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Hepatitis B is one of the leading causes of morbidity and mortality, affecting hundreds of millions of people worldwide. Thus, this
paper focuses on three control measures as the best way to intervene against the hepatitis B viral infection. These measures are
condom use, testing and treatment, and vaccination to stop the disease from spreading over a community. The model
comprises seven (7) compartments that include susceptible individuals, latent individuals, acute-infected individuals, chronic-
infected individuals, infected by carrier individuals, recovered individuals from the disease, and the vaccinated population. We
mathematically established a nonlinear differential equation to study the dynamics of the model. The disease-free equilibrium
(DFE) and endemic equilibrium (EE) are reached. The basic reproduction numbers, RA

0 , RH
0 , and RC

0 , determine the
transmission of the disease and thus are gotten. We perform sensitivity analysis on the reproduction numbers to identify the
factors that affect the reproduction numbers. The results of the sensitivity analysis paved a way for introducing a controlled
system which was solved using Pontryagin’s maximum principle (PMP) and the optimality system got. The optimality system
was then solved numerically using the forward and backward sweep approach, and graphs were generated, establishing the
conditions for local and global stability of the disease-free equilibrium using the Routh-Hurwitz criterion and Castillo-Chavez
approach, respectively. We also used Pontryagin’s maximum principle to determine the optimality system. The result of the
analysis of the stability of the disease-free equilibrium states that hepatitis B virus can be completely wiped out if the rate of
infection is kept at a number less than unity. A numerical simulation of the model was carried out and showed that hepatitis B
virus transmission can best be controlled when condom use, testing and treatment, and vaccination are implemented.

1. Introduction

A viral infection called hepatitis B can cause both acute and
chronic diseases and attack the liver. It is the most severe
form of viral hepatitis and a significant global health issue.
Around 780,000 individuals are expected to die each year
because of the effects of hepatitis B, which include liver can-
cer and cirrhosis. The virus is extremely infectious and is
spread by contact with an infected person’s blood or other
body fluids. Hepatitis B virus has an average lifespan of
seven days outside the body and is a significant occupational

hazard for health workers [1]. Hepatitis means liver inflam-
mation. A vital organ that processes nutrients, cleans the
blood, and battles infections is the liver. When the liver is
inflamed or impaired, its functions may be affected. Typi-
cally, a viral infection causes hepatitis, although other poten-
tial causes of hepatitis can exist, such as heavy use of alcohol,
chemicals, certain drugs, and certain medical conditions.
Acute hepatitis B usually takes 75 days to incubate, although
it can range from approximately 30 to 180 days.

The host’s immune response controls liver damage when
infected with HBV [1]. Results of HBV infection depend on
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host characteristics, such as age, gender, genetic background,
coinfections, other coexisting diseases, and concomitant
medicines, based on viral elements, such as the HBV geno-
type and viral DNA concentrations. Recent infections with
HBV are characterized by the existence of HBsAg and
immunoglobulin M (IgM) versus HBcAg in the blood.
Patients are extremely HBeAgg-positive throughout the ear-
liest stages of the infection’s replication phase. The initial
infection may be symptomatic or asymptomatic, present
as, with or without, acute (clinical) hepatitis jaundice, or it
may contribute to hepatitis. Approximately 1 percent of
acute hepatitis B, characterized by acute inflammation and
hepatocellular necrosis, occurs 10 percent of infections in
early childhood, perinatal infections (in kids 1-5 years of
age), and 30 percent of late infections (in people > 5 years
of age). The fulminant disorder progresses rarely in babies
and teenagers, but 0.5 percent-1 percent exists. Acute hepa-
titis B cases in adults have a case-fatality rate of 20 percent to
33 percent. The rate of growth of chronic infection with
HBV is inversely associated with age. About 80 percent to
90 percent of infants with perinatal infection develop the
infection, 30-50 percent of children who are infected before
6 years of age, and <5 percent of otherwise occurring infec-
tions in adults that are well [2]. According to WHO [1], the
two principal ways that hepatitis B is spread are horizontal-
ly(infected blood) or during pregnancy and childbirth (peri-
natal transmission), especially during the first 5 years of life
from an infected child to an uninfected child. Infants who
are infected by their mothers or who are under the age of five
frequently get persistent infections. Contaminated bodily
fluids like saliva, menstrual, vaginal, and seminal secretions
can spread hepatitis B through needle stick damage, tattoo-
ing, piercing, and exposure. Hepatitis B can be sexually
transmitted, especially in heterosexuals who have several
partners and unvaccinated men who have sex with other
men or who have sexual intercourse with sex workers.

When newly infected, most individuals do not experi-
ence any symptoms. Some individuals, however, have an
acute disease with symptoms that extend for several weeks.
These symptoms include skin and eye yellowing (jaundice),
dark urine, extreme fatigue, nausea, and vomiting. Acute
liver failure, which may lead to death, can occur in a small
subset of individuals with acute hepatitis. Some patients
who have the hepatitis B virus may also develop a persistent
liver infection, which can later turn into cirrhosis (liver scar-
ring) or liver cancer. The risk of developing a chronic infec-
tion varies with infection age and is highest in infants and
young children. 90 percent of newborns and 25 to 50 percent
of kids between the ages of 1 and 5 will continue to have
chronic HBV infections. In contrast, about 95 percent of
individuals fully recover from HBV infection and do not
develop a chronic infection. Getting vaccinated is the great-
est method to avoid hepatitis B [1]. It is possible to treat hep-
atitis B virus infection. Typically, therapy is permanent, but
acute hepatitis B disease does not have any clear treatment.
Providing adequate nutrition and replacing fluids lost from
vomiting and diarrhea supports therapy and symptom alle-
viation, which are the foundation of clinical management
[3]. Antiviral treatment for chronic infection with HBV

should decrease morbidity and mortality because of progres-
sive liver disease. To prevent the negative effects of drug
resistance, the WHO advises using antiviral medications
with a high barrier to resistance (either tenofovir or enteca-
vir) as the preferred first-line treatment [4]. Chronic HBV
infection can be treated, although it is not curative [5]. It
can prevent or postpone the development of cirrhosis, lower
the risk of developing hepatocellular carcinoma (HCC), and
increase survival through long-term viral suppression.
Although tenofovir is commonly available as part of fixed
drug formulation antiretroviral regimens at a cheap cost,
therapy for HBV infection is not always easily accessible in
resource-constrained situations. Evidence suggests that anti-
viral therapy administered during the third trimester of
pregnancy can reduce maternal viral loads and the risk of
perinatal transmission of HBV from mothers with very high
viral loads [6, 7]. However, evidence suggests that antiviral
therapy administered during the third trimester of preg-
nancy can reduce maternal viral loads and the risk of perina-
tal transmission of HBV from mothers with very high viral
loads [4].

According to WHO in 2015, statistically, about 325 mil-
lion people worldwide were affected by viral hepatitis, with
257 million people living with hepatitis B and 71 million
people living with hepatitis C being the two major killers
of the five types of hepatitis. In 2015, 1.34 million deaths
were because of viral hepatitis. To inspire further action
toward the health targets in the 2030 Sustainable Develop-
ment Goals, World Hepatitis Day 2017 will be observed
under the theme “Eliminate Hepatitis.” In 2016, The World
Health Assembly approved WHO’s initial global health
sector strategy on viral hepatitis to aid nations in stepping
up their responses. According to recent WHO data, over
86 percent of the countries under review have established
national goals for the eradication of hepatitis, and over 70
percent have developed national hepatitis policies that
include access to quality services for prevention, diagnosis,
treatment, and care. In addition, nearly half of the countries
surveyed are targeting elimination by ensuring equal access
to care for hepatitis. But the WHO is worried that change
needs to be sped up. In Africa, a hidden epidemic that affects
over 70 million people is hepatitis B. Nine out of ten infected
individuals have never undergone testing because of a lack of
knowledge and inadequate access to testing and treatment.
To meet the worldwide eradication goals by 2030, it is
imperative to close the most critical gap in testing and treat-
ment coverage. Viral hepatitis B and C should be promptly
diagnosed and treated to prevent death. Considering the
aforementioned findings, we suggest the best preventative
measures for hepatitis B infections with saturation inci-
dence. Many researchers have established mathematical
models to describe the dynamics of the spread of hepatitis
B virus infection.

For instance, [8] developed a hepatitis B virus transmis-
sion model. Acute infectious and chronic infectious stages
are the two categories used to categorize the infectious
compartments. As a result, the overall population is split
into four groups: susceptible, acutely infected with hepatitis
B, chronically infected with hepatitis B, and recovered
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individuals. Following the model’s formulation, they deter-
mine the basic reproduction rate and the disease-free and
endemic equilibrium. They also proved that, under certain
conditions, the model is both locally and globally stable.
To construct a control strategy, three time-dependent con-
trol variables are used, such as isolation, treatment, and
vaccination. This control technique is aimed at increasing
the number of recovered individuals while reducing the
number of infected people. To describe numerical simula-
tions and validate all the analytical findings, they finally
adopted a numerical approach.

