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Abstract: A concentric circle target is commonly used in the vision measurement system for its
detection accuracy and robustness. To enhance the camera calibration accuracy, this paper proposes
an improved calibration method that utilizes concentric circle grids as the calibration target. The
method involves accurately locating the imaged center and optimizing camera parameters. The
imaged concentric circle center obtained by cross-ratio invariance is not affected by perspective
projection, which ensures the location accuracy of the feature point. Subsequently, the impact of
lens distortion on camera calibration is comprehensively investigated. The sub-pixel coordinates of
imaged centers are taken into the iterative calibration method, and camera parameters are updated.
Through simulations and real experiments, the proposed method effectively reduces the residual
error and improves the accuracy of camera parameters.

Keywords: concentric circle; cross-ratio invariance; iterative camera calibration; lens distortion

1. Introduction

Camera calibration is a crucial technology in the fields of vision measurement [1–5],
robot navigation [6–11], and 3D reconstruction [12–16]. To acquire precise measurement
information, the accurate estimation of camera parameters is essential. Camera calibration
parameters include intrinsic parameters and extrinsic parameters. Intrinsic parameters
include main point coordinates, effective focal length, and distortion parameters, which
represent the characteristics of the camera. Extrinsic parameters include the translation
vector and rotation matrix, which represent the relative position relationship between the
world coordinate system and the camera coordinate system. Schemes for calibration can
be classified into two categories: self-calibration [17,18] and target-based calibration. Self-
calibration methods obtain the camera parameters by establishing multivariate equations
of corresponding feature points from different viewpoints. These methods are flexible and
do not require calibration targets. However, they are only effective in well-textured scenes.
Moreover, in scenarios where the camera motion constraint is absent, the self-calibration
method is has been proven to be inadequate for engineering applications. Additionally, this
approach can hardly achieve the precise sub-pixel extraction of feature points in calibration
images. On the contrary, the target-based calibration method can yield reliable calibration
results and can be applied to various scenes.

Calibration targets can be divided into the following three categories: 1D targets [19–
21], 2D targets [22–24], and 3D targets [25,26]. The 1D target consists of several collinear
points. Due to the ease of capturing feature points on the target using multiple cameras
simultaneously, it is commonly used in multi-camera calibration. However, the 1D target
lacks strong spatial geometric constraints, resulting in low calibration accuracy. Traditional
3D targets typically consist of two or three orthogonal planes, which aid in achieving higher
calibration accuracy. However, designing such targets may be challenging and expensive.
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Especially in the case of some large measurement scenes, this calibration method is more
restricted by space. The sphere is used as a simple 3D target due to its strong contour
continuity, which helps compensate for distortion caused by large viewing angles [27]. It is
important to note that the size and distance of the sphere significantly affect calibration
results. Additionally, there are only a few feature points involved in the calibration process.
Compared to 1D and 3D targets, designing a 2D target is relatively easier. This is because
calibration patterns can be printed on a planar board, allowing for the easy manufacturing
of high-precision targets.

Zhang’s chessboard calibration method [28] is considered one of the most representa-
tive 2D target-based calibration methods. This approach realizes the conversion between
the world coordinate system and the image coordinate system by extracting Harris cor-
ners from chessboard images. The initial values of the camera parameters are obtained
using a linear model. Subsequently, the reprojection error function is established, and the
Levenberg–Marquardt algorithm is utilized for optimization. However, the detection accu-
racy of chessboard corner points is easily affected by image noise, distortion, and resolution.
On the other hand, circular feature points offer the advantages of easy recognition and
noise resistance, making them commonly employed in camera calibration and measure-
ment [29–34]. In perspective projection, a circle is imaged as an ellipse. The projection of
the space of the circle center does not coincide with the ellipse center. To address this issue,
many methods have been investigated to accurately locate the imaged circle center. Jiang
et al. [35] introduced a novel constructive geometric method for estimating the imaged
center and optimizing it using homological constraints. The method iteratively finds the
solutions without any parameter information. Nevertheless, it is important to verify the
efficiency and stability of this method. Based on the characteristics of tangent lines and
the Hough transform, Ying et al. [36] utilized four tangent lines of the concentric circle
to determine a straight line, where the projected center is located on this line. By finding
several straight lines, the intersection point of these lines can be identified as the projected
center. In [37], the imaged circle center and the vanishing line were recovered by exploring
the properties of the common self-polar triangle of concentric circles. But this method
requires calculating the inversion and eigenvectors of the matrix. Kim et al. [38] investi-
gated the geometric and algebraic constraints associated with the projected concentric circle.
They introduced a rank-1 constraint to determine the center by solving a quartic equation.
However, this approach may lead to numerical instability. And Zhang et al. [39] formulated
the solution of the imaged circle center into a first-order polynomial eigenvalue problem
by considering the pole–polar relationship based on the concentric circle. Compared with
the previous work of Jiang, this technique reduces computation complexity. To minimize
the perspective projection error, Shao et al. [40] confirmed the position of the imaged circle
center by computing the eigenvectors of the concentric circle projection matrix.

