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Human-like systematic generalization 
through a meta-learning neural network

Brenden M. Lake1 ✉ & Marco Baroni2,3

The power of human language and thought arises from systematic compositionality—
the algebraic ability to understand and produce novel combinations from known 
components. Fodor and Pylyshyn1 famously argued that artificial neural networks 
lack this capacity and are therefore not viable models of the mind. Neural networks 
have advanced considerably in the years since, yet the systematicity challenge 
persists. Here we successfully address Fodor and Pylyshyn’s challenge by providing 
evidence that neural networks can achieve human-like systematicity when optimized 
for their compositional skills. To do so, we introduce the meta-learning for 
compositionality (MLC) approach for guiding training through a dynamic stream  
of compositional tasks. To compare humans and machines, we conducted human 
behavioural experiments using an instruction learning paradigm. After considering 
seven different models, we found that, in contrast to perfectly systematic but rigid 
probabilistic symbolic models, and perfectly flexible but unsystematic neural 
networks, only MLC achieves both the systematicity and flexibility needed for 
human-like generalization. MLC also advances the compositional skills of machine 
learning systems in several systematic generalization benchmarks. Our results show 
how a standard neural network architecture, optimized for its compositional skills, 
can mimic human systematic generalization in a head-to-head comparison.

People are adept at learning new concepts and systematically combin-
ing them with existing concepts. For example, once a child learns how 
to ‘skip’, they can understand how to ‘skip backwards’ or ‘skip around 
a cone twice’ due to their compositional skills. Fodor and Pylyshyn1 
argued that neural networks lack this type of systematicity and are 
therefore not plausible cognitive models, leading to a vigorous debate 
that spans 35 years2–5. Counterarguments to Fodor and Pylyshyn1  
have focused on two main points. The first is that human compositional 
skills, although important, may not be as systematic and rule-like as 
Fodor and Pylyshyn indicated3,6,7. The second is that neural networks, 
although limited in their most basic forms, can be more systematic 
when using sophisticated architectures8–10. In recent years, neural 
networks have advanced considerably and led to a number of break-
throughs, including in natural language processing. In light of these 
advances, we and other researchers have reformulated classic tests of 
systematicity and reevaluated Fodor and Pylyshyn’s arguments1. Nota-
bly, modern neural networks still struggle on tests of systematicity11–18— 
tests that even a minimally algebraic mind should pass2. As the technol-
ogy marches on19,20, the systematicity debate continues.

In this Article, we provide evidence that neural networks can achieve 
human-like systematic generalization through MLC—an optimization 
procedure that we introduce for encouraging systematicity through 
a series of few-shot compositional tasks (Fig. 1). Our implementation 
of MLC uses only common neural networks without added symbolic 
machinery, and without hand-designed internal representations or 
inductive biases. Instead, MLC provides a means of specifying the 

desired behaviour through high-level guidance and/or direct human 
examples; a neural network is then asked to develop the right learning 
skills through meta-learning21.

To demonstrate the abilities of MLC, we evaluated humans and 
machines side by side on the same tests of systematic generalization. 
Specifically, we used instruction-learning tasks in a pseudolanguage to 
examine human and machine learning of structured algebraic systems 
(details of the procedures are provided in the ‘Behavioural methods: 
few-shot learning task’ section of the Methods). We also examined 
behaviour in response to highly ambiguous linguistic probes, designed 
to characterize human inductive biases and how these biases could 
either facilitate or hamper systematic generalization (see the ‘Behav-
ioural methods: open-ended task’ section of the Methods). Across these 
evaluations, MLC achieves (or even exceeds) human-level systematic 
generalization. MLC also produces human-like patterns of errors when 
human behaviour departs from purely algebraic reasoning, showing 
how neural networks are not only a capable but also a superior model-
ling tool for nuanced human compositional behaviour (see ‘Modelling 
results’). In a final set of simulations (see the ‘Machine learning bench-
marks’ section of the Methods), we show how MLC improves accuracy 
on popular benchmarks11,16 for few-shot systematic generalization.

Behavioural results
First, we measured human systematic generalization, going beyond clas-
sic work that relied primarily on thought experiments to characterize 
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human abilities1–3. Our experimental paradigm asks participants to pro-
cess instructions in a pseudolanguage in order to generate abstract out-
puts (meanings), differing from artificial grammar learning22, statistical 
learning23 and program learning24 in that explicit or implicit judgments 
of grammaticality are not needed. Instead, the participants generate 
sequences of symbols in response to sequences of words, enabling 
computational systems to directly model the resulting data by building 
on the powerful sequence-to-sequence (seq2seq) toolkit from machine 
learning25,26. All experiments were run on Amazon Mechanical Turk, 
and detailed procedures are described in the ‘Behavioural methods: 
few-shot learning task’ and ‘Behavioural methods: open-ended task’ 
sections of the Methods. The complete set of human and machine 
responses is viewable online (Data availability).

Systematic generalization was evaluated through a few-shot learn-
ing paradigm. As illustrated in Fig. 2, the participants (n = 25) were 
provided with a curriculum of 14 study instructions (input/output 

pairs) and asked to produce outputs for 10 query instructions (see the 
‘Behavioural methods: few-shot learning task’ section of the Methods). 
The study instructions were consistent with an underlying interpre-
tation grammar, which derives outputs from inputs through a set of 
compositional rewrite rules (see the ‘Interpretation grammars’ sec-
tion of the Methods). To perform well, the participants must learn the 
meaning of words from just a few examples and generalize to more 
complex instructions. The participants were able to produce output 
sequences that exactly matched the algebraic standard in 80.7% of 
cases (indicated by an asterisk in Fig. 2b (i)). Chance performance 
is 2.8% for two-length output sequences if the length is known, and 
exponentially less for longer sequences. Notably, participants also 
generalized correctly in 72.5% of cases to longer output sequences 
than seen during training (an example is shown as the last instruction 
in Fig. 2b (i)), which is a type of generalization that neural networks 
often struggle with11. When deviating from this algebraic standard, 
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Fig. 1 | MLC for acquiring compositional skills through a dynamic stream  
of compositional tasks (episodes). a, During training, episode a presents a 
neural network with a set of study examples and a query instruction, all 
provided as a simultaneous input. The study examples demonstrate how to 
‘jump twice’, ‘skip’ and so on with both instructions and corresponding outputs 
provided as words and text-based action symbols (solid arrows guiding the 
stick figures), respectively. The query instruction involves compositional use 