A fractional derivative analysis of hepatitis B disease is
developed by the authors [9, 10] by studying a new system
of equations in the sense of the Atangana-Baleanu Caputo
fractional order derivative (ABC). The proposed method
has five distinct compartments, such as the susceptible pop-
ulation, acute infections, chronic infections, the immunized
population, and the vaccinated population. Using some
well-known results from the fixed point theory, these
authors found the Ulam-Hyers type stability and qualitative
analysis of the candidate solution. They also established the
deterministic stability of the proposed system. These authors
analyzed a noninteger order model for hepatitis B (HBV)
based on a fractional order derivative of the Caputo singular
type. Thus, they could analyze the proposed system to get an
approximate or semianalytical solution using the Laplace
transform. Similarly, Adomian polynomial decomposition
techniques of the nonlinear terms and some homotopy
perturbation techniques (HPM) are also studied by these
authors.

[11, 12] proposed a model of the hepatitis B epidemic
that describes the dynamic features of both acute and
chronic HBV. Based on a few characteristics of how the virus
spreads, they developed a mathematical model for the
dynamics of HBV. The host population is identified by being
separated into five groups, namely, susceptible persons,
infected individuals, acutely infected individuals, chronic
HBV-positive individuals, and individuals who have recov-
ered from infection and have lifetime immunity. The model
was examined for potential stable states, and the threshold
number was calculated. The model yielded two equilibrium
points, namely, disease-free equilibrium and endemic
equilibrium. It was established that both of the model equi-
librium points are globally stable under specific circum-
stances. The Lyapunov function theory method was used
to determine the global stability of DFE, whereas the geo-
metrical method was employed to determine the global
stability of the EE. It is shown that the model displays a
backward bifurcation. Two-time dependent controls, such
as vaccination and treatment, were adopted to combat the
virus. Pontryagin’s approach was used to successfully reduce
both acute and chronic HB infections as part of the plan.
Finally, some simulations that show the effectiveness of the
controls were shown. It was determined that hepatitis B
could be eliminated from any population by using such a
long-term management plan.

In the “Methods” section, we have established and
described the mathematical model. In the “Analysis of the
model” section, we assumed constant control for the control

parameters. The positivity of solution was proven to be pos-
itive, and the system of nonlinear differential equations was
well-posed epidemiologically and mathematically. We could
determine the fundamental reproduction number by using
the next-generation method. The balance between the
endemic and disease states was established. The disease-
free is locally asymptotically stable when R0 < 1 and unsta-
ble if R0 > 1. The global stability of the disease-free is
proved globally asymptotically stable when the associated
reproduction number R0 < 1. While the disease will
completely disappear into a stable equilibrium, it will persist
and spread endemic in an unstable equilibrium. Using Pon-
tryagin’s maximum principle, we looked into the ideal
threshold needed to stop the spread of the hepatitis B viral
infection in a community. “Results” based on numerical
findings, the combination of condom use for prevention,
testing, treatment, and vaccine is the most effective method
for controlling the disease. Finally, we conclude this research
work in the “Conclusion” section.

2. Formulation of Hepatitis B Model

In this work, we show the hepatitis B virus transmission
dynamics together with three control strategies. We divided
the entire population into seven compartmental classes,
including susceptible individuals at time t, denoted by SðtÞ,
the latent class LðtÞ, acutely infected individuals IAðtÞ,
chronically infected individuals ICðtÞ, carriers CðtÞ, recov-
ered with permanent immunity RðtÞ and vaccinated individ-
uals VðtÞ.

N tð Þ = S tð Þ + L tð Þ + IA tð Þ + IC tð Þ + C tð Þ + R tð Þ +V tð Þ: ð1Þ

The susceptible individual compartment increases
because of recruitment at the birth of newborns that are
not vaccinated νψ − νp1IC − νp2R because of vaccination
σS, where σ is the vaccination rate and a rate of loss of
immunity among those who have recovered λ3. The sus-
ceptible class reduces by a function ðρIA + ργIC + ρξCÞS/
1 + αC. Where ρ is the transmission rate of hepatitis B,
γ is the modification parameter that accounts for higher
infectiousness of IC compared to IA and C, ξ is the mod-
ification parameter that accounts for the infectiousness
level of the carrier individuals, and α is the saturated
parameter. The susceptible class also decreases due to nat-
ural death at the rate μ.

dS
dt

= νψ − νp1IC − νp2R + ωV −
ρIA + ργIC + ρξCð ÞS

1 + αC
− σ + μð ÞS + λ3S:

ð2Þ

The population of latently infected individuals increases
because of new infection at a rate ðρIA + ργIC + ρξCÞS/1 +
αC. The population decrease because of the progression of
latently infected individuals to acutely infected individuals
at a rate λ1 and natural death occurs frequently at μ. The
population of acutely infected individuals increases because
of progression from latent class. The population decrease
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because of progression into the chronically infected class at a
rate p3λ2, where p3 is the proportion that becomes chroni-
cally infected, and λ2 is the progression rate, progression into
carrier class at a rate ð1 − p3Þλ2 and treatment of acutely
infected individuals at a rate ϕ1. The population of chroni-
cally infected individuals increases because of the proportion
of acutely infected individuals IA becoming chronically
infected IC , where p3 is the progression rate, and it increases
by a fraction of newborns that are chronically infected. The
chronically infected class decreased because of treatment,
and mortality rates were because of disease and natural
causes. The carrier individuals increase from the acutely
infected class because of the proportion of acutely infected
at rate ð1 − p3Þλ3 and also reduce because of disease-
induced death, natural death, and treatment rate. The recov-
ery class increases because of treatment from acutely
infected, chronically infected, and carrier individuals’ class,
and it is increased by a fraction of newborns at the rate vp3.
It is reduced by the loss of immunity at the rate λ3R and
natural death rate.

We, therefore, present the equations for the model with
constant controls.

dS
dt

= νψ − νp1IC − νp2R + ωV −
ρIA + ργIC + ρξCð ÞS

1 + αC
− σ + μð ÞS + λ3R,

dL
dt

= ρIA + ργIC + ρξCð ÞS
1 + αC

− λ1 + μð ÞL,

dIA
dt

= λ1L − μ + d1 + λ2 + ϕ1ð ÞIA,

dIC
dt

= p3λ2IA − ϕ2 + μ + d3 − νp1ð ÞIC ,

dC
dt

= 1 − p3ð Þλ2IA − μ + d2 + ϕ3ð ÞC,

dR
dt

= ϕ1IA + ϕ2IC + ϕ3C − μ + λ3 − νp2ð ÞR,

dV
dt

= ν 1 − ψð Þ + σS − μ + ωð ÞV ,
ð3Þ

with the initial conditions

S 0ð Þ = S 0ð Þ ≥ 0,

L 0ð Þ = L 0ð Þ ≥ 0,

IA 0ð Þ = IA 0ð Þ ≥ 0,

IC 0ð Þ = IC 0ð Þ ≥ 0,

C 0ð Þ = C 0ð Þ ≥ 0,

R 0ð Þ = R 0ð Þ ≥ 0,

V 0ð Þ =V 0ð Þ ≥ 0:

ð4Þ

The corresponding classes are combined together to
provide the dynamics of the system’s overall population (3)
that yields

dN
dt

= ν − μ S + L + IA + IC + C + R +Vð Þ: ð5Þ

2.1. Basic Properties

Theorem 1. Let the initial solution set Sð0Þ, Lð0Þ, IAð0Þ,
ICð0Þ, Cð0Þ, Rð0Þ, ð0Þ,Vð0Þ > 0 be a nonnegative initial con-
dition, and then, system (2) has a nonnegative solution SðtÞ,
LðtÞ, IAðtÞ, ICðtÞ, CðtÞ, RðtÞ, VðtÞ > 0 for all t > 0. Moreover,
limsupt⟶∞NðtÞ ≤ ν/μ. In addition, if Nð0Þ ≤ ν/μ, then
NðtÞ ≤ ν/μ if the feasible region for system (3)

Ω∗ = S, L, IA, IC , C, R,Vð Þ ∈ℝ7
+ : S + L + IA + IC + C + R + Vð Þ ≤ ν

μ

� �

ð6Þ

is attractive and positively invariant with regard to the
system (3).

Proof. From the first equation of system (3), we have the
following

dS
dt

+ ρIA + ργIC + ρξCð ÞS
1 + αC

+ σ + μð ÞS ≥ 0: ð7Þ

From time t = 0 to t = t, we are integrating (+ve of sp)
to get

d
dt

S tð Þ exp
ðt
0

ρIA + ργIC + ρξCð Þ
1 + αC

+ σ + μð Þ
� �� �

≥ 0: ð8Þ

This means that

S tð Þ ≥ S 0ð Þ exp −
ðt
0

ρIA + ργIC + ρξCð Þ
1 + αC

+ σ + μð Þ
� �� �

0,∀t0:

ð9Þ

We used a similar approach to prove that LðtÞ, IAðtÞ,
ICðtÞ, RðtÞ, VðtÞ, VðtÞ > 0 remain nonnegative for all t > 0.
The second portion of the theorem, which states that
model system (3) is positively invariant, is proved using
Equation (5) so that NðtÞ ≤ ν/μ + ðNð0Þ − ν/μÞ exp−μt . It
follows that as t⟶∞NðtÞ ≤ ν/μ. Furthermore, if Nð0Þ ≤
ν/μ, then NðtÞ ≤ ν/μ. This establishes that Ω is the manifold
on which the population has nonzero size.

Thus, it proves the boundedness of the solutions inside
Ω. Hence, the solutions to the system (3) are attractive in a
region and positively invariant Ω. We notice that system
(3) is feasible biologically and mathematically well-posed in
Ω from Theorem 1.
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3. The Hepatitis B Model Analysis

This section establishes the hepatitis B-free equilibrium state
and hepatitis B present equilibrium state, and the basic
reproduction number is obtained and carried out stability
analysis.