The aforementioned research address the problem of center deviation of circular
feature points in the linear perspective projection. However, due to lens distortion, the
reprojection error function established in calibration is nonlinear [41,42]. Thus, it is crucial
to consider the influence of lens distortion on calibration accuracy. Hartley [43] proposed a
calibration method that takes into account radial distortion, which is rapid and not affected
by the local minimum problem. While the radial component of lens distortion is dominant,
it is also coupled with the tangential component, and thus both should be considered.
Ricolfe-Viala [44] corrected the images and calculated the lens distortion separately from
the intrinsic and extrinsic parameters of the camera. However, this algorithm is more
complex. Yang et al. [41] discussed the impact of lens distortion and presented a robust
geometric camera calibration method. The objective of compensation is to reduce the
distance between the model and the actual position by adjusting all camera parameters.
Zhao et al. [41] analyzed lens distortion in camera imaging and designed a template that
consists of a line through the center of the concentric circle. Orthogonal vanishing points
were utilized to solve the camera’s intrinsic parameters. Additionally, they optimized
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the positions of the distortion points to approach the ideal points, thereby enhancing the
accuracy of camera calibration.

In the circle grids target-based calibration method, two sources affect the accuracy
of camera calibration, namely the high-precision location of the circle center and the
optimization of camera parameters. To address the above limitations, this paper proposes
an improved camera calibration method that combines a concentric circle center location
algorithm and an iterative compensation algorithm for the calibration parameters. The
imaged concentric circle center obtained by cross-ratio invariance is not affected by the
perspective projection, which ensures the location accuracy of the feature point. In addition,
to achieve higher calibration accuracy, an iterative compensation framework is developed
to refine the calibration results.

The remainder of this paper is organized as follows. Section 2 presents the concentric
circle center location method, which is based on the invariance of the cross-ratio, and
introduces a novel iterative approach for camera calibration that takes into account the
influence of lens distortion. To validate the robustness and effectiveness of the method,
simulations and practical experiments are conducted, as presented in Section 3. Section 4
discusses the differences and improvements of the proposed method. Finally, Section 5
gives the conclusion.

2. Materials and Methods
2.1. Concentric Circle Center Location Method Based on Cross-Ratio Invariance

The pinhole camera model is the most commonly used in computer vision, as shown in
Figure 1. The relationship between the space point Pw(xw, yw, zw) in the world coordinate
system and the projection point Pu(u, v) on the image plane can be expressed as follows [28]:

s

u
v
1

 = K
[
R T

]
xw
yw
zw
1

 =

 fu 0 u0 0
0 fv v0 0
0 0 1 0

[R T
0 1

]
xw
yw
zw
1

. (1)

where, s is a scale factor; K is the intrinsic parameter matrix of the camera; fu, fv denote
the focal length coordinate of the camera; (u0, v0) is the principal point coordinate of the
camera; and R and T respectively represent a 3× 3 rotation matrix and a 3× 1 translation
vector between the world coordinate system and the camera coordinate system.
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The coordinate of the feature point on the planar calibration target zw = 0, let us use ri
to denote the i-th column of the rotation matrix R. According to Equation (1), we have:

s

u
v
1

 = K
[
r1 r2 r3 T

]
xw
yw
0
1

 = K
[
r1 r2 T

]xw
yw
1

. (2)

Therefore, Equation (2) can be expressed as:

s

u
v
1

 = H

xw
yw
1

 =

h11 h12 h13
h21 h22 h23
h31 h32 h33

−1xw
yw
1

. (3)

where, H is a homography matrix, H = K
[
r1 r2 T

]
.

