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Abstract

As next-generation imaging instruments and interferometers search for planets closer to their stars, they must
contend with increasing orbital motion and longer integration times. These compounding effects make it difficult to
detect faint planets but also present an opportunity. Increased orbital motion makes it possible to move the search
for planets into the orbital domain, where direct images can be freely combined with the radial velocity and proper
motion anomaly, even without a confirmed detection in any single epoch. In this paper, we present a fast and
differentiable multimethod orbit-modeling and planet detection code called Octofitter. This code is designed to be
highly modular and allows users to easily adjust priors, change parameterizations, and specify arbitrary function
relations between the parameters of one or more planets. Octofitter further supplies tools for examining model
outputs including prior and posterior predictive checks and simulation-based calibration. We demonstrate the
capabilities of Octofitter on real and simulated data from different instruments and methods, including HD 91312,
simulated JWST/NIRISS aperture masking interferometry observations, radial velocity curves, and grids of
images from the Gemini Planet Imager. We show that Octofitter can reliably recover faint planets in long
sequences of images with arbitrary orbital motion. This publicly available tool will enable the broad application of
multiepoch and multimethod exoplanet detection, which could improve how future targeted ground- and space-
based surveys are performed. Finally, its rapid convergence makes it a useful addition to the existing ecosystem of
tools for modeling the orbits of directly imaged planets.

Unified Astronomy Thesaurus concepts: Exoplanet detection methods (489); Bayesian statistics (1900); Direct
imaging (387)

1. Introduction

Instruments for directly studying exoplanets are steadily
improving in sensitivity. Current facilities are now accessing
planets less than 10 au from their stars. Below these
separations, orbital motion can become significant over mere
months. This will be especially true for facilities with high
angular resolving power thanks to their larger apertures and/or
shorter operating wavelengths. This is an advantage for those
who wish to determine the orbits of already-known planets but
presents a significant challenge when searching for new
companions.

When planets move from observation to observation, naive
image stacking causes their signals to blur out and fade away.
Reaching a necessary integration in a single epoch hits practical

scheduling constraints and eventually physical limitations—for a
sufficiently faint planet, it would not be possible to detect a
significant number of photons before it moves by a full-resolution
element. These constraints apply equally to images as they do to
integral field units and interferometers, including aperture masking
interferometry (AMI) on JWST (Sivaramakrishnan et al. 2023),
Very Large Telescope Interferometer GRAVITY (Collaboration
et al. 2017), and even Atacama Large Millimeter/submillimeter
Array (Wootten & Thompson 2009) in the case of accreting
protoplanets.
A number of projects have sought to solve this challenge for

image data only by compensating for orbital motion between
epochs. These include a search for planets around Sirius B
(Skemer & Close 2011), K-Stacker (Nowak et al. 2018; Le
Coroller et al. 2020), PACOME (J. Dallant et al. 2023,
submitted), the search for planets around ε Eri (Mawet et al.
2019; Llop-Sayson et al. 2021), and the search for additional
HR 8799 planets by Thompson et al. (2023). These have now
led to promising evidence for α Cen AB b (Le Coroller et al.
2022) and HR 8799 f (Thompson et al. 2023). Moving the
analysis of direct imaging data into the orbital domain enables a
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further extension: joint models of both images or interfero-
metric observables with indirect exoplanet detection techni-
ques, including the radial velocity (RV), astrometric motion,
and transit (not directly considered in this paper). These have
been previously explored by Mawet et al. (2019) and Llop-
Sayson et al. (2021). This opens many possible scenarios. In
addition to combining images to search for planets despite
orbital motion, this allows one to freely combine Doppler or
astrometric velocimetry with image data. This can then be used
to constrain orbits using images with tentative detections or
nondetections, improve photometry accuracy or limits, better
constrain a planet’s mass, and/or detect planets where any
individual kind of data fails to reach significance (e.g., Llop-
Sayson et al. 2021).

These scenarios are possible as all exoplanet detection
methods provide orbital constraints that at least partially
overlap. Imaging, RV, and transit all provide the orbital period
(P); proper motion anomaly (PMA) and RV constrain
eccentricity (e), the argument of periapsis (ω), and either the
mass (m) or m isin( ), where i is the orbital inclination; and
multiepoch imaging/interferometry constrains all orbital para-
meters up to a± ambiguity on the longitude of the ascending
node (Ω). These connections could, in principle, allow
information from all methods to flow into a single orbit model
and, ultimately, result in the detection of a new planet.

To apply these ideas broadly, the community will need a tool
capable of modeling all different types of exoplanet data. The
orbitize! (Blunt et al. 2020) and orvara (Brandt et al.
2021) packages come close: they support Bayesian modeling of
relative astrometry, RV, and PMA. We needed a publicly
available and generally applicable package that goes further to

directly model image and interferometer data with or without
independent detections at each epoch.
It is, generally, challenging to accurately compute orbital

posteriors as the traditional Campbell orbital elements (a, e, i,
ω, Ω, tperi) possess complex codependencies and degeneracies
(e.g., when e= 0 or i= 0). This task becomes even more
challenging when working with short orbital arcs because they
lack the constraining power to independently determine each
Campbell element, meaning orbit posteriors are typically
complex and very sensitive to their priors (e.g., O’Neil et al.
2019). Introducing image and interferometer data to the model
exacerbates issues further, as they produce multimodal poster-
iors that are challenging to traverse. Any inaccuracies in the
calculation of an orbit posterior can lead to errors in mass and/
or photometry and spurious detection.
These challenges motivate the development of our new orbit-

and data-modeling framework, “Octofitter.”14 Named after the
eight types of data through which it aims to grasp new planets,
Octofitter is designed from the ground up to be a flexible
platform for modeling and experimentation while providing
very high computational performance. These advances are
thanks to our implementation of a pure-Julia (Bezanson et al.
2012), fully differentiable, and nonallocating modeling lan-
guage, and our use of the higher-order No-U-Turn Hamiltonian
Monte Carlo sampler (Xu et al. 2020). We further present the
use of simulation-based calibration (SBC; Talts et al. 2020) to
confirm the accuracy of orbital posteriors, which is made
practical by Octofitter’s speed. Figure 1 shows a schematic of a
few of the ways Octofitter can be applied to exoplanet data.

Figure 1. Conceptual schematic of three different ways to use Octofitter. Other possibilities, like combining images with Doppler or astrometric velocimetry or using a
mix of relative astrometry and images without detections to constrain orbits, are also possible.

14 Octofitter is publicly available on the Julia General registry, and extensive
usage examples are provided at https://sefffal.github.io/Octofitter.jl/dev/.
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As a publicly available code with these advances, Octofitter
will enable the wide application of multiepoch, multi-instru-
ment, and multimethod exoplanet detection and modeling.
These approaches can improve how direct surveys are
completed and improve the yield of the upcoming Nancy
Grace Roman Space Telescope Coronagraphic Instrument
(Kasdin et al. 2020), the Habitable Worlds Observatory
(HWO), and future facilities for extremely large telescopes.

2. Data Models

This section describes how the eight kinds of exoplanet data
can be modeled by Octofitter. These data are the relative
astrometry, images, interferometric observables, star and planet
RVs (absolute and relative), and proper motion anomaly.

The Octofitter framework is structured around three
concepts: likelihood functions for observations, system models
to tie observations to parameters, and generative functions to
create synthetic observations. These break the problem down
into orthogonal components that can be freely combined to
solve a wide range of orbit modeling problems.

Each kind of observation in Octofitter is supported by its
own Julia data type. Every observation type is a wrapper for a
data table of observations with a preset list of required
columns. The observational data, in turn, can be provided to its
associated type directly in the code, loaded from a local CSV or
Arrow file, or obtained from a remote SQL database. For each
observation type, a method of the Octofitter.ln_like
function is provided that computes the likelihood of the data it
contains given a specific set of parameters. We now describe
the observation types and likelihood functions included in
Octofitter.