3.1. Equilibrium Points. The system (3) equilibrium points
are established by the setting of the system (3) to zero to
get

dS
dt

= νψ − νp1IC − νp2R + ωV −
ρIA + ργIC + ρξCð ÞS

1 + αC
− σ + μð ÞS + λ3R = 0,

dL
dt

= ρIA + ργIC + ρξCð ÞS
1 + αC

− λ1 + μð ÞL = 0,

dIA
dt

= λ1L − μ + d1 + λ2 + ϕ1ð ÞIA = 0,

dIC
dt

= p3λ2IA − ϕ2 + μ + d3 − νp1ð ÞIC = 0,

dC
dt

= 1 − p3ð Þλ2IA − μ + d2 + ϕ3ð ÞC,

dR
dt

= ϕ1IA + ϕ2IC + ϕ3C − μ + λ3 − νp2ð ÞR = 0,

dV
dt

= ν 1 − ψð Þ + σS − μ + ωð ÞV = 0:

ð10Þ

In the absence of hepatitis B virus infection, the sys-
tem (3) has a steady state, and this steady state is termed
hepatitis B-free equilibrium. We calculated and evaluated
the Jacobian of the system (3) at the hepatitis B-free
equilibrium to determine the type of stability of the hep-
atitis B-free equilibrium. The signs of the Jacobian’s
eigenvalues are used to determine the local stability of
the hepatitis B-free equilibrium. The system’s hepatitis
B-free equilibrium (3) is

S0, L0, I0A, I0C , C0,V0, R0À Á
= ν σω + μω + μ2ψ + σμψ − σψω

À Á
μ μ + ωð Þ σ + μ + ωð Þ , 0, 0, 0, 0, 0, ν σ + μð Þ 1 − ψð Þ

μ μ + σ + ωð Þ
� �

:

ð11Þ

This only shows that the susceptible individuals’
recruitment and mortality rates change proportionally in
the absence of hepatitis B disease.

For the second equilibrium point, we let E∗∗ = ðS∗∗,L∗∗,
I∗∗A ,I∗∗C ,C∗∗,V∗∗,R∗∗Þ be the hepatitis B present equilibrium
of the model (2). At the equilibrium state, we let λ∗∗a =
ðρI∗∗A +ργI∗∗C +ρξC∗∗Þ/1 + αC∗∗ be the forces of infection

and N∗∗ = S∗∗ + L∗∗ + I∗∗A +I∗∗C +V∗∗+R∗∗, solving system
(3) at steady state yields

S∗∗ = 1
ρξλ1λ2k4k5I

∗
C

ρλ1λ4λ6 + k2k3k4k6 + ργλ1λ2λ6p3ð ÞI∗C ,

L∗∗ = k3k4I
∗
C

p3λ1λ2
,

I∗∗A = k4IC ∗
p3λ2

,

C∗∗ = k4k5λ2I
∗
C

p3λ2k6
,

R∗∗ = ϕ1k4k6 + ϕ2p3λ2k6 + ϕ3k4k5λ2ð ÞI∗C
p3λ2k6k7

,

V∗∗ = k2k3k4k6σI
∗
C − ρλ1k4k6σI

∗
C + ργλ1λ2k6p3σI

∗
C + νk8ð Þ

k9ρξλ1λ2k4k5I
∗
C

,

I∗∗C = 1
νp1 + ργ m4/1 + αm2ð Þ νψ + ωm5 + λ3m3

�

−m4k1 −m4
ρm1 + ρξm2
1 + αm2

− νp2m3

�
,

ð12Þ

where

k1 = σ + μð Þ,
k2 = λ1 + μð Þ,
k3 = μ + d1 + λ2 + ϕ1ð Þ,
k4 = μ + d3 + ϕ2 − νp1ð Þ,
k5 = 1 − p3ð Þ,
k6 = μ + d2 + ϕ3ð Þ,
k7 = μ + λ3 − νp2ð Þ,
k8 = 1 − ψð Þ,
k9 = μ + ωð Þ
m1 = I∗A,

m2 = C∗,

m3 = R∗,

m4 = S∗,

m5 =V∗:

ð13Þ

3.2. Basic Reproduction Number. The term “basic repro-
duction number” refers to the typical number of second-
ary infections induced by one infectious person when the
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entire population is susceptible, R0. The hepatitis B virus
epidemiological threshold is represented by the symbol
R0 = ρðFV−1Þ, and ρ denotes the dominant eigenvalue.
To determine the basic reproduction number of the system
(3), we implemented the strategies in [13] to get

F =

ρIA + ργIC + ρξCð ÞS
1 + αC

0

0
0

0
BBBBBBB@

1
CCCCCCCA
,

V =

λ1 + μð ÞL
−λ1L + μ + d1 + λ2 + ϕ1ð ÞIA
−p3λ2IA + μ++d3 + ϕ2ð ÞIC

− 1 − p3ð Þλ2IA + μ + d2 + ϕ3ð ÞC

0
BBBBBB@

1
CCCCCCA
:

ð14Þ

New infection terms and transition terms are, respec-
tively, contained in the matrices F and V in the system
(3). At hepatitis B-free equilibrium, the Jacobian matrices
of F and V are evaluated, producing the following results.

F =

0 ρS0 ργS0 ρξS0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA
,

V =

λ1 + μð Þ 0 0 0

−λ1 μ + d1 + λ2 + ϕ1ð Þ 0 0

0 −p3λ2 μ + d3 + ϕ2ð Þ 0

0 − 1 − p3ð Þλ2 0 μ + d2 + ϕ3ð Þ

0
BBBBBB@

1
CCCCCCA
:

ð15Þ

Therefore, system (3) has a basic reproduction number
provided by

R0 =RA
0 +RH

0 +RC
0 , ð16Þ

where

RA
0 =

ρS0λ1
λ1 + μð Þ μ + d1 + λ2 + ϕ1ð Þ ,

RH
0 = ρξS0p3λ1λ2

λ1 + μð Þ μ + d1 + λ2 + ϕ1ð Þ μ + d3 + ϕ2ð Þ ,

RC
0 =

ρξS0 1 − p3ð Þλ1λ2
λ1 + μð Þ μ + d1 + λ2 + ϕ1ð Þ μ + d2 + ϕ3ð Þ :

ð17Þ

3.3. Local Stability of the Hepatitis B
Disease-Free Equilibrium

Theorem 2. The hepatitis B disease-free equilibrium of sys-
tem (3) is locally asymptotically stable if R0 < 1 and unstable
if otherwise.

Proof. The Jacobian matrix of the system (3) at hepatitis
B-free equilibrium JðE0Þ is be given by

−r1 0 −ρS0 −ργS0 −ρξS0 −νp2 + λ3 ω

0 −r2 ρS0 ργS0 ρξS0 0 0
0 λ1 −r3 0 0 0 0
0 0 p3λ2 −r4 0 0 0
0 0 1 − p3ð Þλ2 0 −r5 0 0
0 0 ϕ1 ϕ2 ϕ3 −r6 0
σ 0 0 0 0 0 −r7

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,

ð18Þ

where

r1 = −
ρIA + ργIC + ρξCð Þ

1 + αC
− σ + μð Þ,

r2 = − λ1 + μð Þ,
r3 = − μ + d1 + λ2 + ϕ1ð Þ,
r4 = − μ + d3 + ϕ2ð Þ,
r5 = − μ + d3 + ϕ2ð Þ,
r6 = − μ + λ2 − νp2ð Þ,
r7 = − μ + ωð Þ:

ð19Þ

The characteristics polynomial JðE0Þ for (18) is hereby
defined as follows:

A1λ
7 + A2λ

6 + A3λ
5 + A4λ

4 + A5λ
3 + A6λ

2 + A7λ + A0 = 0,
ð20Þ

where the coefficients of (18) are given as

A2 = r6 r1 + r2 + r3 + r4 + r5 + r6 + r7ð Þð ,

A3 = r6 r1 + r2 + r3 + r4 + r5 + r6ð Þð + r3 r1 + r2ð Þ
+ r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3 + r4ð Þ
+ r7 r1 + r2 + r3 + r4 + r5 + r6ð Þ + r1r2−λ1b1−σωÞ,

A4 = r6 r3 r1 + r2ð Þðð + r1r2 + r4 r1 + r2 + r3ð Þ
+ r4 r1 + r2 + r3 + r4ð ÞÞ + r4 r3 r1 + r2ð Þ + r1r2ð Þ
+ r5 r3 r1 + r2ð Þ + r1r2 + r4 r1 + r2 + r3ð Þð Þ
+ r7 r6 r1 + r2 + r3 + r4 + r5ð Þð + r3 r1 + r2ð Þ + r1r2
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+ r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3 + r4ð ÞÞ + σωr1
+ λ1b1r2 + r1r2r3−r3λ1b1−r4λ1b1−r5λ1b1−r7λ1b1
−λ1b1 r1 + r2ð Þ−σω r1 + r2 + r3 + r4 + r5 + r6ð Þ
−λ1b2c1−λ1b3c2Þ,