of a word (‘skip’) that is presented only in isolation in the study examples, and 
no intended output is provided. The network produces a query output that is 
compared (hollow arrows) with a behavioural target. b, Episode b introduces 
the next word (‘tiptoe’) and the network is asked to use it compositionally 
(‘tiptoe backwards around a cone’), and so on for many more training episodes. 
The colours highlight compositional reuse of words. Stick figures were adapted 
from art created by D. Chappard (OpenClipArt.org).
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Fig. 2 | Few-shot instruction-learning task that involves responding to 
instructions (linguistic strings) by generating sequences of abstract 
outputs (coloured circles). a,b, Based on the study instructions (a; headings 
were not provided to the participants), humans and MLC executed query 
instructions (b; 4 of 10 shown). The four most frequent responses are shown, 
marked in parentheses with response rates (counts for people and the 

percentage of samples for MLC). The superscript notes indicate the algebraic 
answer (asterisks), a one-to-one error (1-to-1) or an iconic concatenation  
error (IC). The words and colours were randomized for each participant and a 
canonical assignment is therefore shown here. A black circle indicates a colour 
that was unused in the study set.
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model adult compositional skills but not the process by which adults 
acquire those skills, which is an issue that is considered further in the 
general discussion. MLC source code and pretrained models are avail-
able online (Code availability).

As shown in Fig. 4 and detailed in the ‘Architecture and optimizer’ sec-
tion of the Methods, MLC uses the standard transformer architecture26 
for memory-based meta-learning. MLC optimizes the transformer for 
responding to a novel instruction (query input) given a set of input/
output pairs (study examples; also known as support examples21), all of 
which are concatenated and passed together as the input. This amounts 
to meta-learning because optimization occurs over dynamically chang-
ing episodes (each with new study and query examples) rather than a 
static dataset; specifically, each episode constitutes a different seq2seq 
task30,31 defined through a randomly generated latent grammar for inter-
preting inputs as outputs (see the ‘Meta-training procedures for MLC 
and MLC variants’ section of the Methods). To succeed, the transformer 
must find parameter values that are capable of extracting meanings 
from the study words and composing them to answer queries, relying on 
meta-learning but also innovations in the transformer architecture that 
were not envisioned in Fodor and Pylyshyn’s arguments1 (for example, 
variable length input, parameter sharing and self-attention). On test 
episodes, the model weights are frozen and no task-specific param-
eters are provided32. Finally, given the end goal of modelling human 
responses (including errors), we stochastically pair each query with 
either the algebraic output sequence (generated through the episode’s 
grammar) or a heuristic output sequence (sampled through one-to-one 
translations or misapplied rules), at approximately the same ratios as 
observed empirically (see the ‘Meta-training procedures for MLC and 
MLC variants’ section of the Methods).

MLC is capable of optimizing models for highly systematic behav-
iour. The most systematic run produced a transformer that was per-
fectly systematic (100% exact match accuracy) when choosing the 
best responses on the same few-shot instruction-learning task given to 
people (Fig. 2; see the ‘Evaluation procedures’ section of the Methods 
for details and Supplementary Information 1 for model variability 
across 10 runs) and additionally capable of inferring novel rules that 
did not participate in meta-learning (Supplementary Information 1). 
An informal analysis of this run further shows that MLC is also capable 
of more subtle and bias-driven behaviours; when sampling from the 
distribution of model outputs (Fig. 2b), the transformer produced 
systematic outputs at an average rate (82.4%) close to human perfor-
mance (80.7%), and appropriately handled longer output sequences 
at a rate (77.8%) near human levels (72.5%). Moreover, like people, the 

Response 1
1-to-1, IC, ME

Query instructions with human responses

a

fep

fep fep

fep wif

fep dax fep

fep dax kiki

zup fep

kiki dax fep

Response 2
IC, ME

gazzer

gazzer gazzer

gazzer lug

gazzer zup gazzer

gazzer zup dax

wif gazzer

dax zup gazzer

Response 1
1-to-1, IC, ME

Query instructions with MLC responses

b

blicket

blicket blicket

blicket gazzer

blicket zup blicket

blicket zup fep

tufa blicket

fep zup blicket

Response 2
ME

tufa

tufa tufa

tufa kiki

tufa dax tufa

tufa dax wif

fep tufa

wif dax tufa

Response 3
ME

… …

dax

dax dax

dax wif

dax gazzer dax

dax gazzer kiki

fep dax

kiki gazzer dax

Fig. 3 | Open-ended instruction task. a,b, The participants produced 
responses (sequences of coloured circles) to the queries (linguistic strings) 
without seeing any study examples. Each column shows a different word 
assignment and a different response, either from a different participant (a) or 
MLC sample (b). The leftmost pattern (in both a and b) was the most common 

output for both people and MLC, translating the queries in a one-to-one  
(1-to-1) and left-to-right manner consistent with iconic concatenation (IC). The 
rightmost patterns (in both a and b) are less clearly structured but still generate 
a unique meaning for each instruction (mutual exclusivity (ME)).

the responses were still highly non-random and suggestive of strong 
inductive biases. Many errors involved ‘one-to-one’ translations that 
mapped each input word to exactly one output symbol, as if all words 
were primitives rather than functions (24.4% of all errors; marked with 
1-to-1 in Fig. 2b (i)). Other errors involved applying a function but mix-
ing up its arguments, often in ways that suggest an ‘iconic concatena-
tion’ bias for maintaining the order of the input words in the order of 
the output symbols (23.3% of all errors involving function 3 followed 
this pattern; marked with IC in Fig. 2b (i)). These response patterns 
can be compared to biases in language acquisition more generally; 
indeed, forms of one-to-one27 and iconic concatenation28,29 are widely 
attested in natural language.

These inductive biases were evaluated more directly through an 
open-ended instruction task in which the participants were not influ-
enced by study examples and, therefore, their a priori preferences are 
more likely to shine through. Different human participants (n = 29) 
were asked to make plausible guesses regarding the outputs of seven 
unknown instructions and how they relate to one another (responding 
to ‘fep fep’ or ‘fep wif’ with a series of coloured circles), without seeing 
any input/output examples to influence their responses (see Fig. 3 for 
the full task and the ‘Behavioural methods: open-ended task’ section 
of the Methods for details). Despite the unconstrained nature of the 
test, people’s responses were highly structured and confirm the previ-
ous two inductive biases. People’s responses also followed a third bias 
related to mutual exclusivity that encourages assigning unique mean-
ings to unique words27. Reflecting the strong influence of the biases, the 
majority of participants (17 out of 29; 58.6%) responded with a pattern 
analogous to that in Fig. 3a,b (left), which is perfectly consistent with all 
three inductive biases. Across all responses, 18 out of 29 participants 
followed one-to-one (62.1%), 23 out of 29 (79.3%) followed iconic con-
catenation and all but two followed mutual exclusivity in producing a 
unique response to each instruction (27 out of 29; 93.1%).