2.1. Relative Astrometry

The position measured between a directly imaged planet and
its host star is one of the most fundamental measurements
gathered from direct observations. It can be extracted from any
image where the planet is robustly detected in a single epoch.
Relative astrometry can be expressed either as separation in
milliarcseconds and position angle in degrees or as offsets in
milliarcseconds in the R.A.–decl. tangent plane.
Relative astrometry measurements can be provided to

Octofitter using AstrometryLikelihood, which accepts
a table with columns for epoch, the date of the measurement
in units of modified Julian days; sep, the separation between
primary and secondary in mas; pa, the position angle of the
secondary measured East from North; σ_pa, σ_sep, and cor
to specify the measurement uncertainties and correlation,
respectively. Alternatively, ra (relative), dec (relative),
σ_ra, and σ_dec can be substituted if preferred. A sample
relative astrometry input table is presented in Table 1.
Based on these quantities, the likelihood function is simply

taken as the Gaussian likelihood that the residual between the
model and measurement for each parameter would be seen,
given the provided measurement uncertainty. For relative
positions measured along the R.A. and decl. axes, this is
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where ΔR.A. and Δdecl. are the separation from the star along
the R.A. and decl. axes, σΔR.A. and σdecl. are the corresponding
uncertainties, and where the tilde distinguishes measured
quantities from values calculated from model parameters. A
more complex expression is used when the correlations
between uncertainties are nonzero.

2.2. Images

Directly modeling point sources in images is one of the key
features of Octofitter. This is accomplished with the same
approach described in Ruffio et al. (2018) and applied in
Mawet et al. (2019), Llop-Sayson et al. (2021), and Thompson
et al. (2023). In the case where a planet is robustly detected in
each image and the uncertainties are well-approximated by
Gaussian uncertainties, it is mathematically equivalent to
extracting the relative astrometry and photometry and then
modeling those measurements. Where this approach goes
beyond the two-step process, however, is when a planet is not
detectable in a single epoch or when one wants to constrain the
orbit of a planet based on a nondetection. The first case may
arise when searching for planets that are too faint to detect
before they exhibit orbital motion. The second case may arise
any time a monitored planet passes too close to its star to
detect. In this case, it is not possible to extract the astrometry.
By directly modeling the images, large swathes of the orbital
parameter space may still be ruled out. This can improve
constraints on orbital parameters and improve predictions of
the planet’s future location.
In Octofitter, image data can be modeled across any number

of photometric bands, instruments, and epochs. Data can be
provided using the ImageLikelihood observation type,

Table 1
Relative Astrometry Input Sample

epoch pa sep σ_sep σ_pa cor
(mjd) (°) (mas) (mas) (°)

58849.0 224.93 615.2 30.0 0.8 0.0
58879.0 228.53 606.4 30.0 0.8 0.0
58909.0 229.66 663.3 30.0 0.8 0.0
58939.0 232.48 635.9 30.0 0.8 0.0
58969.0 233.25 610.3 30.0 0.8 0.0
58999.0 235.22 669.7 30.0 0.8 0.0
59029.0 236.67 666.8 30.0 0.8 0.0
59059.0 237.85 654.3 30.0 0.8 0.0
59089.0 239.68 713.6 30.0 0.8 0.0
59215.0 245.67 747.3 30.0 0.8 0.0
59245.0 245.54 736.4 30.0 0.8 0.0
59275.0 247.94 709.7 30.0 0.8 0.0
59305.0 248.13 791.4 30.0 0.8 0.0
59335.0 251.17 777.8 30.0 0.8 0.0
59365.0 251.43 773.8 30.0 0.8 0.0
59395.0 250.44 866.5 30.0 0.8 0.0
59425.0 253.49 789.5 30.0 0.8 0.0
59455.0 253.98 839.1 30.0 0.8 0.0
59945.0 268.72 986.3 30.0 0.8 0.0
59975.0 268.89 941.6 30.0 0.8 0.0
60005.0 269.96 959.2 30.0 0.8 0.0
60035.0 270.0 928.9 30.0 0.8 0.0
60065.0 270.67 952.9 30.0 0.8 0.0
60095.0 272.02 977.5 30.0 0.8 0.0
60125.0 270.99 950.1 30.0 0.8 0.0
60155.0 272.15 953.9 30.0 0.8 0.0
60185.0 274.33 985.2 30.0 0.8 0.0
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which accepts a data table with the columns epoch, band,
platescale, image, and contrast. A sample input table
is presented in Table 2. The plate scale and parallax system
parameters (which may be fixed or fit to the data) are used to
map an orbit to a pixel location in the image. The contrast
entry for each image allows one to pass an arbitrary function
of position that gives 1σ contrast. If not provided,
Octofitter calculates a contrast curve automatically from the
image itself. This is sufficient for images with no clear
detection but should be avoided if the image contains a bright
planet as the contrast curve will overestimate the noise at the
planet’s separation. Extended emission from disks is not
currently considered.

Given these data, the likelihood function used by Octofitter
for each image by Octofitter is that of Ruffio et al. (2018):

f f flog
1

2
2 , 2

B x i
B B B x iimg

, ,
2

2
, ,( ˜ ) ( )

s
= -

where fB is the model flux parameter for the photometric band
B, x is the position in the image determined from orbital
parameters, i is the epoch, σ is the uncertainty, and fB̃ is the
measured flux at that same location.

This likelihood function assumes that flux is constant from
epoch to epoch, but could easily be adapted to use an orbital
phase function for planets imaged in reflected light (e.g.,
Pogorelyuk et al. 2022). Taken to the extreme, the flux can be
fit independently at each epoch (e.g., Nowak et al. 2018) at the
expense of reduced constraining power. For both the images
and relative astrometry, we do not currently consider
uncertainty in the instrument’s north angle or plate scale.
These might need to be considered when combining data from
multiple instruments, in which case they could be added
straightforwardly. We also note that this likelihood function
assumes Gaussian-distributed noise in each image. Where this
is not a good assumption, standard techniques for inflating
uncertainties could be used before applying Octofitter.
Furthermore, spatial correlations between pixels are not
currently handled. Finally, this likelihood function is only
specified up to a constant and is not suitable for techniques like
nested sampling.

2.3. Interferometric Observables

Just as with imaging, combining interferometric observations
across multiple epochs using orbital modeling removes the
need to detect a companion in a single observation. We
implement a model assuming an unresolved point-source
primary and N unresolved point-source companions. The
complex visibilities of this model are given by

f u v
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where fi is the (companion/primary) contrast of the ith
companion, ΔR.A.i and Δdecl.i are the R.A. and decl. of the
ith companion, and u and v are the Fourier domain coordinates,
with magnitudes given by the interferometer baseline lengths
divided by the observing wavelength (e.g., Berger 2003;
Kammerer et al. 2023). A sample input table is presented in
Table 3.
The squared visibilities are calculated from the squared

moduli of the complex visibilities, and the closure phases are
calculated by summing the phases of the three complex
visibilities calculated from triangles of stations in the
interferometer. We construct likelihood functions for the
squared visibilities and the closure phases separately, assuming
Gaussian noise statistics and diagonal covariance matrices. We
also assume that there is at least a moderate contrast between
the primary and any companions such that we can neglect
phase wrapping in the closure phase (Éric & Young 2017).
These likelihood functions are given by
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where CPi is the ith closure phase, Vi
2 is the ith squared

visibility, and σCP,i, and iV ,2s are the uncertainties in the ith
squared visibility and closure phase, respectively.

2.4. Radial Velocity

Similarly to other packages, Octofitter allows one to model
RV data in combination with other observation types. If
combined with relative astrometry, proper motion anomaly, or
image data, it allows one to directly model the dynamical mass
of a planet.
RV data can be specified for the star or the planet using

RadialVelocityLikelihood, which accepts a table with
columns for epoch in MJD, rv in m s−1, σ_rv, the
uncertainty in rv in the same units, and inst_idx.
inst_idx is an integer between 1 and 4 used to specify
which instrument the measurement corresponds to. The zero-
points rv0_i and jitter jitter_i must be specified as
variables in the model, where i corresponds to the instrument
index.
A sample input table is presented in Table 4. The input

format is the same for both cases. Depending on how the zero-
point is modeled, it is possible to use either relative or absolute
RVs. The zero-point can also be modeled as an arbitrary
function of other variables, allowing one to fit, for example,
linear trends.