A5 = r6 r4 r3 r1 + r2ð Þ + r1r2ð Þðð + r5 r3 r1 + r2ð Þ + r1r2ð
+ r4 r1 + r2 + r3ð ÞÞ + λ1b1−r2 + r1r2r3Þ
+ c1 λ1b2−r2 + λ1b2−r3ð Þ + c2 λ1b33r2 + λ1b3−r3ð Þ
+ r4 λ1b1−r2 + r1r2r3ð Þ + r5 r4 r1 + r2ð Þð + r1r2 + λ1b1
−r2 + r1r2r3 + r7 r6 r3 r1 + r2ð Þðð + r1r2 + r4 r1 + r2 + r3ð Þ
+ r5 r1 + r2 + r3 + r4ð ÞÞ + r4 r3 r1 + r2ð Þ + r1r2ð Þ
+ r5 r3 r1 + r2ð Þ + r1r2 + r4 r1 + r2 + r3ð Þð Þ + λ1b1−r2
+ r1r2r3 + σωr1 r1 + r2 + r3 + r4 + r5 + r6ð Þ−r6r4λ1b1
−r6r4r5λ1b1−r6r4λ1b1 r1 + r2ð Þ−r6r4λ1b2c1
−r6r4λ1b3c2−r6r4λ1b1−r6r5λ1b1 r1 + r2ð Þ
−r6r5λ1b2c1−r6r7r6λ1b1−r6r7λ1b1−r6r7r5λ1b1
−r6r7λ1b1 r1 + r2ð Þ−r6r7λ1b2c1−r6r7λ1b3c2
−σω r6 r1 + r2 + r3 + r4 + r5ð Þð + r3 r1 + r2ð Þ−λ1b1
+ r1r2 + r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3 + r4ð Þ−σωr21
−λ1b2c1 r1 + r2 + r3ð Þ−λ1b3c2 r1 + r2 + r3 + r4ð ÞÞÞÞÞ,

A6 = r5 c1 λ1b2r2 + λ1b2r3ð Þð + r4 λ1b1r2−λ1b1 r1 + r2ð Þðð
+ r1r2r3Þ−λ1b2c1 r1 + r2 + r3ð ÞÞ
−c2 r3 λ1b3r2 + λ1b3r3ð Þ + λ1 b3r

2
2 + λ1b1b3

À ÁÀ Á
+ r7 r6 r4 r3 r1 + r2−λ1b1 + r1r2ð Þððð + r5 r3 r1 + r2ð Þð
−λ1b1 + r1r2 + r4 r1 + r2 + r3ð ÞÞ−λ1b1 r1 + r2ð Þ
−λ1b2c1−λ1b3c2 + λ1b1r2 + r1r2r3
+ c1 λ1b2r2 + λ1b2r3ð Þ + c2 λ1b3r2 + λ1b3r3ð Þ
+ r4 λ1b1r2−λ1b1 r1 + r2ð Þ + r1r2r3ð Þ
+ r5 r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þð −λ1b1 r1 + r2ð Þ
−λ1b2c1 + λ1b1r2 + r1r2r3Þ−λ1b2c1 r1 + r2 + r3ð ÞÞ
+ r6c1 λ1b2r2 + λ1b2r3ð ÞÞ + c2 λ1b3r2 + λ1b3r3ð Þ
+ r4 λ1b1r2−λ1b1 r1 + r2ð Þð
+ r1r2r3Þ + r5 r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þ−λ1b1 r1 + r2ð Þð
−λ1b2c1 + λ1b1r2 + r1r2r3Þ−λ1b2c1 r1 + r2 + r3ð Þ
−λ1b3c2 r1 + r2 + r3 + r4ð ÞÞ + σωr32−σω r6 r3 r1 + r2ð Þðð
−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3 + r4ð ÞÞ
+ r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þ + r5 r3 r1 + r2ð Þ−λ1b1ð
+ r1r2 + r4 r1 + r2 + r3ð ÞÞ−λ1b1 r1 + r2ð Þ
−λ1b2c1 + λ1b3c2 + r1r2r3Þ
+ c2 λ1b3r2 + λ1b3r3ð Þ r1 + r2 + r3 + r4ð Þ
−λ1b3c2 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð ÞÞ
+ σωr21 r6 r1 + r2 + r3 + r4 + r5ð Þð + r3 r1 + r2ð Þ
−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3 + r4ð ÞÞ
−σωr21

Á
r1 + r2 + r3 + r4 + r5 + r6ð ÞÞ,

A7 = r6 r5 c1 λ1b2r2 + λ1b2r3ð Þððð r4 λ1b1r2−λ1b1 r1 + r2ð Þð
+ r1r2r3Þ−λ1b2c1 r1 + r2 + r3ð ÞÞ−c2 r3 λ1b3r2 + λ1b3r2ð Þð
+ λ1 b3 r2ð Þ2 + λ1b1b3

À ÁÁ
+ c2 λ1b3r2 + λ1b3r3ð Þ r1 + r2ð

+ r3 + r4Þ−λ1b3c2 r3 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þð ÞÞ
+ r7 r5 c1 λ1b2r2 + λ1b2r3ð Þðð + r4 λ1b1r2−λ1b1 r1 + r2ð Þð
+ r1r2r3Þ−λ1b2c1 r1 + r2 + r3ð ÞÞ−c2 r3 λ1b3r2 + λ1b3r3ð Þð
+ λ1 b3 r2ð Þ2 + λ1b1b3

À ÁÁ
+ r6 c1 λ1b2r2 + λ1b2r3ð Þð

+ c2 λ1b3r2 + λ1b3r3ð Þ + r4 λ1b1r2−λ1b1 r1 + r2ð Þ + r1r2r3ð Þ
+ r5 r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þ−λ1b1 r1 + r2ð Þ−λ1b2c1ð
+ λ1b1r2 + r1r2r3Þ−λ1b2c1 r1 + r2 + r−3ð Þ−λ1b3c2 r1ð + r2
+ r3 + r4 + c2 λ1b2r3ð + λ1b3r3 r1 + r2 + r3 + r4ð Þ
−λ1b3c2 r3 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þð ÞÞ
−σω r1ð Þ4−σω r6 r4 r3 r1 + r2ð Þððð −λ1b1 + r1r2 + r5 r3 r1 + r2ð Þð
−λ1b1 + r1r2Þ + r4 r1 + r2 + r3ð Þ−λ1b1 r1 + r2ð Þ−λ1b2c1
−λ1b3c2 + λ1b1r3Þ + c1 λ1b2r2 + λ1b2r3ð Þ
+ c2 λ1b3r2 + λ1b3r3ð Þ + r4 λ1b1r2−λ1b1 r1 + r2ð Þ + r1r2r3ð Þ
+ r5 r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þ−λ1b1 r1 + r2ð Þð
−λ1b2c1 + λ1b1r2 + r1r2r3Þ−λ1b2c1 r1 + r2 + r3 + r4ð ÞÞ
+ σωr1 r6 r3 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þðð
+ r5 r1 + r2 + r3 + r4ð ÞÞ + r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þ
+ r5 r3 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þð Þ
−λ1b1 r1 + r2ð Þ−λ1b2c1−λ1b3c2 + λ1b1r2+r1r2r3Þ
+ σω r1ð Þ3 r1 + r2 + r3 + r4 + r5 + r6ð Þ−σω r1ð Þ2 r1 + r2ð
+ r3 + r4 + r5Þ + r3 r1 + r2ð Þ−λ1b1 + r1r2Þ + r4 r1 + r2 + r3ð Þ
+ r5 r1 + r2 + r3 + r4 + r5ð ÞÞÞÞÞ,

A0 = σω5
1 + r6r7 r5 c1 λ1b1r2 + λ1b2r3ð ÞððÀÀ

+ r4 λ1b1r2ð
−λ1b1 r1 + r2ð Þ + r1r2r3Þ−λ1b2c1 r1 + r2 + r3ð ÞÞ
−c2 r3 λ1b3r2 + λ1b3r3ð Þ r1 + r2 + r3ð Þð −λ1b3c2 r3 r1 + r2ð Þð
−λ1b1 + r1r2 + r4 r1 + r2 + r3ð ÞÞ−σω r5 c1 λ1b2r2 + λ1b2r3ð Þðð
+ r4 λ1b1r2−λ1b1 r1 + r2ð Þ + r1r2r3ð Þ−λ1b2c1 r1 + r2 + r3ð ÞÞ
−c2 r3 λ1b3r2 + λ1b3r3ð Þ + λ1 b3r

