of the GRUAN will foster 

international collaboration among meteorological agencies and research institutions to 

share data and best practices and standardize measurement techniques. 

Moreover, with the growing reliance on space-based instruments for upper air tem-

perature observations, challenges such as orbit fluctuations and sensor resolutions impede 

data harmonization. This underscores the need for further investigation, particularly in 

regions with sparse RS coverage, to augment the existing data and address the issue of 

data scarcity. Furthermore, satellite inter-calibration systems such as NOAA’s NU-CAPS, 

Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), A-

train (including Aqua, CloudSat, CALIPSO), Infrared Atmospheric Sounding Interferom-

eter (IASI), Advanced Technology Microwave Sounder (ATMS), and the next-generation 

Infrared Atmospheric Sounding Interferometer (IASI-NG) offer an opportunity to im-

prove the accuracy of satellite temperature retrievals in the absence of in situ data. Inter-

comparisons between satellite and in situ data, when collocated in space and time, offer 

novel opportunities for a more comprehensive understanding of upper air temperature 

dynamics. GPS RO missions and advances in temperature retrieval algorithms (e.g., tan-

gent linear retrieval, Gauss–Newton Optimization, and neural network approaches) pre-

sent positive prospects for weather prediction and climate studies, despite needing careful 

calibration and validation for accurate data assimilation. Radio occultation offers ad-

vantages such as global coverage, high vertical resolution, accuracy, consistency, all-

weather capability, operational efficiency, and cost-effectiveness compared to radio-

sondes. Multiple RO satellites can be used to cross-validate measurements, ensuring data 

consistency and reducing uncertainties. Therefore, research and development in RO re-

trieval algorithms, instrument technology, data processing techniques, and validation 

methodologies is critical to realize the true potential of these instruments for upper air 

temperature observations. 

In conclusion, this study further highlighted the importance of developing a compre-

hensive strategy to improve the quality and continuity of upper air temperature observa-

tions which encompass rigorous instrument calibration, robust quality control proce-

dures, technological advancements in radiosonde design, integration with remote sensing 

technologies, and international collaboration among meteorological agencies and research 

institutions. The advancements in upper air temperature observations are pivotal for 

NWP modeling, greatly boosting operational forecasting capacities. This is especially be-

coming more critical due to the growing threats posed by severe weather events, which 

have intensified and become more frequent in recent years. The recent developments in 

RS and space-borne observations are instrumental in deepening our comprehension of the 

intricate interplay between upper air temperature dynamics, atmospheric boundary layer 

processes, and human-induced activities. Consequently, these advancements aid in the 

formulation of policies, drive global climate change mitigation initiatives, and support 

adaptation efforts worldwide. 
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