Table 2
Images Input Sample

epoch band platescale image contrast
(mjd) (symbol) (mas/px) (matrix) (function)

59976.0 :H 10.2 L L
59976.0 :J 10.2 L L
60576.0 :H 10.2 L L

Table 3
Visibilities Input Sample

epoch band pa sep contrast
(mjd) (symbol) (°) (mas)

60096.0 :F480M −92.7 180.5 0.00036
60171.0 :F480M −61.5 159.1 0.00036
60462.0 :F480M 56.9 213.9 0.00036
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When combining RV data with direct imaging modeling, it
is possible (though not required) to connect the planet’s
photometry with its dynamical mass by using a user-supplied
model. This model can either map a mass and/or system age to
photometry in each band, or vice versa. Connecting these two
variables may be useful in cases such as when the orbit is
determined by the RV up to the inclination degeneracy but has
not yet been detected with direct imaging.

In a similar manner to relative astrometry, we define an RV
likelihood function that allows us to fit orbital parameters to
RV data. This function is

v v
log
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2
log 2 , 6

i

i i

v i
v irv

r, r,
2

,
2 ,

2

r

r

( ˜ ) ( )å
s

ps= -
-

-

where vr,i is the measured RV, v ir,˜ is the maximum likelihood
estimate of the RV, and v i,rs is the uncertainty in the RV, all at
the epoch i.

Octofitter supports multiple instruments, each with its own
RV zero-point and jitter term and all with independently
selectable priors. This is accomplished via the inst_idx
column, which associates each RV measurement to a particular
instrument, zero-point, and jitter. As a convenience,
Octofitter includes a helper function to load RV curves from
the publicly available High Accuracy Radial Velocity Planet
Searcher RV Bank (Trifonov et al. 2020). Accessing these data
will prompt the user to accept its license and then automatically
fetch the RV curves.

2.5. Proper Motion Anomaly

Many systems that are candidates for direct imaging have
their positions and proper motions measured accurately by both
the Gaia (GAIA-Collaboration et al. 2021) and Hipparcos (van
Leeuwen 2007) missions. The Hipparcos–Gaia Catalog of
Accelerations (HGCA Brandt 2021) cross-calibrates measure-
ments from these two satellites and inflates uncertainties to
cover most known systematics. This results in projected
velocity measurements of the system’s photo center at the
Hipparcos epoch, the Gaia epoch, and between the two.

In Octofitter, proper motion anomaly must be loaded directly
from the HGCA by specifying the host star’s Gaia identifier
(the Data Release 3 version at the time of writing). As with the
RV loaders, this will prompt the user to accept a license for the
catalog and automatically download the HGCA.

In order to connect the proper motion anomaly with the
orbital image modeling described above, we define a likelihood
function based on the HGCA data and the same orbital
parameters:
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where vR.A. and vdecl.˜ are the R.A. and decl. proper motion at
each epoch and σR.A. and vdecl.˜s are the associated uncertainties.
The input table format for this observation type matches
Table 4 of Brandt (2021).

Compared with Brandt et al. (2021) and Brandt et al. (2021)
we adopt a simpler model of the Gaia and Hipparcos data.
Rather than use the exact epochs in which each mission
scanned the star (or estimate using the Gaia Observation

Forecast Tool15), we presume that the position and proper
motion of the star were measured independently 25 times over
the duration of each mission. For orbits with periods longer
than the observation windows of Gaia (≈668 days) and
Hipparcos (≈1227 days), using these 25 epochs approximates
the smearing effect caused by the moving photo center during
observations. Future work could refine this model further
following their more sophisticated approach by re-implement-
ing the calculations of HTOF (Brandt et al. 2021) in Julia. Once
it is available, it should also be possible to use the full
intermediate GAIA astrometry catalog in Octofitter.

3. Methods

3.1. Assessing Detections

This section describes how we choose to interpret the results
of a model fit with Octofitter, though it should be noted that the
modeling code makes no such prescriptions. For evaluating
upper limits and detections from image or visibility data alone,
we follow the conventions of Ruffio et al. (2018).
As set out in Ruffio et al. (2018), we calculate the upper

photometry or mass limits by finding where the cumulative
distribution function equals some threshold, e.g., 97.7%. That
is, fCDF 97.7%lim( ) = . This can be stated as an overall value
for the system to say, for example, that we believe with 97.7%
confidence that there are no planets present at all with
photometry above some flim. It can also be calculated over
small ranges of orbital parameters, in order to, for example,
calculate a flux upper limit as a function of the semimajor axis.
This value will be driven by the brightest speckles close to the

Table 4
Radial Velocity Input Sample

epoch rv σ_rv inst_idx
(mjd) (m s−1) (m s−1)

58849.0 47.2342 5.0 1
58879.0 14.4347 5.0 1
58909.0 12.9645 5.0 1
58939.0 26.2633 5.0 1
58969.0 −8.27905 5.0 1
58999.0 4.94685 5.0 1
59029.0 0.863664 5.0 1
59059.0 10.9524 5.0 1
59089.0 3.92389 5.0 1
59215.0 21.0509 5.0 1
59245.0 29.2009 5.0 1
59275.0 16.77 5.0 1
59305.0 19.0421 5.0 1
59335.0 52.9403 5.0 2
59365.0 21.8173 5.0 2
59395.0 55.0851 5.0 2
59425.0 20.444 5.0 2
59455.0 0.915145 5.0 2
59945.0 21.6418 5.0 2
59975.0 −0.54618 5.0 2
60005.0 11.4391 5.0 2
60035.0 15.3402 5.0 2
60065.0 17.7835 5.0 2
60095.0 5.35458 5.0 2
60125.0 60.3179 5.0 2
60155.0 43.5441 5.0 2
60185.0 11.4066 5.0 2

15 https://gaia.esac.esa.int/gost/
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star, so a much more useful metric is to provide flim as a
function of the orbital parameters.

This model does presuppose that a planet exists and follows
a Keplerian orbit around the star; however, as long as the
photometry prior is broad, the model is free to drive the
photometry toward zero. We can therefore use the photometry
posterior to calculate a signal-to-noise ratio (S/N) analogous to
the typical metric used in direct imaging. This approach has the
benefit of being familiar to those with experience evaluating
direct images for detections.

The procedure we adopt for assessing detections is to

1. sample from the posterior,
2. marginalize over all orbital parameters,
3. calculate the S/N as the mean of the marginal photometry

posterior divided by its standard deviation,
4. and then compare this S/N with a preselected threshold

based on a tolerable false-positive rate, e.g., 5σ.

The results of this procedure are visualized in Figure 2. This
gives a single S/N value for the existence of any planet in that
data set consistent with the user’s choice of priors. This is
somewhat different from the typical S/N detection thresholds
used because this S/N is calculated by marginalizing over all
credible orbits, or equivalently if applied to a single image,
marginalizing over all credible positions. By contrast, the
standard 5σ threshold is applied to the position in an image
with the highest S/N, rather than a weighted combination of all
positions.

In general, S/Ns obtained using this approach assume that

1. the noise is approximately Gaussian distributed,
2. the noise is uncorrelated along orbital tracks between

images,
3. the images contain only a single planet,
4. and that planet closely follows a Keplerian orbit.

Deviations from assumptions 1 and 2 may increase the false-
positive rate, while deviations from assumptions 3 and 4 may
lower the recovered photometry and S/N.

Multiplanet systems could be accommodated easily by
introducing additional planets to the model and/or restricting
the priors to include only a subset of the parameter space.

For models that combine direct and indirect data, the
relationship between mass and photometry variables may be
complex, and this simple scheme may not be appropriate. In
this case, it may be better to calculate a Bayes factor between
planet and no-planet models. Such a Bayes factor can be treated
as a direct measurement of our belief that a planet exists and
follows a Keplerian orbit. This can be carried out in a limited
fashion in Octofitter by calculating the Savage–Dickey density
ratio of the mass or photometry marginal posterior
(Dickey 1971; Koop 2003; for a pedagogical text, see
Wagenmakers et al. 2010). This is more flexible as it does
not require a uniform prior—any prior that includes zero mass
or photometry would suffice—and because it does not presume
that the marginal posterior is Gaussian distributed.