2
2 + λ1b1b3

À ÁÀ Á
+ r6 c1 λ1b2r2 + λ1b2r3ð Þð + c2 λ1b3r2 + λ1b3r3ð Þ
+ r4 λ1b1r2−λ1b1 r1 + r2ð Þ + r1r2r3ð Þ + r5 r4 r3 r1 + r2ð Þðð
−λ1b1 + r1r2Þ−λ1b1 r1 + r2ð Þ−λ1b2c2 + λ1b1r2 + r1r2r3Þ
−λ1b2c1 r1 + r2 + r3ð Þ−λ1b3c2 r1 + r2 + r3 + r4ð ÞÞ
+ c2 λ1b3r2ð + λ1b3r3 r1 + r2 + r3 + r4ð Þ−λ1b3c2 r3 r1 + r2ð Þð
−λ1b1 + r1r2 + r4 r1 + r2 + r3ð ÞÞÞ + σωr1r6 r4 r3 r1 + r2ð Þðð
−λ1b1 + r1r2ÞÞ + r5 r3 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þð Þ
−λ1b1 r1 + r2ð Þ−λ1b2c1−λ1b3c1 + λ1b1r2 + r1r2r3Þ
+ c1 λ1b2r2 + λ1b2r3ð Þ + c2 λ1b3r2 + λ1b3r3ð Þ
+ r4 λ1b1r2−λ1b1 r1 + r2ð Þ + r1r2r3ð Þ + r5 r4 r3 r1 + r2ð Þðð
−λ1b1 + r1r2Þ−λ1b1 + r1 + r2ð Þ−λ1b2c1 + λ1b1r2 + r1r2r3Þ
−λ1b2c1 r1 + r2 + r3ð Þ−λ1b3c2 r1 + r2 + r3 + r4ð ÞÞ
−σωr41 r1 + r2 + r3 + r4 + r5 + r6ð Þ−σωr21 r6 r3 r1 + r2ð Þðð
−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3ð Þ
+ r5 r1 + r2 + r3 + r4ð ÞÞ + r4 r3 r1 + r2ð Þ−λ1b1 + r1r2ð Þ

7Abstract and Applied Analysis



+ r5 r3 r1 + r2ð Þ−λ1b1 + r1r2 + r4 r1 + r2 + r3ð Þð Þ
−λ1b1 r1 + r2ð Þ−λ1b2c1−λ1b3c3 + λ1b1r2+r1r2r3Þ
+ σωr31 r6 r1 + r2 + r3 + r4ð Þð + r3 r1 + r2ð Þ−λ1b1 + r1r2
+ r4 r1 + r2 + r3ð Þ + r5 r1 + r2 + r3 + r4ð ÞÞÞÞÞÞÞ:

ð21Þ

Using the Routh-Hurwitz criterion, which stipulates that
all polynomial (Equation (20)) roots have a negative real
component if and only if the coefficients are positive and
the determinant of the matrices Hi > 1 for i = 1,⋯7. It is
clear that D1 > 0. Therefore, if Dj > 0 for j = 2⋯ 7 and since
the hepatitis B free equilibrium is locally asymptotically sta-
ble, the Routh-Hurwitz conditions for the 7th-order charac-
teristics polynomial in (20) are satisfied, and we conclude
the hepatitis B free equilibrium is locally asymptotically
stable (LAS).

3.4. Global Asymptotic Stability for Hepatitis B. The strategy
used in [14] is to examine the global asymptotic stability
(GAS) of the hepatitis B-free equilibrium for the model (3).

Lemma 3. Let system (3) be in the form

dX
dt

= F X, Zð Þ,

dZ
dt

= G X, Z,ð Þ, X, 0ð Þ = 0,
ð22Þ

where X = ðS, V , RÞ and Z = ðL, IA, IC , CÞ and components of
X ∈ℝ3 represent the population that are not infected and
components of Z ∈ℝ4 represent the population that are
infected [14]. Considering the hepatitis B-free equilibrium
E0 = ðX0, 0Þ, where

X0 = ν σω + μω + μ2ψ + σμψ − σψω
À Á

μ μ + ωð Þ σ + μ + ωð Þ , 0, 0, 0, 0, 0, ν σ + μð Þ 1 − ψð Þ
μ μ + σ + ωð Þ

� �
:

ð23Þ

The following requirements must be satisfied to pro-
vide global asymptotic stability: H1 : dX/dt = FðX0, 0Þ, X0

is (GAS).
H2 : GðX, ZÞ = PZ − ĜðX, ZÞ, ĜðX, ZÞ ≥ 0 for ðX, ZÞ ∈Ω,

where P =DzGðX0, 0Þ is an M-matrix and Ω is the biologi-
cally feasible region. Hence, E0 is (GAS) if R0 < 1.

Theorem 4. The hepatitis B-free equilibrium of system (3) is
(GAS) if R0 < 1 and unstable if otherwise.

Proof. We have to establish that the conditions ðH1Þ and
ðH2Þ hold when R0 < 1. For the uninfected population,

we have

F X, 0ð Þ =
νψ − σ + μð ÞS

0
ν 1 − ψð Þ + σS − μ + ωð ÞV

0
BB@

1
CCA, ð24Þ

and X ∈ℝ3 denotes the infected compartments in the
model (3), and we have

G X, Zð Þ = CZ − Ĝ X, Zð Þ, ð25Þ

where

C =

− λ1 + μð Þ
λ1

0
0

ρS
1 + αC

− μ + d1 + λ2 + ϕ1ð Þ
p3λ2

1 − p3ð Þλ2

ργS
1 + αC

0
− μ + d3 + ϕ2 − νp1ð Þ

0

ρξS

1 + αCð Þ2
0
0

− μ + d2 + ϕ3ð Þ

0
BBBBBBB@

1
CCCCCCCA
:

ð26Þ

Thus,

Ĝ X, Zð Þ =

Ĝ1 X, Zð Þ
Ĝ2 X, Zð Þ
Ĝ3 X, Zð Þ
Ĝ4 X, Zð Þ

0
BBBBBB@

1
CCCCCCA

Á

ρIA S0 −
S

1 + αC

� �
− ργIC S0 −

S
1 + αC

� �
+ ρξC S0 −

S
1 + αC

� �

0

0

0

0
BBBBBBBB@

1
CCCCCCCCA
:

ð27Þ

Therefore, Since S/1 + αC ≤ S0, we have ĜðX, ZÞ ≥ 0.
The global stability of X0 = ðνðσω + μω + μ2ψ + σμψ − σψωÞ
/μðμ + ωÞðσ + μ + ωÞ, 0, 0, 0, 0, 0, νðσ + μÞð1 − ψÞ/μðμ + σ +
ωÞÞ of the system dX/dt = FðX0, 0Þ is easy to verify. Therefore,
X0 is globally asymptotically stable if R0 < 1. This completes
the proof.

3.5. Hepatitis B Model Sensitivity Analysis. In order to deter-
mine how these parameters affect the spread of hepatitis B,
this subsection investigates on how the system (3) parame-
ters affect the basic reproduction numberR0. The sensitivity
index was got by partially differentiating R0 regarding the
model (3) parameters. For example, we develop a formula
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to get the sensitivity index of all the basic parameters in this
work, which is defined as ψ that is ∂R0/∂ψ × ∂ψ/∂R0. The
same applies to all model (3) parameters. The result is pre-
sented in Table 1.

We observe that the parameters ν, ω, ψ, p1, p3, ρ, γ, ξ, and
λ1 have positive sensitive indices; this means that as the
parameter is increased, the basic reproduction numbers RA

0 ,
RH

0 , and RC
0 rise. The remaining parameters, σ, ϕ1, ϕ3, d1,

d2, and λ1, have negative values which implies that RA
0 , R

H
0 ,

and RC
0 decrease for higher values of the parameters.

4. Optimal Control of the Hepatitis B Model

We must determine the best amount of effort that will be
required to control the spread of the disease if the eradica-
tion of hepatitis B virus infection is not workable owing to
economic or social and environmental factors. From
Figure 1, we injected the controls, and we come up with a
changed model as illustrated in Figure 2.

We added control interventions to the system (3) in
order to get

dS
dt

= νψ − νp1IC − νp2R + ωV

−
1 − u1ð Þ ρIA + ργIC + ρξCð ÞS

1 + αC
− σu3 + μð ÞS + λ3R,

dL
dt

= 1 − u1ð Þ ρIA + ργIC + ρξCð ÞS
1 + αC

− λ1 + μð ÞL,

dIA
dt

= λ1L − μ + d1 + λ2 + ϕ1u2ð ÞIA,

dIC
dt

= p3λ2IA − μ + d3 − νp1ð ÞIC ,

dC
dt

= 1 − p3ð Þλ2IA − μ + d2 + ϕ3u2ð ÞC,

dR
dt

= ϕ1IA + ϕ2IC + ϕ3Cð Þu2 − μ + λ3 − νp2ð ÞR,

dV
dt

= ν 1 − ψð Þ + σu3S − μ + ωð ÞV :

ð28Þ

We present the objective functional J for the model with
three (4) control strategies. The controls included are, namely,
vaccination, prevention through condom use, testing, and
treatment. Thus, we will examine the optimal level of effort
needed to control the transmission of the hepatitis B virus at
a minimal cost. This is done bymaximizing the objective func-
tion, which is formulated in line with the derivation of [20].

J uð Þ =
ðt f
0

A1IA + A2IC + A3C + 1
2 B1u

2
1 + B2u

2
2 + B3u

2
3

À Á� �
dt:

ð29Þ

Table 1: Sensitivity indices for the hepatitis B model R0.