On the planar target, let the circle center be at the origin of the world coordinate
system and r be the radius. Then, the circle can be represented in the matrix form as:

C =

1 0 0
0 1 0
0 0 −r2

 (4)

In the perspective projection, the circle is imaged into an ellipse, we have:

sE = H−TCH−1. (5)

where, E =

 A C/2 D/2
C/2 B E/2
D/2 E/2 F

 is the conic coefficient matrix of the ellipse.

According to Equations (3)–(5), the parameters of the conic coefficient matrix can
be obtained:

A = h11
2 + h21

2 − h31
2r2

B = h12
2 + h22

2 − h32
2r2

C = 2
(
h11h12 + h21h22 − h31h32r2)

D = 2
(
h11h13 + h21h23 − h31h33r2)

E = 2
(
h12h13 + h22h23 − h32h33r2)

F = h13
2 + h23

2 − h33
2r2

(6)

And the ellipse center
(
ex, ey

)
is:

ex = (CE− 2BD)/
(
4AB− C2) = (

m1r2 + n1
)
/
(
mr2 + n

)
ey = (CD− 2AE)/

(
4AB− C2) = (

m2r2 + n2
)
/
(
mr2 + n

) . (7)

The factors m, m1, m2, n, n1, n2 can be calculated with the parameters in the homogra-
phy matrix H. When r is set to 0, let

(
cx, cy

)
be the imaged circle center. The slope k of the

straight line determined by
(
ex, ey

)
and

(
cx, cy

)
can be calculated as follows:

k =
ey − cy

ex − cx
=

m2n− n2m
m1n− n1m

(8)

In Equation (8), k is a constant that is not related to the radii of the circle. There-
fore, the centers of the ellipses projected by concentric circles and the imaged centers are
collinear points.

Figure 2 shows a concentric circle feature point and the projection on the image
plane.Pe1

u , Pe2
u represent the centers of two ellipses, and Pu is the projection of the concen-
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tric circle center Pw. A line lu is established connecting Pu, Pe1
u , Pe2

u , and this line inter-
sects both ellipses at four different points P1

u, P2
u, P3

u, and P4
u. Based on the characteristics

of projective geometry, there is a line lw that passes through Pw and intersects the con-
centric circle at four points P1

w, P2
w, P3

w, and P4
w.P∞

w is the vanishing point on the line lw.
Additionally,P1

w, P2
w, P3

w, P4
w, P∞

w demonstrate the perspective projection relationship with
P1

u, P2
u, P3

u, P4
u, P∞

u .
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In Equation (10), P1
u, P2

u, P3
u, P4

u can be obtained by solving equations of the line and
ellipses, and Pu is the imaged center. We choose the point that lies inside the concentric
circle as the imaged center. In the perspective projection, when the image plane and the
circle target plane are not parallel, a circle is imaged as an ellipse. There is a deviation
between the ellipse center and the projection of the circle center, which is called the
eccentricity error. The eccentricity error is only related to the angle between the image
plane and the target plane. Figure 3 shows the mathematical model of the concentric
circle; rin, rout are the radius of the concentric circle; err =

∥∥Pu − Pe1
u
∥∥ is the eccentricity

error of the concentric circle.
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The process of locating the imaged center of a concentric circle can be summarized in
the following steps:

(I) Apply the sub-pixel edge detection algorithm to fit the projection conics and estimate
the coefficient matrices.

Traditional edge detection methods include the Roberts operator, Laplace operator,
Prewitt operator, and Canny operator. These methods can only locate to the pixel level
and cannot meet the requirements of accurate location. To meet the high precision location
requirements of the camera calibration system, we use a Canny–Zernike algorithm to
detect the edge points. Firstly, the Canny operator is used to preliminarily locate the edge
points. Then, the Zernike moment algorithm is applied in sub-pixel edge extraction which
improves the location accuracy. The centers and coefficient matrices of ellipses are obtained
using the direct least square method.

(II) Identify the intersection points between the line that traverses the ellipses’ centers
and the two ellipses.

Because the centers of the ellipses projected by concentric circles and the imaged
centers are collinear points, we connect the two ellipses centers to establish a straight
line. By combining the line equation and the projection conic equations, we obtain four
intersection points.

(III) Solve the location of the imaged center according to Equation (10).

Using the principle of harmonic conjugated points and the cross-ratio invariance, the
solution for the imaged center is determined.