3.2. Orbital Bases and Priors

Octofitter supports a wide range of different orbital bases for
use in different situations. These include traditional Campbell
elements (a, e, i, ω, Ω), Thiele-Innes elements (e, A, B, F, G,
Hartkopf et al. 1989; Wright & Howard 2009; O’Neil et al.
2019), Cartesian elements (x, y, z, vx, vy, vz, Ferrer-Chávez et al.
2021a), and a reduced basis set for modeling the RV only
(a e m i, , sin ,( ) w). Users can specify priors using arbitrary
distributions from Distributions.jl16 and functions of
those distributions.
For the analyses presented in this paper, we adopt either

Campbell elements or Thiele-Innes elements with the following
priors and modifications. When using Campbell elements, we
adopt a log-uniform prior on the semimajor axis, a uniform
prior on eccentricity, a sine prior on inclination, a Gaussian
prior on host mass, and uniform priors on the remaining
angular parameters. Note that Octofitter reports the argument of
periastron of the planet (and not the star) as ω and adopts +z
increasing away from the observer. These conventions match
those used by orvara and orbitize! (Householder &
Weiss 2023). The full conventions used in Octofitter are
described in Appendix A. When using Thiele-Innes elements,
we adopt a log-uniform prior on a “scale” parameter and
multiply this with standard Gaussian priors on constants A, B,
F, and G. This maintains a log-uniform prior on the semimajor
axis and sine prior on the inclination. For both cases, we
replace parameter τ, which gives the position of a planet along
its orbit (Blunt et al. 2020), with θ, the position angle at the
average epoch of the observations. This improves convergence
relative to sampling from the τ parameter directly as θ is
directly constrained by relative astrometry and is not sensitive
to other orbital parameters. A derivation of τ from position
angle θ is presented in Appendix B.

3.3. Modeling Language

To specify the structure of a system model,
Octofitter provides a domain-specific modeling language. This
simple language allows for the parameterizations and observa-
tions associated with each planet and the host star to be
independently specified. For example, we could attach separate
RV measurements to each object in a system. Orbital
parameters can be drawn from arbitrary prior distributions,
fixed to particular values, or computed from combinations of
other system parameters.

Figure 2. Posterior density of photometry vs. semimajor axis for a simulated
detection and nondetection. The solid lines mark the mean of the marginal
photometry posterior, and the dashed lines mark ±1σ. We consider a planet
detected when the S/N based on the photometry marginalized over all other
parameters is greater than some chosen threshold, e.g., 5σ.

16 https://juliastats.org/Distributions.jl
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This modeling language makes it convenient to work with
simple systems, like fitting the orbit of one planet to relative
astrometry measurements, as well as more complex multiplanet
systems.

The following is an example of a planet model using
traditional Campbell orbital parameters, user-specified priors,
and relative astrometry data:

table = Table(CSV.read("astrom.csv"))
astrom = AstrometryLikelihood(table)
@planet b VisualKepOrbit begin
a ∼ LogUniform(2.5, 25)
i ∼ Sine()
e ∼ truncated(
Normal(0.2, 0.2),
lower = 0,
upper = 1
)
Ω∼UniformCircular()
ω∼UniformCircular()
τ∼UniformCircular(1.0)

end astrom

A similar syntax is used to specify stellar properties:

@system HD1234 begin
plx ∼ truncated(
Normal(41.123, 0.012), lower = 0)
M ∼ truncated(
Normal(1.5, 0.05), lower = 0)
age_Myr ∼ Uniform(30, 300)
end b

The planet and system definition blocks contain pairs of
variable names and values, which can be constants, prior
distributions, or arbitrary functions of other variables. Variables
drawn from priors are specified by ∼, whereas variables
defined as constants or calculated as a function of other
variables are defined with =. In this example, the convenience
function UniformCircular creates two independent vari-
ables with standard normal priors and computes the angle
between them using the arctangent. This, in effect, creates a
circular domain where samples can smoothly wrap past 0 and
2π. Users are free to create their own parameterizations and
likelihoods and combine them arbitrarily. The only require-
ments are that they are differentiable and smooth, and return a
finite value at all points in the domain given by the priors.

This modeling approach, by being declarative rather than
imperative, as in exoplanet.py (Foreman-Mackey et al.
2021), allows us to transform and evaluate the model in several
ways. One key restriction is that each prior is proper, meaning
it is a true probability distribution that integrates to unity. This
is in contrast to some of the defaults used by orvara, which
adopts fully scale-independent, but improper (in the statistical
sense of the word) log-uniform priors. Octofitter requires
proper priors to support tasks that require sampling directly
from the prior distributions, such as simulation-based calibra-
tion, as will be discussed in Section 3.7.

3.4. Numerical Methods

From a model definition, Octofitter can generate efficient
machine code using run-time-generated functions and Julia’s
just-in-time compiler. This code generation step allows

Octofitter to support a rich variety of observation types without
paying any run-time overhead for features that are not used.
For the purposes of sampling from the posterior,

Octofitter begins by remapping all variables from their possibly
limited support (for example, eccentricity constrained between
0 and 1) into new variables defined across the entire real line.
This makes it so that by construction, invalid parameter values
like negative masses or semimajor axes are not possible to
construct and will not be hit by a sampler. This transformation
is performed by the Julia package Bijectors.jl.17

Next, a log-prior function is created for the model that
simply evaluates the log-probability density of each prior
distribution given a set of parameters. To preserve the user-
specified prior distributions in place of the automatic bijections,
a correction is applied based on the Jacobian of the
transformation.
Similarly, a log-likelihood function is created based on the

provided model and observations. Various constants are
precalculated and reused between orbit solutions.
To enable the use of higher-order samplers, including

Hamiltonian Monte Carlo, forward-mode automatic differentia-
tion is used to differentiate through the generated log-prior and
log-likelihood functions (Revels et al. 2016). This provides the
gradient of the log-posterior density, in addition to the value
itself, without the overhead of calculating finite differences.
The overhead of calculating both the log-posterior density and
its gradient using forward-mode automatic differentiation can
be as low as just 2× compared to 10.2× for finite differences.
Special care was taken to remove all dynamic memory

allocations from the generated log-density and gradient
functions to prevent overhead from the Julia garbage collector.
Octofitter implements the Julia LogDensityProblems

interface so that user models can be sampled from a wide
variety of Julia-based Markov chain Monte Carlo (MCMC)
sampler packages, including AdvancedMH, AdvancedHMC,
and MCMCTempering. This allows users to select the best
sampler for their particular problem and to compare results
against samplers used by other popular packages.
The No-U-Turn Sampler (NUTS) variant of Hamiltonian

Monte Carlo (Hoffman & Gelman 2014) provided by
AdvancedHMC is the default used by Octofitter. It allows
the code to explore complex posterior distributions with many
fewer log-posterior density evaluations by simulating physical
trajectories across the posterior landscape. The performance of
NUTS in Octofitter will be discussed in Section 4.1.
When using the default NUTS sampler, we use a dense mass

matrix, a jittered leapfrog integrator, and a multinomial
trajectory sampler, and allow the user to specify a maximum
tree depth. We initialize the sampler by drawing 250,000
samples from the priors and selecting the value with the highest
posterior density as the starting point. We also initialize the
diagonal elements of the mass matrix using the interquartile
range of the priors. We found that this procedure was more
robust than trying to determine the maximum a posteriori value
with an optimizer for multimodal posteriors like those found
when modeling images. In particular, this procedure is less
likely than an optimization pass to get stuck in a local optimum
or other pathological position. A downside of this approach is
that it may be inefficient if the priors are narrow and far from
the posterior. For this case, the user can supply a starting point

17 https://turinglang.org/Bijectors.jl/
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manually as in other tools. Next, we adapt the mass matrix and
step size according to AdvancedHMCʼs implementation of the
Stan windowed adaptation strategy. Finally, sampling proceeds
until a preset number of accepted proposals are found—
typically chosen to be on the order of 1000 to 10,000.

3.5. Kepler Solver

To sample from planet models, one must map from the
orbital parameters specified in the system model to simulated
observations, such as a planet’s position over time in the plane
of the sky or the RV of the host star. In all cases, this requires
solving Kepler’s equation at every observation epoch and
parameter draw. Kepler’s equation (Equation (A3)) connects
eccentricity and mean anomaly, a pseudo-angle somewhat
analogous to the amount a planet has moved around its orbit,
into an eccentric anomaly, which can be used to find the actual
location of the planet in its orbit.

Kepler’s equation is transcendental and cannot be solved
analytically outside of special cases. The traditional approach
to solving the equation is to use an iterative procedure like
Newton’s method with an initial guess chosen carefully from
the mean anomaly and eccentricity. Octofitter’s strategy is to
wrap many different pluggable Kepler solvers that can be
useful in different scenarios and use a fast noniterative method
as a default.