Parameter Baseline values Sensitivity index RA
0 Sensitivity index RH

0 Sensitivity index RC
0

ν 0.0121 1 1 1

σ 0.9 -0.9816 -0.9816 -0.9816

ω 0.01 0.9557 0.9557 0.9557

ψ 0.05 0.0335 0.0335 0.0335

p1 0.11 — 1 —

p2 0.1 — — —

p3 0.33 — 1 -0.4925

ρ 0.8-20.49 1 1

γ 0.01 — 1 —

ξ 0.1 — — 1

ϕ1 0.05 -0.0122 -0.0122 -0.0122

ϕ1 0.6 — -0.8897 —

ϕ3 0.98 — — -0.9923

d1 0.04 -0.0098 -0.0098 -0.0098

d2 0.0007 — — 0.0007

d3 0.00054 — -0.0080 —

λ1 6 per year 0.0012 0.0012 0.0012

λ2 4 per year -0.9764 — 0.0237

λ3 0.03-0.06 — — —

α 0.75 — — —
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Given the objective function, where t f is the final time,
the coefficients A1, A2, A3, B1, B2, and B3 are the positive
weights to balance the factors. Our goal in controlling the
transmission of the hepatitis B virus is to minimize the num-
bers of acutely infected individuals IAðtÞ and chronically
infected individuals ICðtÞ and carry CðtÞ, while minimizing
the cost of control of implementing and IAðtÞ representing
vaccination, prevention through condoms use, testing, and
treatment, respectively. Thus, we look for the best possible
control u∗1 , u∗2 , u∗3 such that Jðu∗1 , u∗2 , u∗3 Þ =minu1,u2,u3fJðu1,
u2, u3Þ ∋ u1, u2, u3 ∈Ug, where U represents the set of mea-
surable functions defined from ½0, t f � onto ½0, 1�. The neces-
sary conditions that an optimal control must satisfy were
derived from Pontryagin’s maximum principle [21], and
the following set of differential equations are satisfied by
the existence result for optimal control from the adjoint vari-
able of the state variables. This principle converts the system

(28) into a problem of minimizing point-wise a Hamiltonian
H, regarding ðu1, u2, u3Þ. The Hamiltonian is

H = A1IA + A2IC + A3C + 1
2 B1u

2
1 + B2u

2
2 + B3u

2
3

À Á
+ λS νψ − νp1IC − νp2R + ωV

�

−
1 − u1ð Þ ρIA + ργIC + ρξCð ÞS

1 + αC
− σu3 + μð ÞS + λ3R

�

+ λL
1 − u1ð Þ ρIA + ργIC + ρξCð ÞS

1 + αC
− λ1 + μð ÞL

� �
+ λIA λ1L − μ + d1 + λ2 + ϕ1u2ð ÞIA½ �
+ λIC p3λ2IA − μ + d3 − νp1ð ÞIC½ �
+ λC 1 − p3ð Þλ2IA − μ + d2 + ϕ3u2ð ÞC½ �

𝜇S

v𝜓–vp1IC–vp2R

v(1–𝜓)

(1–p3)𝜆2LA

p3𝜆2IA

𝜙3C

𝜙2IC

𝜙1IA

𝜌SIA
1+𝛼C 1+𝛼C 1+𝛼C

+ +
𝜌𝛾SIC 𝜌𝜉SC

𝜇L

𝜇C

L(t)S(t)

V(t)

R(t) IC(t)

IA(t)

C(t)

d1IA

d2C

d3IC

𝜆1L

𝜆3R
𝜎S

𝜔V

𝜇IA

𝜇IC
vp2R vp1IC𝜇R

𝜇V

Figure 1: Schematic diagram for the model with constant controls.

v𝜓–vp1IC–vp2R

v(1–𝜓)

(1–p3)𝜆2LA

p3𝜆2IA

𝜙3u2C

𝜙3u2IA

𝜇C

L(t)S(t)

V(t)

R(t) IC(t)

IA(t)

C(t)

d1IA

d2C

𝜆1L

𝜆3R𝜎u3S

𝜔V

𝜇V

𝜇S 𝜇L 𝜇IA

1+𝛼C 1+𝛼C 1+𝛼C
+ +

(1–𝜇1)𝜌SIA (1–𝜇1)𝜌𝛾SIC (1–𝜇1)𝜌𝜉SC

𝜇IC
vp2R vp1IC𝜇R

𝜙2u2IC
d3IC

Figure 2: Schematic diagram for the model with vaccination, prevention through condoms use, testing, and treatment as control strategies.
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+ λR ϕ1IA + ϕ2IC + ϕ3Cð Þu2 − μ + λ3 − νp2ð ÞR½ �
+ λV ν 1 − ψð Þ + σu3S − μ + ωð ÞV½ �, ð30Þ

where λS, λL, λIA , λIC , λC , λR, and λV are the costate or adjoint
variables satisfactory.

Theorem 5. Let u∗1 , u
∗
2 , and u∗3 be optimal controls and S, L,

IA, IC , C, R, and V be the solutions of the optimal control
problem ((28) and (29)) that minimize Jðu1, u2, u3Þ over U ,
and then, there are adjoint variables λS, λL, λIA , λIC , λC , λR,
and λV satisfying

−
dλi
dt

= ∂H
∂i

, ð31Þ

where S, L, IA, IC , C, R, and V are the adjoint variables, and
the controls u∗1 , u

∗
2 , and u∗3 obey the optimality conditions.

u∗1 =max 0, min 1, λL − λSð Þ ρIA + ργIC + ρξCð ÞS
1 + αCð ÞB1

� �� �
,

u∗2 =max 0, min 1,
λIA − λR
À Á

ϕ1IA + λIC − λR
À Á

ϕ2IC + λC − λRð Þϕ3C
B2

 !( )
,

u∗3 =max 0, min 1, λS − λVð ÞσS
B3

� �� �
:

ð32Þ

Proof. To get the differentiable equations governing the
adjoint variables, we evaluated the differentiated Hamilto-
nian functional at the optimal control to prove the above-
stated theorem. Hence

dλS
dt

= λS − λLð Þ 1 − u1ð Þ ρIA + ργIC + ρξCð ÞS
1 + αC

� �
+ λS − λVð Þσu3 + λSμ,

dλL
dt

= λL λ1 + μð Þ − λIAλ1,

dλIA
dt

= λS − λLð Þ 1 − u1ð ÞρS
1 + αC

+ λIA − λR
À Á

ϕ1u2

+ λIA − λC
À Á

p3λ2 + λIA μ + d1 + λ2ð Þ − λCλ2 − A1,

dλIC
dt

= λS − λLð Þ 1 − u1ð ÞργS
1 + αC

+ λIA − λR
À Á

ϕ2u2

+ λIC μ + d3 + νp1ð Þ − A2,

dλC
dt

= λC − λRð Þϕ3u2 + λC μ + d2ð Þ − A3,

dλR
dt

= λS νp2 − λ3ð Þ + λR μ + λ3 − νp2ð Þ,

dλV
dt

= λV − λSð Þω + λSλ3 + λVμ:

ð33Þ

With requirements for transversality

λS t f
À Á

= λL t f
À Á

= λIA t f
À Á

= λIC t f
À Á

= λC t f
À Á

= λR t f
À Á

= λV t f
À Á

= 0:È
ð34Þ

Additionally, the optimal functions u∗1 , u
∗
2 , and u∗3 satisfy

∂H
∂u∗i

= 0, i = 1, 2, 3: ð35Þ

Therefore,

u1ð Þ∗ = λL − λSð Þ ρIA + ργIC + ρξC/1 + αCð ÞS
B1

,

u∗2 =
λIA − λR
À Á

ϕ1IA + λIC − λR
À Á

ϕ2IC + λC − λRð Þϕ3C
B2

,

u∗3 =
λS − λVð ÞσS

B3
:

ð36Þ

Under [22], we conclude that the a priori boundedness of
the state system, the adjoint system, is how we could establish
the uniqueness of the optimality system based on standard
control arguments including the bound on the controls (33)
and (34). The length of the time ½0, t f � is constrained in order
to ensure the uniqueness of the optimality system [5].

5. Numerical Simulations

The effects of interventions on the spread of hepatitis B in a
population are examined in this section. The forward and
backward Runge-Kutta scheme is used in [5] to solve the
numerically for the optimal control problems (28) and
(29). To reduce the number of acute, chronic, and carrier
hepatitis B virus infections, we apply the variables and
parameter values in Tables 2 and 3. The initial values of
the variables are given in Table 4. We set the time scale for

Table 2: Hepatitis B model variables.

Variable Description

S tð Þ Susceptible individuals at time t

L tð Þ Latent individuals at time t

IA tð Þ Acute infection individuals at time t

IC tð Þ Chronic infection individuals at time t

C tð Þ Carrier infection individuals at time t

R tð Þ Recovered individuals from hepatitis
B virus infection at time t

V tð Þ Vaccinated individuals at time t

11Abstract and Applied Analysis



fifty years. The results are shown in Figures 3–6 using the
following techniques:

(I) Strategy A. Use of condoms only as a control strat-
egy in the infected population in latent stages of
hepatitis B virus infection

(II) Strategy B. Use of testing and treatment only for
infected individuals in acutely, chronically, and
carrier infection

(III) Strategy C. Use of vaccination only as a control
strategy in susceptible populace and newborn
infants

(IV) Strategy D. Use of condoms and testing and
treatment only as a control strategy in infective
individuals in latent, acute, chronic, and carriers
of hepatitis B virus infection

(IV) Strategy E. Use of condoms and vaccination only in
susceptible, latent, and vaccinated populations of
hepatitis B virus infection

(IV) Strategy F. Use of a combination of testing, treat-
ment, and vaccination in susceptible populations
and treatment only in an infected population with

Table 3: Parameter values and notation for the hepatitis B model.