Modelling results
We next evaluated MLC on its ability to produce human-level systematic 
generalization and human-like patterns of error on these challenging 
generalization tasks. A successful model must learn and use words in 
systematic ways from just a few examples, and prefer hypotheses that 
capture structured input/output relationships. MLC aims to guide a 
neural network to parameter values that, when faced with an unknown 
task, support exactly these kinds of generalizations and overcome pre-
vious limitations for systematicity. Importantly, this approach seeks to 



118  |  Nature  |  Vol 623  |  2 November 2023

Article

MLC transformer made errors reflecting one-to-one translations (56.3% 
of errors; 24.4% for people) and iconic concatenations (13.8% of errors 
involving function 3; 23.3% for people). MLC can also predict which 
instructions are easier or harder for people on average (Pearson’s 
r = 0.788, P = 0.031, two-tailed permutation test, n = 10 items; item-level 
performance is shown in Extended Data Fig. 1). Formally, in Table 1 
(few-shot learning), we compare models through the log-likelihood 
of all the human responses (Fig. 2b (i)) given the model predictions33. 
In the rest of this paragraph, when we say that one model outperforms 
another, there is a difference of 8 natural log points or greater. The 
MLC transformer (Table 1; MLC) outperforms more rigidly systematic 
models at predicting human behaviour. This includes a probabilistic 
symbolic model that assumes that people infer the gold grammar 
but make occasional arbitrary lapses (symbolic (oracle); details of all 
of the symbolic and basic seq2seq models are provided in the ‘Alter-
native neural and symbolic models’ section of the Methods) and a 
transformer optimized on the same training episodes as MLC although 
with strictly algebraic (rather than also bias-based) output responses 
(MLC (algebraic only); details of all of the MLC variants are provided 
in the ‘Meta-training procedures for MLC and MLC variants’ section 
of the Methods). MLC also outperforms a basic seq2seq transformer 
fit to the patterns in Fig. 2 without meta-learning and an MLC model 
optimized for copying rather than systematic generalization (MLC 
(copy only); during training, the query examples always match one 
of the study examples). The MLC transformer performs comparably 
to a probabilistic symbolic model that assumes that people infer the 
gold grammar but respond stochastically with lapses based on the 
human inductive biases (symbolic (oracle/biases)). Indeed, MLC was 
similarly optimized to (implicitly) infer systematic rules and respond 
with the same biased-based patterns, and it is therefore natural that 
the two models would perform similarly. The top-performing MLC 
( joint) was jointly optimized on both the few-shot learning task and 
the open-ended human responses, as described in the next paragraph.

Although human few-shot learning behaviour can be well character-
ized by either MLC or a probabilistic symbolic model, a test of more 
open-ended behaviour emphasizes MLC’s relative strengths. The same 
transformer architecture was optimized on open-ended participant 
behaviour and then asked to fill in outputs for the seven instructions 
one by one (Fig. 3; see the ‘Evaluation procedures’ section of the  

Methods). The MLC transformer responded exactly like the modal 
human participant in 65.0% of samples (Fig. 3b (left)), perfectly instan-
tiating the three key inductive biases. An informal analysis further 
revealed that MLC captured more nuanced patterns of response that 
only partially use the inductive biases (Fig. 3b (right)). Across all model 
samples, 66.0% followed one-to-one (62.1% for people), 85.0% fol-
lowed iconic concatenation (79.3% for people) and the vast majority 
(99.0%) chose a unique response for each unique command (93.1% 
for people). Model predictions were also evaluated through fivefold 
cross-validation33: MLC and other models were optimized on responses 
for either 23 or 24 participants (depending on the cross-validation 
split) and then predicted responses for held-out participants. Per-
formance was scored by log-likelihood and is summarized in Table 1 
(open-ended) (summed over five cross-validation splits, averaged over 
three runs). In the rest of this paragraph, when we say that one model 
outperforms another, there is a difference of 57 natural log points or 
greater. MLC outperforms all alternatives, including the same highly 
algebraic MLC model as described in the previous experiment (MLC 
(algebraic only)) and a probabilistic symbolic model that uses the 
three inductive biases to generate responses but, in contrast to MLC, 
is not capable of optimizing for other patterns in the human behaviour 
(Table 1; symbolic (oracle/biases)). Importantly, a single transformer 
can be optimized for both the few-shot learning and open-ended 
instruction tasks (MLC ( joint)); in fact, this is the strongest overall 
model across experiments for predicting human behaviour (addi-
tional analysis is shown in Extended Data Fig. 5 and Supplementary 
Information 1).

Machine learning benchmarks
Beyond predicting human behaviour, MLC can achieve error rates 
of less than 1% on machine learning benchmarks for systematic gen-
eralization. Note that here the examples used for optimization were 
generated by the benchmark designers through algebraic rules, and 
there is therefore no direct imitation of human behavioural data. We 
experiment with two popular benchmarks, SCAN11 and COGS16, focusing 
on their systematic lexical generalization tasks that probe the handling 
of new words and word combinations (as opposed to new sentence 
structures). MLC still used only standard transformer components 
but, to handle longer sequences, added modularity in how the study 
examples were processed, as described in the ‘Machine learning bench-
marks’ section of the Methods. SCAN involves translating instructions 
(such as ‘walk twice’) into sequences of actions (‘WALK WALK’). In the 
‘add jump’ split, the training set has just one example of how to ‘jump’ 
(mapping to ‘JUMP’) and the test set probes compositional uses of 

Table 1 | log-likelihood of human behaviour as predicted by 
models

Model Few-shot learning Open-ended

Baseline −1,926.5 −1,547.0

Symbolic (oracle) −538.8 –

Symbolic (oracle/biases) −357.2 −1,008.5

Basic seq2seq −1,264.7 –

MLC (copy only) −1,586.4 −1,341.4

MLC (algebraic only) −496.9 −1,218.3

MLC (joint) −349.2 −635.7

MLC −358.1 −693.1

All of the models have fit lapse rates (see the ‘Alternative neural and symbolic models’ section 
of the Methods). The baseline model samples symbols uniformly. For few-shot learning, the 
most systematic run was analysed (based on likelihood of gold algebraic sequences). The 
best scores are indicated in bold.