A nonexhaustive list of solvers supported by Octofitter are
Markley (Markley 1995), Goat (Philcox et al. 2021), and
Newton. Newton’s method and many other available root-
finding algorithms are provided by the Roots.jl18 Julia
package.

As these solvers are all implemented in pure Julia, there is no
overhead from calling between Python and a C/Cython19

library and full performance is achieved with or without
vectorization. Additionally, the solvers support changing the
numerical precision between 16 bit, 32 bit, 64 bit, and arbitrary
precision. Currently, no particular effort has been made to
exploit hardware SIMD vectorization across epochs.

The Markley algorithm, the default choice, converges to
nearly machine precision for all bound orbits when used with
64 bit floating point values. The Newton method can be
combined with arbitrary precision floating point numbers to
achieve arbitrarily tight tolerances if needed for niche
applications. The default Markley (1995)-based method
executes in just 90 ns on 64 bit floating point values for any
valid eccentricity and mean anomaly (benchmarked on a
Skylake Intel Xeon processor). This is slightly slower than the
state-of-the-art results reported by Brandt et al. (2021);
however, their results of ≈60 ns are only achieved when the
solver is vectorized over many epochs.

Applying automatic differentiation through an iterative
Kepler equation solver would lead to poor performance. Even
though Kepler’s equation has no closed solution, the
derivatives of the eccentric anomaly with respect to mean
anomaly and eccentricity can be found analytically using
implicit differentiation (Equations (A5) and (A6)); that is, if we
have already solved Kepler’s equation for the eccentric
anomaly, we can calculate its gradient inexpensively. We
supply these equations as a manual rule to the automatic
differentiation library.

3.6. Analysis and Visualization

Once sampling is complete, Octofitter supports the user in
testing the convergence of their chain or chains. The sampling
results are returned as Chains objects from MCMCChains.
jl. This table-like structure includes entries for each accepted
MCMC proposal as well as metadata about the sampling
process, such as the computational time used. All variables are
returned, including those that were fixed to a constant or
calculated deterministically from combinations of other vari-
ables. The output is an automatic summary that includes
plausible intervals, expectation values, effective sample sizes
(ESS), and R̂ statistics for each parameter. The user can test the
convergence of their chain or chains by assessing those ESS
and R̂ values, creating a trace plot, and/or calculating figures
like the Gelman, Rubin, and Brooks diagnostic (Gelman &
Rubin 1992; Brooks & Gelman 1998) using tools provided by
MCMCChains.jl and MCMCDiagnosticTools.jl.
Octofitter can be used to visualize orbit fits in several ways.

The orbits represented by chains can be plotted in the plane of
the sky, in physical system coordinates (i.e., au), or as a time
series (e.g., for Doppler or astrometric velocimetry).
When visualizing an orbital posterior, a common challenge

is ensuring that enough data points are used to create a smooth
arc. This becomes especially challenging with eccentric orbits
or ensembles of orbits with widely varying periods. Tracing out
orbits in equal time steps will lead to most points clustering
closer to apastron, where the planet is moving the most slowly.
The strategy used by Octofitter is to trace orbits in equal steps
of eccentric anomaly, as suggested in Berry & Healy (2002).
This places points in regions of greater curvature, creating
smooth arcs with fewer points.
Octofitter includes functions to generate plots that visualize

the posterior and compare it to the input data. This includes
astrometry, separation, position angle, RV, and proper motion
anomaly. It also includes a function for visualizing orbits in
spatial coordinates (units of au) in one, two, or three
dimensions. Examples of these plots are shown throughout
the text and documented with the online tutorials.

3.7. Simulation-based Calibration

SBC (Cook et al. 2006; Talts et al. 2020) is a technique that
allows one to verify that the output of a Bayesian modeling
procedure is unbiased. This includes any part of the computa-
tion, from model specification to the sampling procedure after
the choice of priors. Verifying that this choice of priors is
reasonable is the domain of other procedures like prior and
posterior predictive tests.
A conceptually related procedure was carried out in Ferrer-

Chávez et al. (2021b) in which the authors systematically tested
the orbitize! package, parameterization, and default priors
for biases. Our contribution here is to present a procedure that
is well explored in the statistics literature, is specific to a given
set of observation epochs and measurement uncertainties, and
can be applied in an automated fashion.
The calibration procedure requires a generative model—that

is, a way to take a given set of parameters and create a
simulated observation. A familiar example from direct imaging
is the injection of fake point sources to test image processing
algorithms. To follow this procedure, one repeatedly draws a
set of parameters from the priors, creates simulated observa-
tions based on those parameters, samples from the resulting

18 https://juliamath.github.io/Roots.jl/
19 https://cython.org/
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posterior, and then compares the true parameter values
(originally sampled from the priors) with the resulting poster-
ior. By doing this many times, one creates a histogram of rank
statistics that can reveal many sources of biases present in the
model and sampling process. To be clear, this does not evaluate
how the choice of priors impacts the posterior.

We implemented support for performing simulation-based
calibration automatically in Octofitter. In this procedure,
Octofitter takes a given model’s observational data, discards
the actual measurements, and keeps the epochs and uncertain-
ties associated with each measurement. Octofitter then
repeatedly creates simulated data at each epoch by drawing
from the priors and performs SBC on these simulated data.
SBC should, in general, be applied to each model to confirm
that it is working as expected.

Figure 3 shows the results of the simulation-based calibra-
tion procedure applied to a model of a planet parameterized by
Thiele-Innes elements and the position angle at the average
epoch. For the most part, these histograms do not reveal any
systematic biases in the Octofitter sampling procedure. One
exception is the “bump” in the position angle histogram. This
shape indicates that Octofitter is under-confident and the
sampled posterior distribution is wider than the true posterior.
By contrast, seemingly small tweaks to the choice of priors can
result in histograms with strong biases. For example, drawing
the Thiele-Innes constants (A,B) and (F,G) from log-uniform
prior distributions rather than Gaussian distributions centered
around a single scale, itself drawn from a log-uniform prior,
results in noticeable issues with the SBC histograms. A guide
to interpreting the results of the SBC procedure is available in
Talts et al. (2020).

These tests illustrate the value of performing the simulation-
based calibration procedure for each new model and data
combination a user wishes to use. Given the complexity of orbit
models and the difficulty of sampling from them, we do not
expect our sampling procedure to be entirely unbiased. Rather,
we hope that by creating an easy way to diagnose these biases,
users of Octofitter can interpret their results with an appropriate

level of skepticism in accordance with the level of bias
detected.

3.8. Other Packages

Fitting observations of planets and binary stars to orbits has
been widely addressed in the literature, dating back to Kepler’s
seminal work. More recently, a variety of software packages
have been released following both frequentist and Bayesian
approaches. Some of these packages include EXOFAST
(Eastman et al. 2019), rvfit (Iglesias-Marzoa et al. 2015),
radvel (Fulton et al. 2018), and the Python exoplanet
package (Foreman-Mackey et al. 2021). Most relevant to
image- and visibility-based modeling are packages for fitting
relative astrometry, RV, and proper motion anomaly, like
orbitize! (Blunt et al. 2020), orvara (Brandt et al. 2021),
and Efit (presented in Meyer et al. 2012), as well as image
searching codes like K-Stacker (Nowak et al. 2018) and
PACOME (J. Dallant et al. 2023, submitted).
These tools have employed a variety of methods for

approximating posteriors, including affine invariant (Fore-
man-Mackey et al. 2013) and parallel tempered affine invariant
MCMC (Vousden et al. 2016) in orvara and orbitize!,
Hamiltonian Monte Carlo (Hoffman & Gelman 2014) in
exoplanet, and nested sampling (Skilling 2004) in Efit.
With the exception of exoplanet, the majority of these
codes have used first-order samplers. That is to say, they rely
only on evaluating the posterior density and do not calculate or
make use of gradient information.

4. Results

4.1. Demonstration with Relative Astrometry

We begin our demonstration of Octofitter by fitting orbits to
the simulated relative astrometry measurements, which is one
of the simplest use cases for the package. We considered a
simulated orbit of a single planet and generated astrometry at
27 epochs (Table 1). For the sake of comparison, we performed

Figure 3. Sample results of running the simulation-based calibration procedure on a model consisting of a single planet parameterized with Thiele-Innes elements (A,
B, F, G, etc.) and position angle θ. Each count represents a model fit to a different simulated system. The horizontal band gives a 99% range around the expected value
for a perfect sampling procedure. The observation epochs and uncertainties are taken from Table 1.
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the same fit using two other popular orbit fitting packages:
orvara and orbitize!.