Parameters Description Values Source

ν Birth rate 0.0121 [15]

μ Natural death rate 0.0069 [15]

σ Vaccination rate 0.9 [16]

ω Vaccination wine rate 0.01 [16]

ϕ Proportional of unvaccinated infant 0.05 [16]

p1 A fraction of new born from recovered 0.11 [17]

p2 A fraction of new born from recovered 0.1 [17]

p3 Progression of acute infected that progresses to chronic infected 0.33 [16]

ρ Transmission rate of hepatitis B virus 0.8-20.49 [18]

γ Modification parameter depicting infectiousness of chronic HB virus 0.01 Assumed

ξ Modification parameter depicting infectiousness of chronic HB virus 0.1 Assumed

ϕ1 Testing and treatment rate of acute infection 0.05 [8]

ϕ2 Testing and treatment rate of chronic infection 0.06 [8]

ϕ3 Testing and treatment rate of carrier infection 0.98 Assumed

d1 Disease-induced death in acute infection 0.04 [8]

d2 Disease-induced death in chronic infection 0.0007 Assumed

d3 Disease-induced death in carrier infection 0.00054 [8]

λ1 Rate of moving from latent to acute infection 6 per year [19]

λ2 Rate at which individual acute infection class 4 per year [19]

λ3 Loss of recovery rate 0.3-0.6 [19]

α Saturated incidence 0.75 Assumed

A1 Weight factor for acute infection 0.01 [1]

A2 Weight factor for chronic infection 0.05 [1]

A3 Weight factor for carrier infection 0.05 [8]

B1 Weight factor for the control u1 2.0 Assumed

B2 Weight factor for the control u2 1.5 [8]

B3 Weight factor for the control u3 2.7 [8]

Table 4: Initial values for the variables.

Initial variables Value Source

S 0ð Þ 0.493 [23]

L 0ð Þ 0.0035 [23]

IA 0ð Þ 0.0035 [23]

IC 0ð Þ 0.007 [23]

C 0ð Þ 0.11 [24]

R 0ð Þ 0.001 Assumed

V 0ð Þ 0.352 Assumed
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Figure 3: Use of condom only.
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Figure 4: Use of testing and treatment of the infected individuals only.
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Figure 5: Use of vaccination only.
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Figure 6: Use of condom+ testing and treatment only.
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acutely, chronically, and carriers of Hepatitis B
virus infection

(IV) Strategy G. Use of condoms, testing and treat-
ment, and vaccination in susceptible individuals
and treatment in an infected population with
acutely, chronically, and carriers of hepatitis B
virus infection

5.1. Strategy A: Use of Condom Only. When condoms are
used ðu1Þ as an individual defense against hepatitis B virus
infection in the population, we describe the simulation of
an optimum control system (28) for strategy A to maximize
the objective functional J , while we set ðu2Þ and ðu3Þ to zero.
Figures 3(a)–3(e) show a significant difference in the
population at various infection levels, with optimal strategy
ðu1 ≠ 0Þ when compared to the population without optimal
strategy control ðu1 = 0Þ. We observed in Figure 3(a) that
because of the control strategy, the number of latently L
infected individuals with HBV decreases, while the popu-
lation increases when there is no control. Similarly,
Figure 3(b) shows a decrease in the presence of control
strategy for acutely IA infected individuals with HBV in
the population, but the uncontrolled population in
Figure 3(b) resulted in increased endemic foci of the dis-
ease. In Figure 3(c), we see that the population of chron-
ically IC infected individuals with HBV also reduced due
to control while the population increases in the absence
of control. In Figure 3(d), the population of carrier indi-
viduals decreases because of the practice of condom use
as a control strategy, while the population continued to
grow in the absence of control. The control profile in
Figure 3(e) revealed that using a condom only as a strat-
egy for preventing HBV infection is at the upper bound
of t f = 50 years before it gradually dropped to the lower
bound. The infection stage of HBV in both the popula-
tion of latently, acutely, and chronically infected and car-
riers yielding the strategy is not the best result when the
condom is only used as a control strategy.

5.2. Strategy B: Use of Testing and Treatment Only. This
strategy shows the simulation of optimal control system
(28) for testing and treatment ðu2Þ; as the only control strat-
egy in the infected population was used to optimize objective
functional J , we set the other controls; u1 is the use of con-
dom and vaccination u3 to zero. This simply means that only
the infected population was considered for testing and treat-
ment. In Figure 4(a), the findings reveal a substantial differ-
ence in acutely infected, chronically, and carrier individuals
with optimal strategy compared to the infected population
with HBV without control. This strategy shows that effective
testing and treatment have a significant impact in reducing
the disease among infected individuals in the population.
Figure 4(b) demonstrates that in the presence of testing
and treatment u2 as a control strategy, the number of
infected individuals in acutely, chronically, and carriers
decreases, and it increases compared to when there is no
control. In Figure 4(c), we noticed that there is a significant
difference in the population of infected HBV when testing

and treatment u2 are used as control strategy compared to
without optimal control. Similarly, in Figure 4(d), the results
revealed that the population of infected carriers (C) reduced
because of testing and treatment and eventually increase
when there is no testing and treatment. This proves that
there is a close connection between the three infectious peo-
ple in the population. In the control profile in Figure 4(e), we
observe that the most effective testing and treatment control
u2 rise and stabilize at the upper bound for t f = 50 years
before progressively declining to the lowest bound.

5.3. Strategy C: Use of Vaccination Only. In strategy C, we
consider vaccination u3 in the population of vaccinated as
the only control strategy to optimize the objective functional
J , and we set condom use u1 and testing and treatment u2 of
infected individuals to zero. Figure 5(a) shows that when
there is control, the number of HBV-infected people
decreases to the minimal level as compared with the number
of infected individuals when control is absent. The number
of acutely IA infected individuals with HBV in Figure 5(b)
reduces because of vaccination of the infected population,
and the population increases in the absence of control strat-
egy. In Figure 5(c), the number of chronically IC infected
individuals with HBV decreases because of optimal strategy
in the population, while the number increases in the absence
of optimal control strategy. The population of carriers
infected with HBV in Figure 5(d) decreases with optimal
strategy while it increases in the absence of a control strat-
egy. The control profile in Figure 5(e) rises at an upper
bound of t f = 50 years’ time before gradually dropping to
the lower bound.

5.4. Strategy D: Use of Condom+Testing and Treatment
Only. Condom use is presented in strategy D as ðu1Þ and
testing and treatment ðu2Þ in infected population to opti-
mize the objective functional J while setting the vaccination
u3 in susceptible population to zero. We observed in
Figures 6(a)–6(c) that, because of the control strategies, the
number of latently ðLÞ, acutely ðIAÞ, and chronically ðICÞ
infected individuals with HBV decreases as against the
increase in the uncontrolled case. Similar decrease in
Figure 6(d) is observed for the carrier-infected population
with HBV in the control strategy, while an increased number
is observed when there is no control. In Figure 6(e), the con-
trol profile, on the control, is at the upper bound for a max-
imum time t f = 10 years and drops gradually until it reaches
the lower bound, while control on testing and treatment u2
started from the lower bound, reaches the maximum (upper
bound), and remain there for t f = 16 years before it drops
gradually falling to the lower bound.

5.5. Strategy E: Use of Condom+Vaccination Only. Strategy
E presents the use of condom as the control ðu1Þ and vacci-
nation ðu3Þ on the infected population to improve the func-
tional objectives J , while setting the testing and treatment
ðu2Þ of the infected population to zero. In Figures 7(a)–
7(c), the population of infected individuals with HBV also
decreases in the presence of control u1 and u3 whereas the
number of infected individuals increases when there is no
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Figure 7: Use of condom+ vaccination only.
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Figure 8: Testing and treatment + vaccination only.
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optimal strategy. Figure 7(d) describes a scenario where the
population of infected individuals decreases because of the
presence of control ðu1, u3Þ, and it increases when the
control strategy is totally absent. In contrast to the control
profile in Figure 7(e), it shows that the control ðu1Þ is
reached at the upper bound t f = 16 years before dropping
to lower bound, while the vaccination ðu3Þ is at lower bound
t f = 1:7 years moved to the upper bound before coming back
to lower bound again (in a graph which line is a vaccinated).

5.6. Strategy F: Testing and Treatment +Vaccination Only. In
this strategy, the testing and treatment of infected individ-
uals u2 and vaccination of susceptible individuals u3 and
the objective functional J are optimized through controls,
while setting the control u1 to zero. Figures 8(a)–8(c) dem-
onstrate a substantial difference in the infected population
with latently L, acutely IA, and chronically IC hepatitis B
virus with optimal control strategy compared to the number
of infected individuals when there is no control. Figure 8(d)
shows that the control measures resulted in a drop in the
number of infected individuals, but the number of infected
persons increased in the absence of control. The control pro-
file in Figure 8(e) shows that the optimal control on testing
and treatment u2 is at the upper bound t f = 12:5 years
before it drops to the lower bound, whereas control u3
rises to the higher bound before it gradually fall to lower
bound t f = 5 years.

5.7. Strategy G: Use of Condom+Testing and Treatment +
Vaccination. In strategy G, we present the use of condoms,
testing and treatment of infected individuals, and vaccina-
tion; we considered all three (4) controls ðu1, u2, u3Þ in opti-
mizing the objective functional J . Compared to the situation
without control, the number of people infected with the
hepatitis B virus significantly decreased because of the con-
trol techniques, as shown in Figures 9(a)–9(c). We discov-
ered that, in contrast to the infected population without an
optimal strategy, Figure 9(d) demonstrates that the number
of infected populations with carriers ðCÞ falls due to control
ðu1, u2, u3Þ.