2.2. Iterative Camera Calibration Algorithm Considering Lens Distortion

In camera calibration, the existence of lens distortion leads to the projection of a
circle as a distorted ellipse, rather than a true ellipse. The center of the distorted ellipse,
determined by fitting the boundary points with an ellipse, may vary from the center of the
perspective ellipse. As shown in Figure 4, the distorted ellipse differs significantly from the
perspective ellipse. Consequently, Pu does not coincide with the actual projection P̂u of the
concentric circle center.
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The distorted image coordinate of the feature point on the normalized plane can be
expressed as: {

xd = xc + xc
(
k1r2

c + k2r4
c
)
+ 2P1xcyc + P2

(
r2

c + 2x2
c
)

yd = yc + yc
(
k1r2

c + k2r4
c
)
+ P1

(
r2

c + 2y2
c
)
+ 2P2xcyc

(11)

where (xc, yc) are the undistorted image coordinate of the feature point; k1, k2 are the radial
distortion coefficients; P1, P2 are the tangential distortion coefficients; r2

c = x2
c + y2

c is the
distance between the image point and the principal point.
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(xc, yc) can be calculated using:

λ

xc
yc
1

 =
[
R T

]
xw
yw
zw
1

 (12)

Then, the real camera model can be expressed by:u
v
1

 = K

xd
yd
1

. (13)

The Zhang calibration method involves obtaining the camera parameters through the
minimization of the reprojection constraint:

J =
n

∑
i=1

m

∑
j=1

∥∥∥Puij − P′uij
(K, D, Ri, Ti, Pwi )

∥∥∥2
. (14)

where Puij is the imaged center of the j-th feature point on the i-th calibration image,
i = 1, 2, . . . , n, j = 1, 2, . . . , m; P′uij

(K, D, Ri, Ti, Pwi ) is the projection of the concentric circle
center Pwi ; and D represents the distortion coefficients.

The intrinsic and extrinsic parameters of the camera are first obtained by calculating
the homography matrix H of several calibration images and the Levenberg–Marquardt
optimization algorithm is used to solve Equation (14).

This section presents a method for iteratively adjusting the calibration parameters.
Give the radius rin, rout and the center Pwi of the concentric circle. The calibration consists
of the following steps:

Step 1: Calculate the imaged concentric circle center Puij and by Equation (10) and
exploit the correspondence between Puij and Pwi . According to the Zhang calibration

method [28], the initial camera parameters K(0), D(0) are determined.
Step 2: Select k uniformly distributed points on each circle and calculate the

projection points.
Step 3: Fit the ellipse by using the projection points that belong to the same circle and

obtain the fitted concentric circle center
(

u f
ij, v f

ij

)
according to Equation (10). Meanwhile,

the projection imaged center
(

uP
ij, vP

ij

)
of Pwi is calculated using Equations (11)–(13).

Step 4: Calculate the position deviation
(
∆uij, ∆vij

)
between

(
u f

ij, v f
ij

)
and

(
uP

ij, vP
ij

)
,

and compensate for Puij .
Step 5: Update the calibration values K, D using the optimized feature points

P̂uij

(
ûij, v̂ij

)
.

Step 6: Continue performing Steps 2 to 5 repeatedly until the difference ∆ between the
two consecutive iterations is smaller than the threshold or the number of iterations reaches
the maximum limit. In the iterative camera calibration algorithm, the position deviation
threshold is set to 0.02 pixels and the maximum number of iterations is set to 10.

In Algorithm 1 (Pseudocode of the iterative camera calibration algorithm), we as-
sume that there are n calibration images with m feature points on each calibration image.
Camera_calibration function means the Zhang calibration method; Calculate_deviation
function means the position deviation.
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Algorithm 1. Iterative camera calibration

Input: Puij

(
uij, vij

)
, Pwi (xwi, ywi), rin, rout

Output: K, D
1:

(
K(0), D(0)

)
= Camera_calibration

((
uij, vij

)
, (xwi, ywi)

)
2: t← 0,

(
∆u0

ij, ∆v0
ij

)
← 0, i = 1, 2, . . . , m, j = 1, 2, . . . , n

3: repeat
4:

(
∆u(t+1)

ij , ∆v(t+1)
ij

)
= Calculate_deviation

(
K(t), D(t), (xwi, ywi), rin, rout

)
5:

(
ûij, v̂ij

)
=

(
uij, vij

)
+

(
∆u(t+1)

ij , ∆v(t+1)
ij

)
6:

(
K(t+1), D(t+1)

)
= Camera_calibration

((
ûij, v̂ij

)
, (xwi, ywi)

)
7: ∆ = max

(∥∥∥(∆u(t+1)
ij , ∆v(t+1)

ij

)
−

(
∆u(t)

ij , ∆v(t)ij

)∥∥∥)
8: t = t + 1
9: until ∆ < threshold or t > limit

return K, D

Figure 5 shows the flow chart of the iterative camera calibration method in this
paper. Firstly, we fit the projection conics of the ellipses and the line that traverses the
ellipses’ centers. By combining the line equation and the projection conic equations,
four intersection points are calculated. Then, according to the cross-ratio invariance of
collinear points, the location of the imaged centers is obtained. Furthermore, based on
the Zhang calibration method, the initial camera parameters are determined. Ultimately,
we calculate the position deviation and compensate for the imaged center to update the
calibration values repeatedly.
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In this paper, we use the concentric circle grid as the calibration target, which provides
more constraints for the center location. Compared to previous research, this paper makes
the following contributions. Firstly, an imaged center compensation method for concentric
circles is proposed which provides a detailed description of calculating position deviation
under lens distortion. Secondly, a generalized compensation framework is proposed which
can refine the calibration results.
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3. Experimental Results and Analysis

In this section, the advantages of the concentric circle center location method and the
iterative camera calibration method are verified by simulations and actual experiments.

3.1. Synthetic Experiments

We first tested the effect of the deflection angle between the object plane and the im-
age plane on circle center location accuracy. The camera settings were u0 = 1045 pixels,
v0 = 1010 pixels, fu = 1507 pixels, and fv = 1507 pixels, and the radii of the simulation
concentric circle feature point were 10mm and 20mm. The pitch angle θx , yaw angle θy
and rotation angle θz represented the object plane deflections within the range of −1 rad
to 1 rad along the x-axis, y-axis, and z-axis of the camera coordinate system, and the
step was 0.1 rad. The translation vector T was set to [0, 0, 1500]T and the rotation matrix
R was calculated using θx , θy, and θz. After selecting 10 points on each circle, based
on the camera model, the projection points were calculated, which were used to fit the
projection conics. Therefore, the boundary points and the fitted ellipses in the simulation
images were obtained. The program was implemented in Python. The residual error
between the calculated projection and the real projection of the circle center was used
as the evaluation criteria to evaluate the accuracy of the location method. Figure 6a,
Figure 7a, and Figure 8 show the residual error in the u and v directions by using the
conventional method [34] and the proposed method.
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Figure 6. Effect of pitch angle on location accuracy. (a) The conventional and the proposed method;
(b) enlarged view of the proposed method.
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Figure 7. Effect of yaw angle on location accuracy. (a) The conventional and the proposed method;
(b) enlarge view of the proposed method.
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Figure 8. Effect of rotation angle on location accuracy.

As indicated in Figures 6a and 7a, the conventional method is greatly affected by the
deflection angles of the object plane around the x-axis, y-axis, and the maximum residual
error can reach 0.39 pixels and 0.45 pixels, respectively. Figures 6b and 7b present the
residual error of the proposed method. They are independent of the deflection angle. In
Figure 8, the influence of the deflection angle around the z-axis on the two methods can
be ignored.

Subsequently, the rotation angles were all set to 1 rad. The simulated image was
subjected to the addition of Gaussian noise with a mean of zero and a standard deviation
that σ varies between 0 and 2 pixels. The final result was obtained by taking the average
error from 100 independent experiments conducted for each noise level.

As we can see from Figure 9, the location accuracy of the two methods decreases
with the increase in image noise. Compared with the conventional method, the proposed
method can ensure the center location accuracy under a large rotation angle and high image
noise, and the residual error of the proposed method is always less than 0.26 pixels.
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Figure 9. Effect of Gaussian noise on location accuracy.

Then, a concentric circle planar calibration target was generated. The camera pa-
rameters were kept unchanged, and the lens distortion was set at k1 = −0.1, k2 = 0.08,
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P1 = −0.0005, P2 = −0.0005 as a slight distortion and at k1 = −0.4, k2 = 0.3, P1 = −0.002,
P2 = −0.002 as a heavy distortion. We simulated the calibration images under the same
poses and Gaussian noise. On this basis, the Zhang method, the conventional method, and
the proposed method were compared. The calibration results are listed in Tables 1 and 2.
The proposed method does not exhibit a noticeable improvement effect in the presence of
slight lens distortion. As the lens distortion becomes heavier, the result achieved using the
proposed approach becomes more accurate.

Table 1. Results of calibration using various methods in the presence of slight lens distortion(pixel).

Parameter Ground Truth Zhang Conventional Proposed

fx 1507 1506.989 1506.9983 1507
fy 1507 1506.9889 1506.9952 1507
u0 1045 1044.9253 1044.9268 1045.014
v0 1010 1010.1394 1010.1385 1010.0848
k1 −0.1 −0.0998 −0.1001 −0.1
k2 0.08 0.0749 0.0823 0.08
P1 −0.0005 −0.0005 −0.0005 −0.0005
P2 −0.0005 −0.0005 −0.0005 −0.0005

Table 2. Results of calibration using various methods in the presence of heavy lens distortion(pixel).

Parameter Ground Truth Zhang Conventional Proposed

fx 1507 1507.0557 1507.0552 1507
fy 1507 1507.0402 1507.0396 1507
u0 1045 1044.932 1044.9329 1044.9838
v0 1010 1010.2373 1010.2359 1010.1539
k1 −0.4 −0.3993 −0.4005 −0.4
k2 0.3 0.2815 0.3079 0.3
P1 −0.002 −0.002 −0.002 −0.002
P2 −0.002 −0.002 −0.002 −0.002

3.2. Experiments with Real Images

To verify the accuracy of the circle center location method, a real template was de-
signed, as shown in Figure 10. We show the center location results and the enlarged view.
A ‘+’ sign represents the center of the concentric circle feature point on the plane, with
radii measuring 10 mm and 20 mm. The camera and the template were separated by a
distance of 1500 mm, and the rotation angle was roughly 1 rad. Real images were taken
using a 4M140MCX camera with a resolution of 2048× 2048 pixels, the pixel size was
dx = dy = 5.5 µm, and the focal length was f = 12.5 mm.
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In Figure 10, the conventional method is represented by the green ‘+’ for the obtained
imaged center, while the red ‘+’ indicates the imaged center obtained using the proposed
method. It can be seen that the projection determined using our approach aligned closely
with the actual value.

Then, the concentric circle grid was generated on an A4 sheet of paper and pasted
onto the board. The board was moved to capture images at five different poses and the
intrinsic parameters are shown in Table 3.

Table 3. Evaluating intrinsic parameters using various methods in a real experiment(pixel).

Parameter Zhang Conventional Proposed

fx 2281.2359 2248.0639 2260.9497
fy 2280.7966 2247.8106 2260.8361
u0 1040.5597 1037.8423 1029.0437
v0 1020.5549 1022.6404 1026.9882
k1 −0.1532 −0.1539 −0.1544
k2 0.0835 0.1723 0.1791
P1 −0.0004 −0.0004 −0.0006
P2 −0.0007 −0.0005 −0.0006

Reprojection errors are usually the evaluation standard of camera calibration accuracy.
Feature points are reprojected to the image space and the reprojection errors are shown in
Figure 11. The concentration of the reprojection error distribution of the proposed method
is evident.
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The mean reprojection error for the Zhang calibration method, the conventional cali-
bration method, and the proposed method is 0.092 pixels, 0.0791 pixels, and 0.0523 pixels,
respectively. The results indicate that the proposed method offers specific benefits in
enhancing the precision of calibration under the same conditions.

4. Discussion

Concentric circle targets are widely used in camera calibration due to their high
detection accuracy. To improve the calibration accuracy, traditional methods mainly focus
on the high-precision location of the imaged center. However, the presence of position
deviation in a concentric circle caused by lens distortion was commonly ignored by previous
researchers. In the proposed method, the position deviation is calculated to refine the
image points iteratively thus improving the calibration accuracy. Compared with previous
research, the proposed method greatly improves camera calibration accuracy and can
provide more accurate camera calibration results for computer vision tasks.

5. Conclusions

This paper proposes an iterative camera calibration method that considers lens distor-
tion by using concentric circle grids as the calibration target. The cross-ratio equations were
established based on the principle of collinearity, and a designed compensation framework
was used to reduce the influence of lens distortion on calibration accuracy. Simulations
and real experiments confirm that the proposed method has significantly enhanced both
the precision of positioning and calibration performance. In practical experiments, the
proposed method demonstrates an average reprojection error of 0.0523 pixels, which is
43.15% and 33.88% less than the reprojection error obtained using the Zhang calibration
method and the conventional calibration method, respectively.
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