We followed the best practices laid out in the tutorials
provided with each package. orvara and orbitize! use
slightly different priors by default and cannot be made to match
each other exactly without code modifications. Orvara uses
an e sin( )w and e cos( )w parameterization, while orbi-
tize! uses separate uniform priors on both e and ω.
Therefore, we ran our comparisons twice, first adopting priors
similar to orvara and then priors similar to orbitize! In
all cases, we used a log-uniform prior on the semimajor axis
between 0.1 and 1000 au. We ran the orvara and
orbitize! packages with settings recommended by their
authors. These were four temperatures with 100 walkers for
orvara and 20 temperatures with 1000 walkers for
orbitize!. We ran Octofitter with 16 independent chains.
We initialized the walkers used by orvara and orbitize!
in a Gaussian ball around the true orbit. For orbitize!, we
improved the convergence by randomly initializing half the
walkers on the second mode of the ω marginal posterior. For
Octofitter, on the other hand, we initialized it automatically
using our procedure of drawing from the priors and selecting
the parameters with the highest posterior density.

We drew 20,000,000 samples from each walker using
orvara and 100,000 from each walker using orbitize!.
For Octofitter, we adapted the step size and mass matrix for
5000 iterations and then drew a further 15,000 samples. The
resulting posteriors are compared in Figure 4. To remove the
burn-in phase, we discarded the first halves of the orvara and
orbitize! chains and the first 5000 samples of the Octofitter
chains (the adaptation phase).

To measure how long each package takes to converge to a
steady distribution, we followed a similar procedure to Ferrer-
Chávez et al. (2021a). We divided each chain into 50 segments

and assumed that in the final segment, the chain is fully
converged. We then calculated the R̂ statistic between each
segment and the final segment. We used the rank normalized
and median folded version of the statistic as implemented in
MCMCDiagnosticTools.jl20 to evaluate how well the
samplers converged in the bulk and in the tails of the
distribution. We considered it converged once R̂ became less
than 1± 0.005 for all variables. We evaluated this on all
walkers (orvara and orbitize!) and all chains (Octofitter)
and took the median.
The most important result of this code comparison is that in

the limit of large numbers of samples, all packages produce
posterior distributions that largely agree with each other and
that include the true orbit. The orbit paths in the plane of the
sky are compared in Figure 4, and the parameters are compared
in a corner plot in Figure 5. This should serve to further
improve confidence in the results of all packages.
The sole exception is that the orbit posterior from Octofitter

contains more samples from a high-eccentricity, high-semi-
major axis branch of the posterior than the two other packages
(Figure 5). Nonetheless, running SBC on this model with
uncertainties and observation epochs from this data set
(Figure 3) reveals that Octofitter is acceptably calibrated and
is not overestimating the spread of the posterior. It is not
computationally feasible to perform the same SBC experiment
with the other packages, but this likely indicates that the
additional samples from the long tail of the posterior are
representative of the true posterior and would eventually appear
in the outputs of the other packages.
A second result is that for this problem, Octofitter

converges to a steady distribution almost immediately using
a single computer core, while other packages take many hours

Figure 4. Orbit fitting posteriors visualized in the plane of the sky, compared between three packages: orvara, orbitize!, and Octofitter.

20 http://turinglang.org/MCMCDiagnosticTools.jl/
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to converge (Figure 6). As assessing the convergence of
MCMC can be difficult, we suggest that with Octofitter,
unsophisticated users are therefore less likely to use
insufficiently converged results in their analyses. Of course,
in addition to needing the chain to be converged, one must
also generate a sufficient number of samples for the problem
at hand. Interestingly, despite the much faster convergence,
Octofitter is no faster than the other packages at producing
independent samples. In most workflows, the bottleneck is
ensuring convergence rather than a need to produce tens of
thousands of samples, so Octofitter should still offer a
decisive improvement in computation time.

The exact results are hardware-specific, sensitive to the data,
and depend on the choice of priors and parameterization. It is
not feasible to fully account for all small differences between
software packages, and it is likely that different approaches will
perform better or worse depending on the problem at hand. An
additional caveat is that the ptemcee sampler used by
orvara and orbitize! scales across many cores, which
reduces the total sampling time. Octofitter supports running
multiple chains in parallel but is not configured to use multiple
cores to accelerate a single chain. Finally, given the
convergence guarantees of MCMC, all packages would
approach the same distribution given infinite time. This

Figure 5. Corner plot of key orbital parameters for the case shown in Figure 4 compared between three packages: orvara, orbitize!, and Octofitter. The
semimajor axis is plotted on a log scale to reveal how the sampler behavior differs in the long tail. Though we expect all packages to eventually converge to near-
identical results, we find that there are small differences in the ω, a, and e marginal posteriors that persist even after running for multiple days.

11

The Astronomical Journal, 166:164 (20pp), 2023 October Thompson et al.



comparison, therefore, is meant only to illustrate the typical
efficiency one might expect with Octofitter on similar problems
and reasonable run times.

4.2. Demonstration with Relative Astrometry, RV, and PMA

We now demonstrate Octofitter on a real system with RV,
proper motion anomaly, and relative astrometry data.

The HD 91312 system consists of a 1.6Me star orbited by a
binary companion with a mass of approximately 0.3Me and
separation of roughly 10 au (Chilcote et al. 2021). The
companion was discovered by a direct imaging search targeting
accelerating stars (Currie et al. 2021) from the HGCA. We now
reproduce the orbital analysis of the discovery paper in order to
demonstrate Octofitter’s modeling capabilities when applied to
a combination of relative astrometry, RV, and proper motion
anomaly data.

For this analysis, we used the astrometry data from Chilcote
et al. (2021), proper motion anomaly data from the HGCA
(Brandt 2021), and limited RV data originally from Borgniet
et al. (2019). As the original RV data were not forthcoming, we
measured the RVs from the probability density function plots
submitted to arXiv alongside the 2021 manuscript. We used
similar priors as those described in the discovery paper, namely
log-normal priors on primary and companion mass and a
uniform prior on the square root of eccentricity. These were
chosen to match the analysis of the discovery paper for the
purpose of comparing codes and demonstrating Octofitter
rather than any physical motivation on our part.

The results of this orbit modeling are presented in Figure 7.
Octofitter recovers the orbit of the companion with similar
results to those presented by Chilcote et al. (2021). The RV,

proper motion anomaly, and relative astrometry are all
consistent with the secondary companion having a mass of
approximately 300 Mjup, given the choice of priors described in
the original discovery paper.

4.3. Demonstration with Images

We now present a series of simulations showing how this
framework allows us to detect planets using multiepoch direct
images. We selected 50 sequences from the Gemini Planet
Imager Exoplanet Survey (Nielsen et al. 2020), processed using
a forward model matched filter (FMMF; Ruffio et al. 2017),
which have a stellar I-band magnitude less than or equal to 6
and have no previously detected point sources. To be clear, we
do not search these sequences for real companions but merely
use them as realistic noise maps for our simulations. We
normalized the contrasts of each sequence to the median at
200 mas separation. This retains the true noise distribution but
removes the effects of sequence-to-sequence variation on our
results. We consider a hypothetical system at 20 pc with a 1Me
star that is observed once per month for between 1 and 100
months (a little over eight years). Using these sequences and
parameters, we generated simulated observations of a planet by
injecting a synthetic PSF into the correct positions in each
epoch. These input data are presented in Figure 8.
For all models, we adopted a 1± 0.1Me prior on M, a

uniform 0–30Mjup prior on m, a Gaussian prior on parallax, a
uniform prior on a, and a uniform circular prior on τ.
We test this model’s ability to detect planets in sequences of

direct images for the most straightforward case: circular, face-
on orbits. We injected the planet into 1, 5, 10, 25, 50, and 100
images with an average S/N ranging between 0 and 5 in each
image. Finally, we applied our model to each of these
simulated data sets to arrive at a grid of recovered S/N values
as a function of number of epochs and S/N per epoch
(Figure 9). We find that we are able to recover planet detections
with arbitrarily low S/N per epoch despite orbital motion,
provided we have a sufficient number of observations.
Figure 9 also shows how the recovered S/N compares with

the S/N we would expect for combining images without orbital
motion in the presence of uncorrelated Gaussian noise. We find
that the model detects the injected planets with near-perfect N
scaling when the final, combined S/N is greater than ∼5. For
instance, a planet injected into 100 epochs spaced one month
apart, at an S/N per epoch of just 0.5 (below the noise), is still
robustly detected at a final S/N of 5. We do note that as each
image was taken of a different star, this ideal scaling is the best-
case scenario. It is possible that repeated observations of the
same target could lead to correlated residuals that reduce the
final S/N, though the orbital motion of the planet should
mitigate this in much the same way as angular differential
imaging (Males et al. 2015; Marois et al. 2006).
The left-hand columns of Figure 9 are of particular note.

They show that the model fails to detect a point source injected
into a single image at an S/N of 4. The failure to detect planets
with expected significance below S/N ≈ 5 can be understood
by contrasting our detection criteria with the standard used in
the field. In these models, we consider the overall S/N
marginalized over all locations in the image (or orbits through a
sequence), whereas typically, one looks at the maximum S/N
at any given location. For example, in any S/N 5 detection of a
planet, numerous other S/N 2 and 3 peaks exist. When looking
at the S/N marginalized over all locations, these other peaks

Figure 6. Comparison between packages of the average time until chains
converged to a stationary distribution and the rate at which independent
posterior samples are generated. The effective sample size (ESS) rate was
measured separately using the bulk and tail methods of MCMCDiagnostics.
jl. Note that the R̂ and ESS of the slowest variable for a given sampler are
used as this is what ultimately limits sampling performance. These results are
based on the astrometry presented in Table 1 and are expected to depend
strongly on hardware, input data, and choice of priors.

12

The Astronomical Journal, 166:164 (20pp), 2023 October Thompson et al.



serve to reduce the final S/N. This makes the S/N calculated
from the marginal photometry posterior a more stringent planet
detection test.

4.4. Demonstration with Aperture Masking Interferometry and
Radial Velocity

We now demonstrate Octofitter using a combination of
simulated RV data and AMI visibilities. We considered a
plausible scenario where a planet has been detected using the
RV, had its orbit characterized, and is then followed up with a
series of three observations with JWST/Near InfraRed Imager
and Slitless Spectrograph (NIRISS) AMI (Doyon et al. 2012;
Sivaramakrishnan et al. 2023). For this experiment, we
connected the mass of the planet to its Ms-band photometry
using Sonora Bobcat models (Marley et al. 2021) for a fixed
system age of 10Myr. The simulated system had a true orbit

with a semimajor axis of 2 au, an eccentricity of 0.1, an
inclination of 45°, a parallax distance of 100 mas, and a mass of
5 Mjup. The star had a stellar absolute Ms-band magnitude
of 2.6.
We simulated the RV by adding Gaussian noise with a

standard deviation of 25 m s−1 to 74 epochs of RV data
generated from the above system. The data points were spaced
by ∼30 days between 2017 and 2023.
The AMI data were generated using Equation (3) for a single

companion following the given orbit. For this example, we
used only the closure phase and did not include the squared
visibilities. We again added Gaussian noise to the calculated
closure phases, with a closing triangle-dependent standard
deviation taken from the closure phase uncertainties calculated
with AMICAL (Soulain et al. 2020) from NIRISS AMI F480M
data of (the presumed single stars) HD 101531 and HD 123991
calibrated against each other.

Figure 7. Sample plot output from Octofitter using data from the HD 91312 system. The top row visualizes the orbital posterior compared with velocity measurements
of the host. The horizontal bars in the proper motion panels show the time spans over which the average velocity was measured. The middle row shows the posterior
compared with astrometry measurements in the plane of the sky and in the separation and position angle over time. The bottom row shows the orbital posterior in
physical coordinates to compliment the astrometry plot. The rightmost panel shows a deprojected view of the system where orbits have been rotated face on and to
place periastron at the bottom. The conventions used by Octofitter are described in Appendix A.
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We applied Octofitter with a joint model of the RV data and
three AMI epochs. We also compared this to χ2 maps from the
Fouriever framework (presented in Kammerer et al. 2023)
of each individual epoch. The results of this experiment are
shown in Figure 10.

Using the AMI data, the Octofitter model is able to constrain
the inclination and, therefore, the mass of the planet. Due to the
faint signal and presence of noise, the Fouriever results
show spurious signals at each epoch. In comparison, Octofitter
is able to connect the three epochs by a single higher-
significance mode in orbit-parameter space.

This example illustrates how joint modeling across epochs
can be used to increase the significance of AMI and other
similar interferometric observations.

5. Conclusion

We have presented a new code, Octofitter, for modeling
exoplanet relative astrometry, RV, and proper motion anomaly,
as well as performing nontraditional tasks like detecting
moving point sources across images and interferometric
observables.

1. We demonstrated the simulation-based calibration proce-
dure on a hypothetical orbit fitting task and found that for
orbits parameterized with Thiele-Innes constants, Octo-
fitter is acceptably calibrated.

2. We compared the results of Octofitter to the popular
packages orvara and orbitize! and found that all
three arrive at similar posterior distributions.

Figure 8. GPI sequences used for simulations in this section. Each image was normalized to have the same average contrast at 200 mas separation from the star (just
outside the edge of the mask). The images displayed above contain a simulated planet orbiting CCW at an average of just S/N 1 per epoch, spaced one month apart.
Given these data, the model recovers the simulated planet at S/N 7.

Figure 9. Octofitter’s ability to recover planets from simulations of circular, face-on orbits as a function of the S/N per epoch and the number of epochs. Left:
Recovered S/N. Cells above the yellow line would be detected with a 5σ threshold. The cell outlined in cyan corresponds to the data shown in Figure 2. Right: The
same S/Ns relative to an ideal N improvement with the number of epochs. We find that the S/N grows as expected unless the final, combined S/N is below ≈5. The
recovered S/N falls off quickly below this value and levels off at approximately 1. This explains why the recovered S/N of 1 exceeds the injected value of 0.5 in the
bottom left corner.
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3. We showed that Octofitter can converge 1 to 2 orders of
magnitude faster than other popular packages, making it
computationally feasible to perform a variety of statistical
checks like simulation-based calibration for individual
data sets.

4. We demonstrated a combined fit to relative astrometry,
RV, and proper motion anomaly of the HD 91312 system
and found a companion mass that agreed with previous
results.

5. We demonstrated the ability to detect arbitrarily faint
companions despite orbital motion using simulations and
data from the Gemini Planet Imager Exoplanet Survey.

6. We demonstrated a combined model of simulated
RV and multiepoch JWST/NIRISS aperture masking
interferometry.

Octofitter is a powerful new tool that will enable the
community to broadly apply joint multiepoch, multi-instru-
ment, and multiband direct imaging, interferometry, Doppler
RV, and astrometric motion. This will allow for the detection
and characterization of fainter and lower-mass planets more
similar to those in our solar system.
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Appendix A
Derivation of the Cartesian and Celestial Positions,

Velocity, and Acceleration

To properly fit relative astrometry, proper motion anomaly,
and RV data, expressions for the position, velocity, and
acceleration of a secondary companion (such as a planet)
about a primary mass (such as a star) in Cartesian and
celestial coordinates are required. It is well-known that the
solution to the Keplerian two-body problem (for example

Figure 10. Joint modeling of AMI and RV data. A–C: Recovered χ2 maps at each independent AMI epoch created using Fouriever (presented in Kammerer
et al. 2023). D and E: joint RV and AMI posteriors visualized as an RV time series (D) and orbit posterior in the plane of the sky (E).
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Goldstein et al. 2008) is
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where r is the radial separation of the two bodies, a is the
orbital semimajor axis, e is the orbital eccentricity, and ν(t) is
the true anomaly. The true anomaly describes the angular
position of the orbit with respect to periastron, and is the
solution to the equation
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The eccentric anomaly E(t) is in turn the solution to
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Here, tperi is the time of periastron passage and T is the orbital
period. As Equation (A3) is a transcendental equation, E(t)
must be determined numerically. Once calculated, though, the
derivatives of the eccentric anomaly with respect to the mean
anomaly and eccentricity have analytic expressions:
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These expressions can be determined using implicit
differentiation.

A.1. Cartesian Coordinates

Using the well-known relation between polar coordinates (r, ν)
and Cartesian coordinates (x, y, z), we see that in the frame of the
secondary, its position with respect to the primary is
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However, the frame of the secondary and the frame of an
external observer are unlikely to be coincident. Instead, an
external observer is likely to be rotated with respect to the
frame of the secondary. This rotation is quantified by ω (the
argument of periastron of the secondary), i (the inclination of
the orbit), and Ω (the longitude of the orbit’s ascending node).
The rotations associated with these angles are given by the

rotation operators
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Thus, the position of the secondary with respect to its primary
as seen by an external observer is
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Explicitly, we have
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Inspecting this equation, we see that robs(t) is dependent on
a, e, i, ω, and Ω. In addition, there is dependence on tperi and
T because of Equations (A2) and (A3). However, a and T are
related by Kepler’s third law, meaning dependence on T can
be reformulated as dependence on a. Thus, a Keplerian
orbit is uniquely described by the parameters (a, e, i, ω, Ω,
tperi); these are referred to as the Campbell elements.
Note that in Octofitter, we replace tperi with either τ or θ. τ
is given by
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where we choose tref= 58849.0 MJD (2020 January 1; Blunt
et al. 2020), and θ is discussed in Appendix B. We now
differentiate robs(t) to obtain vobs(t). Kepler’s second law
implies that
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Using these identities to differentiate robs(t) produces
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We determine aobs(t) in an identical manner. Observing that

t
T

e t

e

2 1 cos

1
, A15

2

2 3 2
 ( ) ( ( ( )))

( )
( )n

p n
=

+
-

differentiating vobs(t) yields

Having expressions for robs(t), vobs(t), and aobs(t) is quite
useful, as they allow us to determine the corresponding
quantities in celestial coordinates with ease. Furthermore, the
RV of the secondary with respect to its primary can be read off
directly as the z-component of Equation (A14), giving us
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To obtain the primary’s RV with respect to the secondary, we
simply employ conservation of momentum and multiply the
previous expression by −Ms/(Ms+Mp), with Mp and Ms being
the masses of the primary and secondary, respectively. To
determine the RVs measured by an external observer, we add
the barycentre RV γ. Additional linear trends, quadratic trends,
or other trends can be accounted for in Octofitter by making the
instrument zero-points a function of other parameters in the fit.
Overall, we get that the observed RVs of the primary and
secondary are
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where ξ is the combined effect of all relevant trends. Using
these expressions, orbital and physical parameters can be fit to
RV data.

A.2. Celestial Coordinates

Now that we know robs(t), vobs(t), and aobs(t), we can
calculate the corresponding expressions in celestial coordi-
nates. Before doing so, a brief discussion of coordinate
conventions is required. For this paper, we measure with
reference to the celestial north pole. This means that, in

reference to the previous section, the positive x-axis points in
the direction of positive decl. (upwards on the sky), while the
positive y-axis points in the direction of positive R.A.
(leftwards on the sky). This choice of coordinates is important
to note, as it differs from the right/up orientation of the x/y
axes commonly seen elsewhere. Furthermore, the positive z-
axis points away from the observer.
Keeping this coordinate convention in mind, we can

determine position, velocity, and acceleration in celestial
coordinates. Normally, an observer a distance d away
from an object of size r measures the object to have an angular
size of

⎛
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However, for scenarios relevant to this work, r is on the order
of astronomical units and d is on the order of parsecs, meaning
the small angle approximation Δθ≈ r/d can be used with
negligible error. Applying this approximation, we get that the
R.A. and decl. offsets of the secondary from its primary are
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where d is the distance to the system, and xobs and yobs are the
x- and y-components of Equation (A10). From this, it
immediately follows that
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Equation (A14), and that
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where ax,obs and ay,obs are the x- and y-components of
Equation (A16), respectively. The equations for ΔR.A. and
Δdecl. can be used to fit orbital and physical parameters to
relative astrometry data, while the equations for R.A.D and

decl.D can be used to fit orbital and physical parameters to
proper motion anomaly data. R.A.̈D and decl.̈D are used for
calculating model derivatives for higher-order samplers and
may be applied to angular acceleration data in the future.

Appendix B
Derivation of Parameter τ from Position Angle θ

Parameter τ used in orbitize! and Octofitter is the
fraction of the orbit completed by a planet after periastron, at
some reference epoch tref. This is a useful parameterization as it
lies between 0 and 1 for all orbits; however, if the reference
epoch is not similar to the epochs of the observations, it can
exhibit pathological behavior as the other orbital parameters
change. One solution is to adjust the reference epoch for each
data set, but a further improvement for many cases is to instead
adopt the observed position angle θ at epoch t as an
independent variable. θ is an improvement over τ because it
is insensitive to changes in the other parameters and has a
straightforward interpretation. A derivation of τ from θ is
given here.

We begin with the parallax distance to the system w̄, the host
mass M, the eccentricity e, and the Thiele-Innes constants A, B,
F, and G given in Equations (C1)–(C4). From these, we write
the transformation matrix
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We can then calculate the true anomaly ν as
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From this, parameter τ can be calculated using the period as
follows. First, we calculate the semimajor axis a using
Equation (C7). Next, combining Kepler’s third law and the
value of a gives us the period P a GM2 3 ( )p= . The mean
motion is then n= 2π/P, and the epoch of periastron passage
follows from this as tperi= t−MA/n− tref. Finally,

t

P
. B5

peri ( )t =

The corner plot in Figure 11 demonstrates the benefit of this
parameterization. The bottom rows show the same orbits
parameterized with τ and with θ. The θ marginal posterior is
nearly Gaussian and has simple relationships with all other
orbital parameters. By contrast, the τ marginal posterior is less
informative and has complex relationships to ω and Ω.
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Appendix C
Thiele-Innes Elements

In Appendix A.1, we saw that Keplerian orbits can be
uniquely characterized by the Campbell elements (a, e, i, ω, Ω),
in addition to an orbit position parameter (tperi, τ, or θ).
However, Keplerian orbits can be equivalently characterized by
the Thiele-Innes elements (e, A, B, F, G), where e is the orbital
eccentricity and A, B, F, and G are the Thiele-Innes constants,
along with an orbit position parameter. The Thiele-Innes

constants are defined as

A a icos cos sin sin cos , C1¯ ( ( ) ( ) ( ) ( ) ( )) ( )w w w= W - W

B a isin cos cos sin cos , C2¯ ( ( ) ( ) ( ) ( ) ( )) ( )w w w= W + W

F a icos sin sin cos cos , C3¯ ( ( ) ( ) ( ) ( ) ( )) ( )w w w= - W - W

G a isin sin cos cos cos , C4¯ ( ( ) ( ) ( ) ( ) ( )) ( )w w w= - W + W

where w̄ is the parallax distance to the system. As we can see, it
is straightforward to calculate A, B, F, and G from a, i, ω, and

Figure 11. Comparison of θ (blue, second last row) and τ (yellow, last row) parameterizations of the same orbital posterior. The θ marginal posterior is nearly
Gaussian and has simple relationships with all other orbital parameters. By contrast, the τ marginal posterior is less informative and has complex relationships to ω and
Ω. Complex structures in a posterior decrease sampling efficiency and could in some cases lead to biased results.
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Ω. Inverting this relationship, although less straightforward, is
still doable. We begin by defining

u A B C D
1

2
, C52 2 2 2( ) ( )= + + +

v AG BF. C6( )= -

We can recover a using u and v like so:
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Once we have a, i immediately follows from

⎛
⎝

⎞
⎠

i
v

a
arccos . C8

2 2¯
( )

w
=

As Equations (C1)–(C4) involve only icos( ), and
cos cos( ) ( )q q= - , this is technically an equation for |i|. Next,
we define

j A G B Farctan , , C9( ) ( )= + -
k A G B Farctan , , C10( ) ( )= - +

where y xarctan ,( ) is a quadrant-sensitive version of
y xarctan( ) (sometimes written as y xarctan 2 ,( ) or

y xatan2 ,( )). From these quantities, ω and Ω are given by

j k
1

2
, C11( ) ( )w = -

j k
1

2
. C12( ) ( )W = +

Thus, we have successfully recovered a, i, ω, and Ω from the
Thiele-Innes constants.
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