We observed in Figures 9(a)–9(c) that the number of
people with hepatitis B virus infection significantly
decreased because of the control techniques, in contrast to
a situation where there is no control. We also noticed that
Figure 9(d) demonstrates that the prevalence of infected
people who are also carriers ðCÞ decreases due to control
ðu1, u2, u3Þ as compared to the infected population without
an optimal strategy. The control profile in Figure 9(e) on
control u1 rises to the upper bound t f = 0:1 year before
it gradually drops to the lower bound t f = 2 years’ time,
and the control u2 began from the lower bound and esca-
lated to the upper bound in t f = 10:5 years while the con-
trol u3 is at the upper bound before it gradually drop to
the lower bound. It simply depicts how the transmission
of HBV might be decreased or eliminated in the shortest
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Figure 9: Use of condom+ testing and treatment + vaccination.
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workable time if an ideal method was used on the popula-
tion of infected classes. Using a condom, testing and treat-
ment, and vaccination strategy appeared to be the most
effective strategy, as was observed from the graphs.

6. Conclusion

In this research, we proposed an S − L − IA − IC − C − R −V
model with three control intervention strategies, which is a
changed version of the work of Vahindian, Akbari, and
Heydari (2014). In the analytical solution, we considered
the control parameters to be constant. The positivity of the
solution was proven to be positive, and both mathematically
and epidemiologically, the system of nonlinear differential
equations was well-posed. Using the next-generation
method, we could get the basic reproduction number. The
disease-free and endemic equilibrium was established. The
disease-free is locally asymptotically stable when R0 < 1
and unstable if R0 > 1. The global stability of the disease-
free is proved globally asymptotically stable when the associ-
ated reproduction number R0 < 1. In a stable equilibrium,
the disease will entirely die out, whereas in an unstable equi-
librium, it will persist and become endemic. We investigated
the optimal level required to put down the spread of the hep-
atitis B virus infection in a population using Pontryagin’s
maximum principle. Numerical results show the best strat-
egy for control of the combination of the use of a condom
for prevention and testing and treatment and vaccination.

As future work, we have broadened the number of com-
partments that make up our field of study of the hepatitis B
virus disease (HBV). Thus, we plan to consider the economic
aspect to understand this disease.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

No competing interest is hereby declared by the authors.

Authors’ Contributions

The development and simulation of the model were done
by Abdulfatai, Atte Momoh. Model analysis, discussion
of results, and typesetting were implemented by Audu
Abubakar. All authors approved the final manuscript.

Acknowledgments

The authors acknowledged the facilities provided by Mod-
ibbo Adama University, Yola, Nigeria, and Tertiary Educa-
tion Trust Fund.

References

[1] WHO, Hepatitis B, 2020, July 2020, https://www.who.int/
news-room/fact-sheets/detail/hepatitis-b.

[2] W. H. Gerlich, “Medical virology of hepatitis B: how it began
and where we are now,” Virology Journal, vol. 10, no. 1,
p. 239, 2013.

[3] P. Van Damme et al., “Hepatitis B vaccines,” in In Vaccines, S.
A. Plotkin andW. A. Orenstein, Eds., Elsevier Sanders, 6th edi-
tion, 2017.

[4] WHO, WHO, Hepatitis B Fact Sheet No. 204, The World
Health Organisation, Geneva, Switzerland, 2017, 2000,
http://www.who.int/mediacentre/factsheets/fs204/en/.

[5] A. A. Momoh, Y. Bala, D. J. Washachi, and D. Déthié,
“Mathematical analysis and optimal control interventions for
sex structured syphilis model with three stages of infection
and loss of immunity,” Advances in Difference Equations,
vol. 2021, no. 1, 2021.

[6] R. S. Garfein, D. Vlahov, N. Galai, M. C. Doherty, and K. E.
Nelson, “Viral infections in short-term injection drug users:
the prevalence of the hepatitis C, hepatitis B, human immuno-
deficiency, and human T-lymphotropic viruses,” American
Journal of Public Health, vol. 86, no. 5, pp. 655–661, 1996.

[7] O. S. Levine, D. Vlahov, and K. E. Nelson, “Epidemiology of
hepatitis B virus infections among injecting drug users: sero-
prevalence, risk factors, and viral interactions,” Epidemiologic
Reviews, vol. 16, no. 2, pp. 418–436, 1994.

[8] T. Khan, G. Zaman, and M. I. Chohan, “The transmission
dynamic and optimal control of acute and chronic hepatitis B,”
Journal of Biological Dynamics, vol. 11, no. 1, pp. 172–189, 2017.

[9] A. Din, Y. Li, F. M. Khan, Z. U. Khan, and P. Liu, “On
analysis of fractional order mathematical model of hepatitis
B using Atangana–Baleanu Caputo (ABC) derivative,” Frac-
tals, vol. 30, no. 1, article 2240017, 2022.

[10] A. Din, Y. Li, A. Yusuf, and A. I. Ali, “Caputo type fractional
operator applied to Hepatitis B system,” Fractals, vol. 30,
no. 1, p. 2240023, 2022.

[11] A. Din, Y. Li, and Q. Liu, “Viral dynamics and control of
hepatitis B virus (HBV) using an epidemic model,” Alexandria
Engineering Journal, vol. 59, no. 2, pp. 667–679, 2020.

[12] A. Din and Y. Li, “Stationary distribution extinction and
optimal control for the stochastic hepatitis B epidemic model
with partial immunity,” Physica Scripta, vol. 96, no. 7, article
074005, 2021.

[13] P. Van den Driessche and J. Watmough, “Reproduction num-
bers and sub-threshold endemic equilibria for compartmental
models of disease transmission,” Mathematical Biosciences,
vol. 180, no. 1-2, pp. 29–48, 2002.

[14] C. Castillo-Chavez, Z. Feng, and W. Huang, On the computa-
tion of R0 and its role on global stability, Institute for mathe-
matics and its applications, 2002.

[15] J. Zhang and S. Zhang, “Application and optimal control for
an HBV model with vaccination and treatment,” Discrete
Dynamics in Nature and Society, vol. 2018, Article ID
2076983, 13 pages, 2018.

[16] T. Khan and G. Zaman, “Classification of different hepatitis B
infected individuals with saturated incidence rate,” Springer-
plus, vol. 5, no. 1, p. 1082, 2016.

[17] S. Bhattacharyya and S. Ghosh, “Optimal control of vertically
transmitted disease: an integrated approach,” Computational
and Mathematical Methods in Medicine, vol. 11, no. 4,
pp. 369–387, 2010.

[18] J. Pang, J.-A. Cui, and X. Zhou, “Dynamical behavior of a hep-
atitis B virus transmission model with vaccination,” Journal of
Theoretical Biology, vol. 265, no. 4, pp. 572–578, 2010.

18 Abstract and Applied Analysis

https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
https://www.who.int/news-room/fact-sheets/detail/hepatitis-b
http://www.who.int/mediacentre/factsheets/fs204/en/


[19] L. Zou, W. Zhang, and S. Ruan, “Modeling the transmission
dynamics and control of hepatitis B virus in China,” Journal
of Theoretical Biology, vol. 262, no. 2, pp. 330–338, 2010.

[20] S. M. Lenhart and J. T. Workman, Optimal Control Applied to
Biological Model, CRC Press, New York, 2007.

[21] L. S. Pontryaggin, V. G. Boltryanskii, R. V. Gamkrelidze, and
E. F. Mishchenco, Mathematical Theory of Optimal Process,
vol. 4, Gordon and Breach Science, New York, 1986.

[22] M. Michael, M. Libin, and H. Weimin, “Convergence of the
forward-backward sweep method in optimal control,” Compu-
tational Optimization and Applications, vol. 53, no. 1, pp. 207–
226, 2012.

[23] G. F. Medley, N. A. Lindop, W. J. Edmunds, and D. J. Nokes,
“Hepatitis-B virus endemicity: heterogeneity, catastrophic
dynamics and control,” Nature Medicine, vol. 7, no. 5,
pp. 619–624, 2001.

[24] S. Zhang and Y. Zhou, “The analysis and application of an
HBV model,” Applied Mathematical Modelling, vol. 36, no. 3,
pp. 1302–1312, 2012.

19Abstract and Applied Analysis


	On the Optimal Control of Intervention Strategies for Hepatitis B Model
	1. Introduction
	2. Formulation of Hepatitis B Model
	2.1. Basic Properties

	3. The Hepatitis B Model Analysis
	3.1. Equilibrium Points
	3.2. Basic Reproduction Number
	3.3. Local Stability of the Hepatitis B Disease-Free Equilibrium
	3.4. Global Asymptotic Stability for Hepatitis B
	3.5. Hepatitis B Model Sensitivity Analysis

	4. Optimal Control of the Hepatitis B Model
	5. Numerical Simulations
	5.1. Strategy A: Use of Condom Only
	5.2. Strategy B: Use of Testing and Treatment Only
	5.3. Strategy C: Use of Vaccination Only
	5.4. Strategy D: Use of Condom&thinsp;+&thinsp;Testing and Treatment Only
	5.5. Strategy E: Use of Condom&thinsp;+&thinsp;Vaccination Only
	5.6. Strategy F: Testing and Treatment&thinsp;+&thinsp;Vaccination Only
	5.7. Strategy G: Use of Condom&thinsp;+&thinsp;Testing and Treatment&thinsp;+&thinsp;Vaccination

	6. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments



