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In this note, in 2D and 3D smooth bounded domain, we show the existence of strong solution for generalized Navier-
Stokes equation modeling by p(x)-power law with Dirichlet boundary condition under the restriction (3n/(n+2)n+2)<p
(x) <(2(n+1))/(n—-1). In particular, if we neglect the convective term, we get a unique strong solution of the problem under

the restriction (2(n +1))/(n+3) < p(x) < (2(n+ 1))/(n - 1), which arises from the nonflatness of domain.

1. Introduction

In this note, we consider the steady flows of non-
Newtonian fluids in R”, n=2,3, which is modeled by the
following system:

—div ((1 + |9u|2)<"<">‘2>/29u) +(u-VyutVr=f, inQ,
div u=0,

u=0,

where u is the velocity, 7 the pressure, f the external force,
Du = (Vu+Vul)/2, O a bounded domain, and p(x)>1 a
prescribed function.

This system arises from flows of electrorheological [1],
thermorheological [2], chemically reacting non-Newtonian
fluids [3].

For the existence of weak solutions to the problem (1),
we refer to [1, 4].

Local higher differentiability for weak solutions to the
problem (1) with p(x) = const has first shown in [5] for 1.8
<p <2 in 3D. This result was improved to p=1.8 in [6]
by Wolf. Forp > 2in 3D,W*-regularity is proved (see [7]).

loc

Global higher differentiability for weak solutions to the
problem (1) with p(x) = const have been studied by several
authors; for example, see [8-19] under the condition f €
LPN(Q) with pA” =p/(p— 1) and p = min {p, 2}. It was first
established in [8] by Beirao da Veiga. He developed a crucial
device which was to denote the second-order derivatives of
the velocity in the normal direction through ones (and the
first-order derivatives of the pressure) in the tangential
directions by using the very explicit form of the main equa-
tions. But in contrast to interior regularity, the interaction
between pressure and nonlinearity of leading term results
in the lower regularity for the second-order derivatives of
the velocity (and for the first-order derivatives of the pres-
sure) in the normal direction, in comparison to the tangen-
tial directions. His idea reveals to be quite fruitful in many
subsequent papers. He [10, 11] studied global higher differ-
entiability of weak solution to the problem with the bound-
ary condition (3) for p > 15/8 in 3D cubic domain.

With the help of the anisotropic Sobolev embedding
theorem, Berselli [15] obtained an improved integrability
of velocity gradient than in [11] in 3D cubic domain. His
idea is that it is possible to apply the anisotropic Sobolev
embedding theorem because of the difference in the regular-
ity levels between the second-order derivatives of the velocity
in the normal direction and the tangential ones. Beirao da
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Veiga [9] showed global W2(4-2/(e+1) 0 W14=2_regylarity
for (20/11) < p <2 by combining the idea from [15] with a
delicate estimate on the convective term in 3D cubic
domain and then in [12] extended it to nonflat bound-
aries. In [19], Crispo proved the same type of results in
cylindrical domains. In [14], the authors showed global
W?4-regularity for shear-thickening flows, i.e., p>2 in n-
D bounded smooth domain.

Recently, global higher differentiability of weak solution
to the problem (1) in 3D smooth domain is studied by us
in [20] by using a global higher integrability condition,
which holds under the condition f € L% ®)(Q), where pA’
(x) = (B(x))/(B(x) ~ 1), P(x)=min {p(x),2}, and a> 1.
This is slightly stronger rather than the standard condition
f € LPN(Q) for the case p = const. On the other hand, local
higher differentiability of local weak solution to the problem
(1) in 3D has been obtained in [21, 22] by relying on the
local higher integrability result from [23].

In [24], the existence and uniqueness of C'"(Q) n W22
(OQ)-solution corresponding to small data are proved,
without further restrictions on the bounds on p(x).

For interior or boundary partial regularity, we refer to
[23, 25-27].

If one assumes the condition feIPN®)(Q) for the
problem (1), then when applying difference quotient, due
to the p(x)-dependence of leading term, the additional
term will appear:

J (1+|2u?) "2\ 9u log? (1 + | Duf?)dx,  (2)

which cannot be estimated in terms of a priori estimate on
weak solutions. So for the system (1) with p # const, the
existence of strong solutions has been studied. In 3D, the
existence of local strong solutions to the system (1) is first
shown for 1.8 <p(x) <6 in [1] (chapter 3) by Ruzicka. In
[28], Ettwein and Ruzicka showed the existence of
w; (fp (NP _golutions without the artificial upper bound
p(x) < 6. For 2D bounded domains, we refer to [29, 30].

In [31, 32], we gain the existence of strong solution for the
system (1) under the standard assumption f € L") (Q). But
in that case, we consider the following the boundary con-
dition: for Q=(0,1)", n=2,3, and I':={x€0Q: |x,],]
x, 4|<1,x,=00rx, =1},

u|, =0, uisx’ — periodic, (3)

where by x'-periodic, we mean periodic of period 1 both in
x; and x,_;. This allows us to consider a bounded domain
and simultaneously a flat boundary. Thus, it is natural to
ask whether the sharp results proved in [31, 32] are valid
for smooth domain. This is the aim of this note.

It seems to be possible to obtain the existence of C*
(Q)-strong solution to the problem (1) in 2D by the result
of this note and the same argument as in [32]. Very
recently, we [32] show the result in the case of the bound-
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ary condition (3). For C*(Q)-regularity in 2D, we refer to
[18, 29, 30, 33-36].
Set
Q ={xeQ|p(x)<2},02,=0\0Q,. (4)

For n =3, we define

2p(x) ifxeQ
22-p(x)) +p(x)’ r
)= 3p05) )2~ 7y = { LT
Ex) ifxeQ,
p(x) +p(x) -

where p is arbitrarily close to 0 for p # const, and for n=2,

o f2-py P2
p<x>=q,r<x>~—{2) ioon O

where g is arbitrary real number such that 1 <g< oo and
U, > 0 arbitrary close to 0.
The main results are as follows.

Theorem 1. Let n=2,3. Assume that 0Q € C*!, p(x) € C*!
(Q), p # const, and

<< 20D, @

and f € IPN9)(Q) for
p(x) =min {p(x), 2}. (8)

Then, for p(x), 7(x) from (5) and (6), there is a strong
solution (u, 7) to the problem (1) satisfying

17250 + 14ll 1.0 < © 9)
2
V72|70 v ”H?(x),gsc’ (10)

where the constants C depend on p_,p,, || f ”1‘:/ (x)

Moreover, for the problem (1) without the convective
term, there is a unique strong solution satisfying (9) and
(10) provided that

2(n+1)
n+3

2(n+1)
n-1 "

(11)

<p(x) <

Remark 2. We note that if p = const, then the condition (11)
will be no longer needed (see [12-14, 16, 20]).

But due to p(x)-dependence of the leading term, we can-
not obtain W>4-regularity of weak solution to (1) provided
f e LPNW(Q). So it is customary to consider an approximate
problem. Fortunately, in [31, 32], the condition (11) does
not appear but we consider the boundary condition (3).
The condition (11) arises from the nonflatness of 2 and
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Dirichlet boundary condition. More precisely, due to them,
there appears the term

1+ |9uk|
1+)L|£JZu,\|

in deriving of W*4-regularity of the approximate solutions
independent of parameter (see (41) and (45)). The term dis-
appears in the case (3). For the estimate of the term, we need
an additional condition (11). It is open whether the condi-
tion can be removed when one considers the approximate
problem with Dirichlet boundary condition over nonflat
domain. In fact, Kaplicky ([37], Lemma 4.2) showed (9)
and (10) for the approximate problem to (1) with p = const
€(2,4) in 2D.

Due to p(x)-dependence of the extra stress tensor,
we  consider an  approximate  problem = with

(1+12u, )L+ A2, PN 2, for Ae(0,1)

instead of (1+ |9u|2)<p(x>72)/29u. It is easy to see that the
approximate solution belongs to 7,(Q) N W**(Q) owing
to the trivial inequality 1< (1+a*)/(1+ Aa®)<1/A. The
main point is to derive the estimates about all derivatives
of the approximation solutions in suitable Sobolev spaces,
which are independent of parameter. This allows us to
show convergence of approximation solutions to the one
to problem (1).

The paper is organized as follows. In Section 2, we give
preliminaries. Section 3 is devoted to prove the main results.

2. Preliminaries

2.1. Notations. By p' (x), we denote the conjugate function of
p(x). For pe L®(Q), p=1, define p_:=essinf p(x), p, =
esssup p(x). Let p* be a Sobolev conjugate exponent, i.e.,
p* =np/(n—p) when p < nand p* = q for all g € (1,00) when
p=nand p* = co otherwise.

For nx n-matrices F, H denote F: H=}._,F;H;, |F|
= (F : F)". For two vectors a and b, a®b = {a; J}ij and a
eb=1/2(a®@b+ (a@b)").

For pe L*(Q), p>1, the variable exponent Lebesgue
space L’ () is defined by

PY9(Q) = {u :Q— R |uismeasurableand p,,, (1) = J |u[PWdx < oo}},
Q

(13)

endowed with the norm [[ul|, o =inf {A>01p,,(4/})

<1}. Then, we define the variable exponent Sobolev
space by

WP (Q) = {u | Vu € P9 (0),V]a| < k}, (14)

with the norm |||, ,().0 = Xkl V4l px),0- We define
Wé’P <x>(Q) as the closure of CP(Q) in W™ (Q). Let

W' @ (Q) be dual of W™ (Q).
We do not distinguish between scalar, vector-valued, and
tensor-valued function spaces in the notations. Define

Y pn) = {uerp (Q)|div u= O} (15)

Definition 3. We say that function u is a weak solution to the
problem (1) if u € 7, and it satisfies

Ly (g2 00272
|, iup)
=JQf “pdx, VPET .

Du : Ddx + Jg(u -Vu- ¢dx
(16)

We refer to the term strong solution as a weak solution
which additionally satisfies u € W>9(Q) for some 1 < g < co.

2.2. Some Problems Related to Flattening of the Boundary. As
before, our problem is reduced to a problem involving a flat
boundary by a suitable change of variables. Here, we follow
the arguments and notations in [14]. Since 0Q € C*!, for
each point P € 00, there are local coordinates such that
in these coordinates, we have P=0 and 0Q is locally
described by a C*!-function 6, : Q5*(0) — Q}(0), where
Q%(0) is the k-dimensional cubic with center 0 and length
2d (which is small enough and will be fixed later), with
the following properties:

x€0p=00n (Q)(0) x Q(0)) & x, > Op(x1, X, 1 )>

V6p(0) =0, |VOp(y)| <cd, y€Q(0).

(17)

As 0Q is a compact, there exist a finite set of points I" C
00 and an open set 0, ¢ CQ such that Q C QU Jp. Q2p.
We construct a partition of unity {{,,{p, P€I'}, corre-
sponding to this covering, such that dist(supp {p, 0Qp \ 0
Q) >h, for all PeI' and some suitable small h, > 0. Let
us fix some Pel.

Set x'=(x,,-x, ). For h<hyie{l,2}, and a
function ¢ with supp ¢ Csupp {, we define tangential
translation through

Q, (x',xn) = go(x’ +he',x, +0, (x’ +hei> -0p (x’))
(18)

and tangential derivative through

0,9 = lim

h—0

¢~ ¢
-2 (19)

Now, we give the two propositions below related to the
tangential derivatives.



Proposition 4 (see [12, 14]). Let supp ¢ C supp {p and ¢
e Wh(Qp). Then,
Vo, ¢=0,Vo+(0,9), ®0,VOp,
20,9 =0,2¢ +(9,9),(D9,V6p, (20)
divd,@=0.dive +(0,9), -0,V0p.

Proposition 5 (see [20]). Let 1 < p(x) < 0o, p(x) € C*(Qp).
Then, there holds

1,
1850, Vet ) < €llSp0, Dl ) + VG| Vtl] Vit € W' (Q).

(21)
3. The Proof of Main Results

We use universal constants ¢, C>0, which may vary in
different occurrences. In particular, C depends on p_,p,, (2,

1, [[Vp(x) [l oor [ 1l while c on p_, p,, @, m, [|Vp(x) [ -
To begin with, let us define

1 2 -
_ i“ﬂz, M, = YOOI,
1+ A|Du,| (22)

81(% Duy) = MyDuy, Vi (Duy) = My* Duy.

/\, i

As before, in order to prove the main result, i.e., Theo-
rem 1, we will consider the following approximate problem:

—div ) (x, Duy) + (uy, - V)u,+Vm, = f, in,
div uy =0, in(,
u, =0, on 042,

(23)

where A € (0, 1]. Let us denote
L(Q)= {feLZ(Q),JQfdx=0}. (24)

It is known that there exists a weak solution (u,,7,) €
7,(Q) x L(Q) to the problem (23) by compactness method
if f € L*(Q). Furthermore, the following facts are valid.

Proposition 6. Let u, be a weak solution to the problem (23).

Assume that f € LP’\,(")(Q) and 3/2<p(x) <oo. Then, the
following hold:

J MA|£JZuA|2dx+J |Du, PN dx < cJ FPN @dx + |,
(0] 0 O
(25)

HMi/Z 1/2)

<
l apmyioe-202, * HMA
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where p(x) is from (8). For the problem (23) without convec-
tive term, these are valid for all 1< p(x) < co.

Remark 7. In fact, the proposition above was proved in ([31],
Lemma 4.1) and [32] for the boundary condition (3). But it
is easy to see that these inequalities hold also for Dirichlet
boundary condition.

Moreover, noting that

l1+a> 1

< T5a < T for A € (0, 1], (27)

we can prove by the same line in [20] that if f € L*(Q),
p(x) € C*(Q), then a weak solution u,, 7, of the problem
(23) satisfies

uy, € 7,(Q) N W>(Q),

(28)
my € L(Q) n WH(Q).

However, the norms of u, in 7°,(Q) N W**(Q) and 7,
in L3(Q)n W"(Q) are dependent of A.

Thus, from now on, we focus on the estimates about the
derivatives of the approximation solutions in suitable Sobo-
lev spaces, which are independent of parameter. This allows
us to show convergence of the approximation solutions to
the one to problem (1) in the spaces.

Hereafter, all constants are independent of parameter A
and introduce a shorthand notation S, := S, (x, Du, ) if it will
be clear from the context.

Let the assumptions of Theorem 1 hold.

To prove Theorem 1, we will combine the methods in
[20, 31, 32].

The proof is divided into two cases: with and without the
convective term.

3.1. The Proof of Theorem 1 without the Convective Term
Step 1. Estimates of the approximate solutions independent

of parameter in tangential directions.
In this step, our aim is to prove that

2
JMﬂangu“z( dv< (Cel i) +Ta+ Syl
(29)
198l < (C+ el sy ) + C(AY” + T2 + llSilln e )-
(30)

where p(x) is from (8), p(x) :== max {2, p(x)}, and
Ay = JMA\afgzumczdx, T):= JMA|QZuA|2 log’ Y, dx.

(31)

Fix Pe I, and let { ={p, Q=0Qp, and 0 =6, be as in Subsec-
tion 2.2. For simplicity we will omit the symbol “Q,” in
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integration ones and denote the symbols “Q, N Q,,” i=1,2,
by “Q,.”

By ([20], Proposition 14.3.15) and Propositions 4 and 5,
there exists a solution y € Wj* ) (Q) to the problem

divy =-diva, (Czaruh), inQ;y=0,0n30Q, (32)

satisfying

1LY [l5) < cll€0:Dtn 5 + el Vitallpyr  (33)

where the constant ¢ depends on p_,p,, Q, n.
Multiplying the first equations in (23) by ¢ = 9_({*0,u;)
+ v, integrating by parts and using Proposition 4, we get

[ (0.8, : D(C0,uy)dx=— [ 0,S)
(VO n)d [ 5,
((0,(0.) ) ©2,v0) des J £ [0, (o) +y]dx- L)SA
s Dydx = ili.

(34)

We apply Proposition 4 to the left hand side of (34) to get

I, = JC?)TSA : D0,y )dx = JCZBTSA
: 0, Duydx+ JcZaTS)L
- [(@y10),00,V6] dx+JaTSA
@OV dx =], + ], +T5. (35

It is clear that

1]1

0S, _
)+ W 0.p(x)=Jy1 + 1,

(36)
From ([31], (3.6)), we have
J]M : BTQZuA(de >c(p_)A,. (37)
where ¢(p_) =p_— 1. It is shown in ([31], (3.7)) that
‘[]1’2 20, Duy{Pdx < C(f;_) Ay +cT,. (38)
Combining (37) with (38) yields that
153%’*) A <], +cT). (39)

5
The terms J,, J; can be rewritten as
Jo+ )=~ J S+ 9, (8,1),00,VO¢* | dx- JSA
9-((9,1iOVE))dx. (40)

Hence these terms can be estimated as follows: by Korn’s
inequality

ol + 751 < cliSully® (1900l + 1020 1))

13)
< ClISylly (14 10,28 5 )

<ClIS,[|"@ 1+ HM ”2>H Al2 4 AL2
1015 (1 07 A
552 c(p-)
< CSallpe + e MtC
(41)
Combining (39), (41) with (35), we arrive at
7c
(éD‘)AA < cly+ Ty +cl|Sy ]2 + C. (42)

Since I; = -], the term I, can be estimated as ], by

c
I Sc||SAH123,(X)+ (‘Z‘)A,\+C. (43)

Note that by Proposition 4
3, (czam) =79, uy +200,00,u,. (44)

Hence the term I, also can be estimated as J, + J5:

L= JSA : ((Zafan”)\ + Z(an(afu,x) dx s)

+MAA+C.

2
<cl[Sallyw + =3

We use Holder’s inequality to get

S [ A AR

13)

< Cl iy + 1w o[ Wl + 160 T80 |

(13)(17)
Sl 1)+ llf o 182 P

<C 1 H ) H 1)al?
(v * 1) bl (3] 1) 4

p)
¢ c<1 + ||f|\;A,(x)) + W)y

8
(46)



Using (33) and (25) yields that

L= [Isi12yldes el Dyl 105" .
47

c(p-)
< =g AtCH c||SAH;,(X>.

Equation (34) together with (42)-(47) yields the desired
estimate (29).

Next, let us prove (30).

In [32] (4.20), it is proved that

Il @ < C. (48)

Indeed, though the formula (4.20) from [32] is proved in
2D for p(x) > 3/2, it also holds for p(x) > 3n/(n+2),n=2,3.
Moreover if neglecting the convective term, this holds for

p(x)>1.
Let ¢ € C5(€2). Multiplying the first equations of (23) by
0,(C¢) and integrating by parts, we have

JaTﬂ)‘ div ({¢)dx = JaTsA

D)t [ m(0,(09)), 2,98+ [-0,Gp)dx- [ 5,
1 ((9,(¢9)),(D0,VO)dx.
(49)

Since p'(x) < pA'(x), we have

[ 515 (@u(@0),00.98) e s 5" 19

< e[Syl ], ey
(50)

e (30)
jmanw)),-afvedxscnmup DY)l < Ul ey
(51)

[ 7-2u(corae= el 1 9@ < U150
(52)

It follows that

.50 P@o)dxs [+ sl 2(C0)
< CJ[MA\BTQHM +M,|Du,| log Y,]|2((¢)|dx

1/2 1/2
< cAy [Hgﬁmel + HMA H(zp(x))/(p(x)—Z),QzH@gb”P(X),Qx]
+ T3 DY 0

(14)
< C(A?+ 1)) [dppre

(53)
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The left hand of (49) can be rewritten as
Jam div ¢pdx = - JV(BTnA) - ¢dx. (54)
Equation (49) together with (50)-(54) implies that

U V(3,m,0) - plx

<[(C+elfllwi)

+ C(AY + TY)] Ul + €S2,
(55)

Thus, by the negative norm theorem ([38], Theorem
14.3.18) and (55), we have

193815 < el V@M |y o) + lBTAC 1
V(o R 0 ,

—c s (V(@.m0).¢) . . sup (9.m¢& ¢)

s 0law  gaiog 18150

< (Ctelfll ) + CAL+ TH) + el

H”A||13’(x)||ar¢|\p(x)

+c
el

g™ ()
< (c + c||f|\PA,(x)) +C(AY2 +TIP) +.¢||S, '),

(56)

which is the just (30).

Step 2. Estimates of the approximate solutions independent
of parameter in all directions.

Our aim in this step is to show (79) and (80).
Here, we follow the notations from [20]. By mimicking
the derivation of [20], (4.51), we can get

M) |VDu, | < cM, (|0, Vu,| +|Duy | log Yy ) + ¢(|0,my| + | f])-
(57)

Now, we want to derive some estimates on the first deriv-
atives of V;}(x) (Qu,) from (22), independent of parameter A.

This allows us to prove boundedness of T, and ||S)L||ﬁ/<") and

to improve regularity of solutions to problem (1).
Since 1/3|V2u,| < |D(Vuy)| <3|V2uy| (see, [1]), it
follows from (57) that

‘VVI’}(x)(QuA)’ < cM}t/z‘VzuA‘ +cMy? log Y, | Du, |
< cMY?(10,Vuy | + |Duy | log V) (58)
—(1/72
+ oM, ([0,m |+ |f]).
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Similarly, we have
0.V (D) | < cM}?[0,(Duy)| + M log Y| Duy .
(59)

Now, define

r! (x) =

2p—(x) = min ). p' (x
p(x) +|p(x) -2 {P( )P ( )}- (60)

It follows from (58) that
HV< ) (Duy) )fH <cHM”26 (VuA)CHrl(x)
+¢||M}? log Yl@”A(H,l(x)
+CHM;(”2>(|aTnA|+|f|)(H .
ri(x
(61)

Using Holder’s inequality and the fact that ! (x) <2, we
have by Korn’s inequality

[M3Z0, Vil sy < 19:V1418 [y, + [IMA*0: V2018 )
< el0:- Py, + ”MwH<2p<x>>/co<x>72>,ﬂz|z,92 +C
sl
(2p())1(2-p(x)).2,
1 | piepyipey- zmz]A}/z*C
= cA?+C. (62)

Taking into account the fact that r!(x) < 2, we have

o[ M3 log Ya2up|, ,,  <eT3”. (63)

From (30) and the fact that M;(l/z) <landrl(x)=p'(x)

in Q,, it follows that

[P o], < a1+ g,
+Ha ﬂ)l("—fl‘p (%),
(14)
< C(L4 Il + AL+ T+ [Sular) )

(64)
Gathering (61)-(64) and using (29), we obtain

7 (V@]

(65)

(SC(1H Sl + T2+ €Sl )

On the other hand, it follows from (59) and (29) that

00 (Vi @), <clMa. @)
+c|| M} log Y, 2u (||,

<e(14 1 oy + T + ISillpar )

(66)
Define
e e
2np(x)

T (n-2)+|p(x) -2

where y is an arbitrary small positive real number. Applying
the anisotropic embedding theorem (see [39], Theorem 2.5),
we obtain that by (65) and (66),

[Vis @], . <+ Wl + T3+ Uil )

(68)
It is shown in [31, 32] that
2
T, < sOHV;(x)(@uA)H +C. (69)
m! (x)
Now, let us estimate the term ||S; ||5'¢ 5 ). Note that
p(x) 1
<m (x), (70)
pg-1 <"
provided that
2(n+1
Pl <2,p(e)> 20D, @

This implies immediately that

ISull, 2 < | v Qu,\)H O <g|[Vig@u)| | +C

m!(x)
(72)

p(x

Before we begin with the estimate on [[S, ]|, , we claim
that for p > 2,
L+ a2\ 22 @-D)p
GTEQ =

14+a2\ @M
(W) a +c (73)




Indeed, setting Y := (1 + a?)/(1 + Aa?) and using Young’s
inequality with a pair (p/(p - 2), p/2), we get

y (p=2)/4 — y((p=2)p=2/4)((p-2)p-2/p) y (p~2)/4(1~((p~2)p~2/p))

- (v ) TPty )P

< C‘ y<p—2>/4a’(f"2)“’ 4 cy(-2p-20)(-2p-21p)

¢ Lyt G

< c‘ Y(}’_Z)/A‘cz’(p_zm7
2

(74)

which implies (73).
Now, let us estimate the term ||S, ||, , . Using the inter-
polation and Young’s inequalities yields that

2(p,-1))1p,
(4(p,=1)) 152
1-p

1Sill2, = ¢+ €| Vi(@m)

B (2(p,~1))/p,
SC+C(HV£()‘)(9%\)HZQ Vg(ﬂ(@uﬁHmm) )
(75)
where
py= sup p(x),m! = inf m!(x)= o o
2 0pnQ, T 02pN0, pZ(n - 2) + |p2 B 2| ’
po "2l =2)
2(p, —1)(p, +2)
(76)

Hence, noting that m'(x) is decreased in p over Q,, we
have

(52) (n(p2=2))/(p2+2)
[$1lz0, < e+ e Va(@m)| 2" <@ Vi@, +C
(77)
provided that (n(p, —2))/(p, +2) <1, i.e,
2(n+1
ple)>2,plx) < 2D (78)

Inserting (69), (72), and (77) into (68) and taking (71)
and (78) into account, we conclude that

[Viw@w,, . (4 1flwe) 09
and furthermore from (65) that
[v(viw@e)e], <1+ W) (50)

provided that
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2(n+1)
n+3

2(n+1)

n-1"~ (81)

<p(x)<

which is the just (11).

Step 3. Since m'(x) > 2, the estimate (79) gives us the better
information on Vg(x)(o@u,\) than an a priori estimate (25).
By the same argument, it is possible to gradually improve
the integrability of Vl’}( (2u,) with the estimates indepen-

dent of parameter and to get (7) and (8) with u, instead of
u. This bootstrap argument is the same as in [20, 31, 32],
and so we omit them. In particular, since the estimates (9)
and (10) with u, are independent of parameter A, it is possi-
ble to apply limiting process A — 0 and as a result, we have
that there exists a strong solution to (1) without the convec-
tive term satisfying (9) and (10).

Thus, Theorem 1 is proved without the convective term.

3.2. The Proof of Theorem 1 with the Convective Term

Step 1. Estimates of the approximate solutions independent
of parameter in tangential directions.

Our aim in this step is to show that the estimates (29) and
(30) are valid under the additional assumption p(x) > 3n/
(n+2).

To begin with, let us show the validity of (29).

In this case, on (34), there will be added the term

I = J[(aru,\ V)uy + (), V)0, = (u, - (0,u,), ®0,VO)]
-0, uydx— J(u/\ “V)uy - ydx
= H|aruﬂ2(vc )+ (), - [(@,m1), 89,90]) - 3,007 | dx

- sz(aru,\ -V)uy - 0,uydx— J(uA -V)u, - ydx
= A5y + 15y + s,
(82)

see [20], (5.1).

Let p, :=infg, p(x). Taking into account 26’ < (pA)"
for p; > 3n/(n + 2) and using Hélder’s, Sobolev’s, and Korn’s
inequalities, we have

Iy < c)| 0l 1l g, 16042 | 5,
< || Vi i, l1all5: 1160 a5

<[V 2 | 2(0,y)
13
., C(HM;(W)

W, dp),
24

Hﬁ(") (83)

172
A)L

+Q
(2p(x))/(2-p(x)):2

< C+

-
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On the other hand, by Hélder’s inequality, we have
I <1002 V]l (34)
Note that 3n/(n+2) <p, <2. Since p, <2p', < (pA,)",

between LM and L®PM)

Using this interpolation and Korn’s, Holder’s, and Sobolev’s
inequalities, it follows that for a = ((n +2)p, — 3n)/2p,,

we can interpolate [[{0,ul|

(13) 21—
Iy < ClIE3,m 35 < ClEB 2716041 o
(P1) Py (ry)

2(1-«
< ClC0 w2, + ClIED 12120, Dy 1,

2(1-9) 1-a
+1)A)
(2p(x))/(2=p(x))-2

< C+ CJ[¢0,1 5 (HM (112)

(14)
Yo, Ay,

(85)

where, in the last estimate, we use Young’s inequality
with a pair (1/(1 - «), 1/a). From (33), (25), and (26), it
follows that

Isy < |35, V¥, < C+ C|2(E0,uy)|

5)
<C+C HM (12) H +1>A(”2)
( (3p(x))I(2-p().2, A (86)
<C+ EA,\.
24

Thus, identity (82) together with (83)-(86) yields

I;<C+

C(g ) A, (87)

Thus, the estimate (29) continues to hold for the full
problem (23).

Next, let us prove that there also holds (30). Indeed,
for the full problem (23), there will be additionally added

the term
- J(”A “V)u,

on the right hand side of (49). It is clear that

0, (C¢)dx, (88)

(n+1)p(x)—2n (89)

Recalling that W™ (Q)'L9(Q) for any g<oo and
using Holder’s inequality, we obtain

j (1 V) ar<c¢>dx=j (0,103 V)it - (e
0O 0O

+J (- V)0, - (ol
(0]

<03l 2 1903 0, 18l
10,008, IV, 91,
190,y 0 1

(np
(131 )
tallao, IVOrmllloo, 14lls0, =<

N/(n+1)p(x)=2n),2

+clluallpe o 1((m1)p(x)-2n),,

CAi’2H¢||1p
(90)
Thus, there also holds (30) for the problem (23).

Step 2. Estimates of the approximate solutions independent
of parameter in all directions.

Here, we prove the validity of (79).

For the problem (23), there will be additionally added
the term

HM (112) MA‘V)“ACH " (91)
on the right hand side of (61) and hence,

[via@m],., <14 Wl + T+ ISl
i ORI
")

(92)

where m!(x) is from (67).
By (25) and (26) and Korn’s, Hélder’s, and Young’s
inequalities, we have

HMA (112) “A'V>u’\(H,l<

12)
< HM/\ H ) H Ul npny = 1V EAE  ampyy 2y pi)-2my2,
< I piy s 2ppi)-2mp0, + €
SCHM ) H Vi (@) +C
(2p(x))/(2=p(x))02 (np(x))/((n+1)p(x)=2n),
< sOH VA ( ol

where, to perform the last estimate, we use the fact

2np(x)

np(x)
S pw(n-3)+2

(n+ 1)p(x) - 2n =m'(x),

forn=2,3,xeQ,,

(94)

which holds by the condition p(x) > 3n/(n + 2).
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On the other hand, by the same line above, we obtain
that

-(112)
HMA (“A‘V)”A(Hrl(xm < HMAHZVI/(VI—Z),_QZHvu/\CH(an(x))/((n+2)p(x)—2n),()2

< CH9”/\“'(an(x))/((n+2)p(x)—2n),ﬂz +C
M)?=1
< CHVA Du ‘ +C
PP o repier-amc,
A
= SOHVP(")(QM)‘)HW(@ to
(95)

where, to perform the last estimate, we use the fact

2np(x)

2np(x)
S pn—1)-2

(n+2)p(x)—2n :ml(x),

forn=2,3,x€Q,,

(96)

which also holds by the condition p(x) > 3n/(n +2).
Inserting (93) and (95) into (92) and noting (69), (72),
and (77), we conclude that

A
[V @], < W) @7

This is just the estimate (79).

Step 3. The rest is the same as the previous subsection. Thus,
Theorem 1 is completely proved.
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