Query input Study examples (inputs/outputs)

…
dax blicket zup | dax |  zup |  wif    |…| wif blicket dax | …

Query output

3×

3×

<EOS>

<SOS>

…

Fig. 4 | MLC architecture. A standard transformer encoder (bottom) 
processes the query input along with a set of study examples (input/output 
pairs; examples are delimited by a vertical line (∣) token). The standard decoder 
(top) receives the encoder’s messages and produces an output sequence in 
response. After optimization on episodes generated from various grammars, 
the transformer performs novel tasks using frozen weights. Each box is an 
embedding (vector); input embeddings are light blue (latent are dark).
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this verb (for example, ‘jump around right twice and walk thrice’), 
paralleling our human learning task (‘zup’ is the analogue of ‘jump’ in 
Fig. 2). COGS involves translating sentences (for example, ‘A balloon 
was drawn by Emma’) into logical forms that express their meanings 
(balloon(x1) ∨ draw.theme(x3, x1) ∨ draw.agent(x3, Emma)). COGS evalu-
ates 21 different types of systematic generalization, with a majority 
examining one-shot learning of nouns and verbs. To encourage few-shot 
inference and composition of meaning, we rely on surface-level 
word-type permutations for both benchmarks, a simple variant of 
meta-learning that uses minimal structural knowledge, described in 
the ‘Machine learning benchmarks’ section of the Methods. These 
permutations induce changes in word meaning without expanding 
the benchmark’s vocabulary, to approximate the more naturalistic, 
continual introduction of new words (Fig. 1).

The benchmark error rates are summarized in Table 2. On SCAN, 
MLC solves three systematic generalization splits with an error rate 
of 0.22% or lower (99.78% accuracy or above), including the already 
mentioned ‘add jump’ split and ‘around right’ and ‘opposite right’, 
which examine novel combinations of known words. On COGS, MLC 
achieves an error rate of 0.87% across the 18 types of lexical generaliza-
tion. Without the benefit of meta-learning, basic seq2seq has error rates 
at least seven times as high across the benchmarks, despite using the 
same transformer architecture. However surface-level permutations 
were not enough for MLC to solve the structural generalization tasks in  
the benchmarks. MLC fails to handle longer output sequences (SCAN 
length split) as well as novel and more complex sentence structures 
(three types in COGS), with error rates at 100%. Such tasks require 
handling ‘productivity’ (page 33 of ref. 1), in ways that are largely dis-
tinct from systematicity. However, MLC did handle novel sentence 
structures in our few-shot instruction-learning task (77.8% correct on 
queries with both longer input and output sequences than seen during 
study; Fig. 2), suggesting that the right meta-training procedure can 
promote productivity—a challenge we leave to future work.

Discussion
Over 35 years ago, when Fodor and Pylyshyn raised the issue of syste
maticity in neural networks1, today’s models19 and their language 
skills were probably unimaginable. As a credit to Fodor and Pylyshyn’s 
prescience, the systematicity debate has endured. Systematicity con-
tinues to challenge models11–18 and motivates new frameworks34–41. 
Preliminary experiments reported in Supplementary Information 3  
suggest that systematicity is still a challenge, or at the very least an 
open question, even for recent large language models such as GPT-4. 
To resolve the debate, and to understand whether neural networks 
can capture human-like compositional skills, we must compare 
humans and machines side-by-side, as in this Article and other recent 
work7,42,43. In our experiments, we found that the most common  
human responses were algebraic and systematic in exactly the ways 
that Fodor and Pylyshyn1 discuss. However, people also relied on 
inductive biases that sometimes support the algebraic solution and 
sometimes deviate from it; indeed, people are not purely algebraic 
machines3,6,7. We showed how MLC enables a standard neural net-
work optimized for its compositional skills to mimic or exceed human 

systematic generalization in a side-by-side comparison. MLC shows 
much stronger systematicity than neural networks trained in standard 
ways, and shows more nuanced behaviour than pristine symbolic 
models. MLC also allows neural networks to tackle other existing 
challenges, including making systematic use of isolated primitives11,16 
and using mutual exclusivity to infer meanings44.

Our use of MLC for behavioural modelling relates to other approaches 
for reverse engineering human inductive biases. Bayesian approaches 
enable a modeller to evaluate different representational forms and 
parameter settings for capturing human behaviour, as specified 
through the model’s prior45. These priors can also be tuned with behav-
ioural data through hierarchical Bayesian modelling46, although the 
resulting set-up can be restrictive. MLC shows how meta-learning can be 
used like hierarchical Bayesian models for reverse-engineering induc-
tive biases (see ref. 47 for a formal connection), although with the aid 
of neural networks for greater expressive power. Our research adds 
to a growing literature, reviewed previously48, on using meta-learning 
for understanding human49–51 or human-like behaviour52–54. In our 
experiments, only MLC closely reproduced human behaviour with 
respect to both systematicity and biases, with the MLC ( joint) model 
best navigating the trade-off between these two blueprints of human 
linguistic behaviour. Furthermore, MLC derives its abilities through 
meta-learning, where both systematic generalization and the human 
biases are not inherent properties of the neural network architecture 
but, instead, are induced from data.

Despite its successes, MLC does not solve every challenge raised 
in Fodor and Pylyshyn1. MLC does not automatically handle unprac-
tised forms of generalization or concepts outside the meta-learning 
distribution, reducing the scope of entirely novel structures it can 
correctly process (compare the encouraging results on learning novel 
rules reported in Supplementary Information 1, with its failure on 
the SCAN and COGS productivity splits). Moreover, MLC is failing to 
generalize to nuances in inductive biases that it was not optimized for, 
as we explore further through an additional behavioural and model-
ling experiment in Supplementary Information 2. In the language 
of machine learning, we conclude that the meta-learning strategy 
succeeds when generalization makes a new episode in-distribution 
with respect to the training episodes, even when the specific test 
items are out-of-distribution with respect to the study examples in 
the episode. However, meta-learning alone will not allow a standard 
network to generalize to episodes that are in turn out-of-distribution 
with respect to the ones presented during meta-learning. The cur-
rent architecture also lacks a mechanism for emitting new symbols2, 
although new symbols introduced through the study examples could 
be emitted through an additional pointer mechanism55. Last, MLC 
is untested on the full complexity of natural language and on other 
modalities; therefore, whether it can achieve human-like systematic-
ity, in all respects and from realistic training experience, remains to 
be determined. Nevertheless, our use of standard transformers will 
aid MLC in tackling a wider range of problems at scale. For example, 
a large language model could receive specialized meta-training56, 
optimizing its compositional skills by alternating between standard 
training (next word prediction) and MLC meta-training that continually 
introduces novel words and explicitly improve systematicity (Fig. 1). 

Table 2 | Error rates for systematic lexical generalization on machine learning benchmarks

Within-distribution generalization Systematic lexical generalization

Model SCAN Simple COGS Simple SCAN Add jump SCAN Around right SCAN Opp. right COGS Lexical

Basic seq2seq 0.00% 0.12% 99.27% 51.13% 100.00% 6.08%

MLC 0.02% 0.34% 0.22% 0.04% 0.06% 0.87%

Values are exact-match error rates averaged over five runs (0.00% is perfect and 100.00% is worst case). Simple splits evaluate within-distribution generalization. All other splits evaluate  
systematic lexical generalization. The best scores are indicated in bold font. Opp, opposite.
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For vision problems, an image classifier or generator could similarly 
receive specialized meta-training (through current prompt-based 
procedures57) to learn how to systematically combine object features 
or multiple objects with relations.

Our study raises natural developmental questions. The specific pro-
cedure of optimizing over many related grammar-based tasks is not 
developmentally plausible, but there are several ways in which the 
greater principle—that systematicity can be honed through incentive 
and practice—has developmental merit. First, children are not born 
with an adult-like ability to compose functions; in fact, there seem to 
be important changes between infancy58 and pre-school59 that could 
be tied to learning. Second, children become better word learners 
over the course of development60, similar to a meta-learner improving 
with training. It is possible that children use experience, like in MLC, to 
hone their skills for learning new words and systematically combining 
them with familiar words. Beyond natural language, people require a 
years-long process of education to master other forms of systematic 
generalization and symbolic reasoning6,7, including mathematics, logic 
and computer programming. Although applying the tools developed 
here to each domain is a long-term effort, we see genuine promise in 
meta-learning for understanding the origin of human compositional 
skills, as well as making the behaviour of modern AI systems more 
human-like.
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Methods

Behavioural methods: few-shot learning task
The meaning of each word in the few-shot learning task (Fig. 2) is 
described as follows (see the ‘Interpretation grammars’ section for 
formal definitions, and note that the mapping of words to meanings 
was varied across participants). The four primitive words are direct 
mappings from one input word to one output symbol (for example, 
‘dax’ is RED, ‘wif’ is GREEN, ‘lug’ is BLUE). Each output symbol is a circle 
of a particular colour. The other three words are functional terms that 
take arguments. Function 1 (‘fep’ in Fig. 2) takes the preceding primi-
tive as an argument and repeats its output three times (‘dax fep’ is RED 
RED RED). Function 2 (‘blicket’) takes both the preceding primitive 
and following primitive as arguments, producing their outputs in a 
specific alternating sequence (‘wif blicket dax’ is GREEN RED GREEN). 
Last, function 3 (‘kiki’) takes both the preceding and following strings 
as input, processes them and concatenates their outputs in reverse 
order (‘dax kiki lug’ is BLUE RED). We also tested function 3 in cases in 
which its arguments were generated by the other functions, exploring 
function composition (‘wif blicket dax kiki lug’ is BLUE GREEN RED 
GREEN). During the study phase (see description below), participants 
saw examples that disambiguated the order of function application 
for the tested compositions (function 3 takes scope over the other 
functions).

Thirty participants in the United States were recruited using Ama-
zon Mechanical Turk and the psiTurk platform61. All of the studies 
were approved by the NYU IRB, protocol FY2018-1728, and obtained 
informed consent. The participants were informed that the study inves-
tigated how people learn input–output associations, and that they 
would be asked to learn a set of commands and their corresponding 
outputs. Learning proceeded in a curriculum with four stages, with 
each stage featuring both a study phase and a test phase (see Extended 
Data Fig. 1 for the complete set of study and test instructions). In the 
first three stages, during the study phase, the participants learned 
individual functions from just two demonstrations each (functions 1 
through 3; Fig. 2a). In the final stage, participants learned to interpret 
complex instructions by combining these functions (function com-
positions; Fig. 2a). After all stages, there was a short survey that asked 
about strategy and any technical problems. Participants spent an aver-
age of 23 min in the experiment (minimum 8 min and 41 s; maximum 
41 min and 19 s).

Each study phase presented the participants with a set of example 
input–output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples of the 
relevant function, presented together on the screen. For the last 
stage, the entire set of study instructions was provided together to 
probe composition. During the study phases, the output sequence 
for one of the study items was covered and the participants were 
asked to reproduce it, given their memory and the other items on 
the screen. Corrective feedback was provided, and the participants 
cycled through all non-primitive study items until all were produced 
correctly or three cycles were completed. The test phase asked partici-
pants to produce the outputs for novel instructions, with no feedback 
provided (Extended Data Fig. 1b). The study items remained on the 
screen for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and test items 
always differed from one another by more than one primitive sub-
stitution (except in the function 1 stage, where a single primitive was 
presented as a novel argument to function 1). Some test items also 
required reasoning beyond substituting variables and, in particular, 
understanding longer compositions of functions than were seen in the  
study phase.

The response interface had a pool of possible output symbols that 
could be clicked or dragged to the response array. The circles could be 
rearranged within the array or cleared with a reset button. The study 

and test set only used four output symbols, but the pool provided six 
possibilities (that is, there were two extra colours that were not associ-
ated to words), to discourage reasoning by exclusion. The assignment 
of words to colours and functions was randomized for each participant 
(drawn from nine possible words and six colours), and the first three 
stages were presented in random order.

We used several strategies to ensure that our participants were paying 
attention. First, before the experiment, the participants practiced using 
the response interface and had to pass an instructions quiz; they cycled 
through the quiz until they passed it. Second, catch trials were included 
during the test phases, probing the study items rather than new items, 
with the answers clearly presented on the screen above. There was one 
catch trial per stage (except the last stage had two); participants were 
excluded if they missed two or more catch trials (n = 5). Finally, query 
responses were also excluded if the corresponding study phases were 
not completed correctly (for all items) within three attempts (13% of 
remaining data).

For statistical analyses of the data from this experiment and else-
where, we tested for data normalcy and applied alternative nonpara-
metric or permutation tests when the assumptions were not met.

Interpretation grammars
The few-shot learning task evaluated with humans and machines is 
defined through a set of compositional rewrite rules for translating 
linguistic instructions to output sequences (Extended Data Fig. 2). 
Inspired by formal semantics62, we denote a set of rules such as this as 
the ‘interpretation grammar’. We refer to the grammar in Extended Data 
Fig. 2 that defines the human learning task as the ‘gold interpretation 
grammar’, whereas a different interpretation grammar is shown in 
Extended Data Fig. 4. The rules apply one by one, based on their condi-
tions, until they produce an output sequence consisting of all terminal 
symbols (coloured circles). A worked example of interpreting a complex 
query is shown in Extended Data Fig. 3. Four of the rules define how the 
primitive words (such as ‘dax’, ‘wif’) map to a single output symbol. 
The other rules define functions (‘fep’, ‘blicket’ and ‘kiki’) that apply 
when certain conditions are met through their arguments and, when 
applied, initiate recursive calls of the interpretation process on their 
intermediate outputs. Note that a different set of rules will define a dif-
ferent few-shot learning problem; this property is used to define many 
different few-shot learning problems for optimizing MLC. Although 
the situation does not arise for the study or query instructions in the 
few-shot task (see the ‘Behavioural methods: few-shot learning task’ 
section), it is possible that two rules satisfy their conditions at the same 
intermediate step. If so, the first rule in the interpretation grammar 
listing is used in order to resolve the ambiguity.

Behavioural methods: open-ended task
The instructions were as similar as possible to the few-shot learning 
task, although there were several important differences. First, because 
this experiment was designed to probe inductive biases and does not 
provide any examples to learn from, it was emphasized to the par-
ticipants that there are multiple reasonable answers and they should 
provide a reasonable guess. Second, the participants responded to 
the query instructions all at once, on a single web page, allowing the 
participants to edit, go back and forth, and maintain consistency across 
responses. By contrast, the previous experiment collected the query 
responses one by one and had a curriculum of multiple distinct stages 
of learning.

Thirty participants in the United States were recruited using  
Mechanical Turk and psiTurk. The participants produced output 
sequences for seven novel instructions consisting of five possible words. 
The participants also approved a summary view of all of their responses 
before submitting. There were six pool options, and the assignment 
of words and item order were random. One participant was excluded 
because they reported using an external aid in a post-test survey.  



On average, the participants spent 5 min 5 s in the experiment (mini-
mum 2 min 16 s; maximum 11 min 23 s).

Implementation of MLC
Architecture and optimizer. As shown in Fig. 4, our MLC implementa-
tion uses a standard seq2seq transformer26. This architecture involves 
two neural networks working together—an encoder transformer to 
process the query input and study examples, and a decoder transformer 
to generate the output sequence. Both the encoder and decoder have 
3 layers, 8 attention heads per layer, input and hidden embeddings of 
size 128, and a feedforward hidden size of 512. Following GPT63, GELU64 
activation functions are used instead of ReLU. In total, the architec-
ture has about 1.4 million parameters. Note that an earlier version of 
memory-based meta-learning for compositional generalization used 
a more limited and specialized architecture30,65.

The encoder network (Fig. 4 (bottom)) processes a concatenated 
source string that combines the query input sequence along with a 
set of study examples (input/output sequence pairs). The encoder 
vocabulary includes the eight words, six abstract outputs (coloured 
circles), and two special symbols for separating the study examples  
(∣ and →). The decoder network (Fig. 4 (top)) receives messages from the 
encoder and generates the output sequence. The decoder vocabulary 
includes the abstract outputs as well as special symbols for starting 
and ending sequences (<SOS> and <EOS>, respectively). Sinusoidal 
positional encodings are added to the input embeddings26.

MLC was trained to minimize the cross-entropy loss (averaged over 
tokens) with the Adam optimizer and a batch size of 25 episodes. Each 
episode contains many study examples and query examples (for exam-
ple, up to 14 study examples and 10 queries in optimization for the 
few-shot learning task) and the effective sequence-level batch size 
was therefore larger (for example, (14 + 10)25 = 600). Training lasted 
for 50 epochs. The learning rate was 0.001, with a warm-up applied for 
the first epoch and then a linear decrease to 0.00005 across training. 
Dropout of 0.1 was applied to the input embeddings and transform-
ers. For meta-training procedures with a validation set (for example, 
200 held-out grammars for few-shot instruction learning), a variant of 
early stopping was used: although training was not actually truncated, 
the best parameter setting (across intervals of 100 steps) was saved 
according to the validation loss. All of the networks were trained using 
a NVIDIA Titan RTX GPU.

Meta-training procedures for MLC and MLC variants. MLC optimizes 
the transformers for systematic generalization through high-level 
behavioural guidance and/or direct human behavioural examples. To 
prepare MLC for the few-shot instruction task, optimization proceeds 
over a fixed set of 100,000 training episodes and 200 validation epi-
sodes. Extended Data Figure 4 illustrates an example training episode 
and additionally specifies how each MLC variant differs in terms of 
access to episode information (see right hand side of figure). Each 
episode constitutes a seq2seq task that is defined through a randomly 
generated interpretation grammar (see the ‘Interpretation grammars’ 
section). The grammars are not observed by the networks and must be 
inferred (implicitly) to successfully solve few-shot learning problems 
and make algebraic generalizations. The optimization procedures for 
the MLC variants in Table 1 are described below.
MLC (algebraic only). The interpretation grammars that define each 
episode were randomly generated from a simple meta-grammar. An 
example episode with input/output examples and corresponding 
interpretation grammar (see the ‘Interpretation grammars’ section) 
is shown in Extended Data Fig. 4. Rewrite rules for primitives (first 
4 rules in Extended Data Fig. 4) were generated by randomly pairing 
individual input and output symbols (without replacement). Rewrite 
rules for defining functions (next 3 rules in Extended Data Fig. 4) were 
generated by sampling the left-hand sides and right-hand sides for 
those rules. For the left-hand side (for example, ⟦u1 lug x1⟧ for the fifth 

rule in Extended Data Fig. 4), rules chose an input symbol as function 
name, whether the function has one or two arguments (with the func-
tion name appearing after the argument or in-between arguments, 
respectively), and whether each argument can take arbitrary non-
empty strings (x1 or x2) or just the primitive inputs (u1 or u2). A rule’s 
right-hand side was generated as an arbitrary string (length ≤ 8) that 
mixes and matches the left-hand-side arguments, each of which are 
recursively evaluated and then concatenated together (for example, 
⟦x1⟧ ⟦u1⟧ ⟦x1⟧ ⟦u1⟧ ⟦u1⟧). The last rule was the same for each episode and 
instantiated a form of iconic left-to-right concatenation (Extended 
Data Fig. 4). Study and query examples (set 1 and 2 in Extended Data 
Fig. 4) were produced by sampling arbitrary, unique input sequences 
(length ≤ 8) that can be parsed with the interpretation grammar to 
produce outputs (length ≤ 8). Output symbols were replaced uniformly 
at random with a small probability (0.01) to encourage some robust-
ness in the trained decoder. For this variant of MLC training, episodes 
consisted of a latent grammar based on 4 rules for defining primitives 
and 3 rules defining functions, 8 possible input symbols, 6 possible 
output symbols, 14 study examples and 10 query examples. The study 
examples were presented in shuffled order on each episode.

The validation episodes were defined by new grammars that differ 
from the training grammars. Grammars were only considered new if 
they did not match any of the meta-training grammars, even under 
permutations of how the rules are ordered. The gold interpretation 
grammar that produced the few-shot instruction-learning task with 
humans and machines (Extended Data Fig. 2) was also reserved for 
testing in this way, with an additional structural requirement that gram-
mars for producing the training and validation episodes should also 
not match the gold grammar through any permutation of the input 
and output symbol assignments.

For successful optimization, it is also important to pass each study 
example (input sequence only) as an additional query when training 
on a particular episode. This effectively introduces an auxiliary copy 
task—matching the query input sequence to an identical study input 
sequence, and then reproducing the corresponding study output 
sequence—that must be solved jointly with the more difficult gener-
alization task.
MLC for the few-shot instruction-learning task. Optimization closely 
followed the procedure outlined above for the algebraic-only MLC vari-
ant. The key difference here is that full MLC model used a behaviourally 
informed meta-learning strategy aimed at capturing both human suc-
cesses and patterns of error. Using the same meta-training episodes as 
the purely algebraic variant, each query example was passed through a 
bias-based transformation process (see Extended Data Fig. 4 for pseu-
docode) before MLC processed it during meta-training. Specifically, 
each query was paired with its algebraic output in 80% of cases and 
a bias-based heuristic in the other 20% of cases (chosen to approxi-
mately reflect the measured human accuracy of 80.7%). To create the 
heuristic query for meta-training, a fair coin was flipped to decide 
between a stochastic one-to-one translation and a noisy application 
of the underlying grammatical rules. For the one-to-one translations, 
first, the study examples in the episode are examined for any instances 
of isolated primitive mappings (for example, ‘tufa → PURPLE’). Second, 
each input symbol is mapped superficially to a single output symbol  
(in a left-to-right manner) using either the corresponding primitive 
mapping if observed as a study example, or using an arbitrary out-
put symbol if a primitive mapping is not observed (for example, if the 
input symbol is a function name). For the noisy rule examples, each 
two-argument function in the interpretation grammar has a 50% chance 
of flipping the role of its two arguments. For example, as in Extended 
Data Fig. 4, the rule ⟦u1 lug x1⟧ → ⟦x1⟧ ⟦u1⟧ ⟦x1⟧ ⟦u1⟧ ⟦u1⟧, when flipped, 
would be applied as ⟦u1 lug x1⟧ → ⟦u1⟧ ⟦x1⟧ ⟦u1⟧ ⟦x1⟧ ⟦x1⟧.
MLC for the open-ended task. An epoch of optimization consisted of 
100,000 episode presentations based on the human behavioural data. 
To produce one episode, one human participant was randomly selected 
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from the open-ended task, and their output responses were divided 
arbitrarily into study examples (between 0 and 5), with the remaining 
responses as query examples. Additional variety was produced by 
shuffling the order of the study examples, as well as randomly remap-
ping the input and output symbols compared to those in the raw data, 
without altering the structure of the underlying mapping. The models 
were trained to completion (no validation set or early stopping).
MLC ( joint). Optimization for the joint MLC model, tuned jointly for the 
few-shot instruction and open-ended tasks, proceeded as described in 
the two paragraphs above; each epoch combined 100,000 episodes of 
the few-shot instruction learning optimization and 100,000 episodes 
of the open-ended optimization. Finally, each epoch also included an 
additional 100,000 episodes as a unifying bridge between the two 
types of optimization. These bridge episodes revisit the same 100,000 
few-shot instruction learning episodes, although with a smaller number 
of the study examples provided (sampled uniformly from 0 to 14). Thus, 
for episodes with a small number of study examples chosen (0 to 5, 
that is, the same range as in the open-ended trials), the model cannot 
definitively judge the episode type on the basis of the number of study 
examples. The models were trained to completion (no validation set 
or early stopping).
MLC (copy only). Optimization for the copy-only model closely followed 
the procedure for the algebraic-only variant. Critically, this model 
was trained only on the copy task of identifying which study example 
is the same as the query example, and then reproducing that study 
example’s output sequence (see specification in Extended Data Fig. 4; 
set 1 was used for both study and query examples). It was not trained 
to handle novel queries that generalize beyond the study set. Thus, 
the model was trained on the same study examples as MLC, using the 
same architecture and procedure, but it was not explicitly optimized 
for compositional generalization.

Evaluation procedures. Few-shot instruction-learning task. MLC was 
evaluated on this task in several ways; in each case, MLC responded to 
this novel task through learned memory-based strategies, as its weights 
were frozen and not updated further. MLC predicted the best response 
for each query using greedy decoding, which was compared to the 
algebraic responses prescribed by the gold interpretation grammar 
(Extended Data Fig. 2). MLC also predicted a distribution of possible 
responses; this distribution was evaluated by scoring the log-likelihood 
of human responses and by comparing samples to human responses. 
Although the few-shot task was illustrated with a canonical assignment 
of words and colours (Fig. 2), the assignments of words and colours 
were randomized for each human participant. Thus, to evaluate MLC 
comparably, these factors were also randomized. For comparison with 
the gold grammar or with human behaviour via log-likelihood, per-
formance was averaged over 100 random word/colour assignments. 
Samples from the model (for example, as shown in Fig. 2 and reported 
in Extended Data Fig. 1) were based on an arbitrary random assignment 
that varied for each query instruction, with the number of samples 
scaled to 10× the number of human participants.
Open-ended task. MLC was evaluated on sampling human-like responses 
and predicting human responses through log-likelihood scores. Human 
participants made plausible guesses for how to respond to 7 query 
instructions (see the ‘Behavioural methods: open-ended task’ sec-
tion). They responded jointly to all 7 queries on the same web page; as 
analysed in the main text, people’s predicted word meanings followed 
strong consistency constraints across the responses. Thus, to model 
these data, MLC cannot simply answer the queries independently. 
Instead, MLC factorizes the problem of responding jointly to 7 query 
inputs x1, …, x7 with 7 query outputs y1, …, y7 as

∣ ∣∏P y y x x P y x x y( , …, , …, ) = ( , , ), (1)
i

i i i i1 7 1 7
=1

7
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using (x1, y1), …, (xi−1, yi−1) as study examples for responding to query 
xi with output yi. Thus, sampling a response for the open-ended task 
proceeded as follows. First, MLC samples P( y1∣x1) with no study exam-
ples. Second, when sampling y2 in response to query x2, the previ-
ously sampled (x1, y1) is now a study example, and so on. The query 
ordering was chosen arbitrarily (this was also randomized for human  
participants).

For scoring a particular human response y1, …, y7 by log-likelihood, 
MLC uses the same factorization as in equation (1). Performance was 
averaged over 200 passes through the dataset, each episode with dif-
ferent random query orderings as well as word and colour assignments.

Alternative neural and symbolic models
In addition to the range of MLC variants specified above, the following 
additional neural and symbolic models were evaluated.
Lapse model. All MLC, symbolic and neural models were fit to the  
human behavioural responses (Table 1) with a lapse parameter λ. With 
this parameter, the probability of a participant producing any given 
output symbol s ∈ S is P s λ P s λ( ) = (1 − ) ( ) +M S

1 , where S (with cardinal-
ity ∣S∣) is the set of abstract outputs (colour circles) plus the end- 
of-sequence token (<EOS>) and PM is the model prediction before the 
lapse mechanism. If the model has no prediction for a particular sym-
bol (for example, this symbol extends beyond the model’s predicted 
output sequence), P s( ) = S

1 .
Symbolic (oracle). This probabilistic symbolic model assumes that 
people can infer the gold grammar from the study examples (Extended 
Data Fig. 2) and translate query instructions accordingly. Non-algebraic 
responses must be explained through the generic lapse model (see 
above), with a fit lapse parameter. Note that all of the models compared 
in Table 1 have the same opportunity to fit a lapse parameter.
Symbolic (oracle/biases). For the few-shot instruction-learning task, this 
probabilistic symbolic model augments the oracle, described above, by 
passing the algebraic input/output pairs through the same bias-based 
transformation process used when optimizing MLC (see pseudocode 
in Extended Data Fig. 4 and see the ‘MLC few-shot instruction-learning 
task’ section for more description). Thus, using the gold grammar in 
Extended Data Fig. 2, this model predicts a mixture of algebraic out-
puts, one-to-one translations and noisy rule applications to account 
for human behaviour.

For the open-ended task, this probabilistic symbolic model opera-
tionalizes the three key inductive biases. Using the same factoriza-
tion as MLC does for the open-ended task (equation (1)), the response 
sequence yi to query sequence xi is modelled based on previous partici-
pant responses, P(yi∣xi, x<i, y<i). Each input token within the sequence 
xi is stochastically translated as a single output token in yi using a 
left-to-right (iconic concatenation), one-to-one strategy. For exam-
ple, if xi is ‘dax wug’, a coloured circle for ‘dax’ is sampled in propor-
tion to the number of times ‘dax’ aligned with each coloured circle in 
the previous x<i and y<i pairs. After handling ‘dax’, a coloured circle for 
‘wug’ is sampled in the same manner. If a word is new (and does not 
appear previously in x<i), its coloured circle is sampled from the set 
of unused output symbols (that do not appear in y<i), implementing 
mutual exclusivity. As with all models, a fit lapse parameter is also used.
Neural (basic seq2seq). A basic seq2seq transformer can be obtained 
through a straightforward modification of the MLC diagram (Fig. 4): 
the study examples were excluded from the input sequence, leaving the  
transformer to process only the query input before producing the 
query output. Given that only the architecture’s use has changed 
(not the architecture itself), the model has approximately the same 
number of learnable parameters as in MLC (except for the smaller 
input vocabulary). Without access to study examples, the model is 
poorly equipped for learning words with changing meanings; it has no 
in-context memory and, therefore, all of its knowledge must be stored 
in the learned weights. To perform the few-shot instruction-learning 
task, the basic seq2seq model was trained in the typical way for  



seq2seq modelling: training iterates over the input/output sequence 
pairs with the aim of learning the target mapping. In this case, the 
training set is the 14 study instructions and the test set is the 10 query 
instructions (Extended Data Fig. 1). Otherwise, the same architecture 
and optimizer was used as described in the ‘Architecture and optimizer’ 
section. The network was trained for 1,000 epochs over the batched 
set of study instructions. It was not clear how much training would be 
optimal and we wanted to examine this model under favourable condi-
tions. To this end, we gave it an additional advantage not offered to any 
other model class: we tracked each step of the optimizer and selected 
the best parameter values on the basis of the test loss. Typically, this 
point was reached within a few dozen steps. Nevertheless, all 10 runs 
failed to generalize systematically on the few-shot instruction task  
(0% exact-match accuracy).

We informally examined a couple of other basic seq2seq variants. 
First, we evaluated lower-capacity transformers but found that they 
did not perform better. Second, we tried pretraining the basic seq2seq 
model on the entire meta-training set that MLC had access to, includ-
ing the study examples, although without the in-context information 
to track the changing meanings. Then model was then fine-tuned as 
described above. On the few-shot instruction task, this improves the 
test loss marginally, but not accuracy.

Machine learning benchmarks
Handling long in-context sequences. The tasks from the machine- 
learning literature that we experimented with, SCAN11,66 and COGS16, 
feature long sequences as (in-context) study examples. This raises  
issues for the previous architecture (see the ‘Architecture and opti-
mizer’ section). Specifically, it is intractable to process a single source 
sequence that consists of the concatenated query input sequence and 
multiple study example sequences, which could have a worst-case 
source sequence of length S ≈ 1,500 on COGS and potentially longer in 
other applications (for each individual study example, the maximum 
length in SCAN is 9 for inputs and 49 for outputs; the maximum length 
in COGS is 22 for inputs and 154 for outputs). The bottlenecks are the 
encoder self-attention layers, which are S( )2O . A more scalable proce-
dure for applying a standard transformer (Extended Data Fig. 6) was 
therefore developed for optimizing MLC on machine learning bench-
marks. We copy each query input sequence m times and concatenate 
the copies separately with each of the m study examples. This creates 
m smaller source sequences to be processed separately by the standard 
transformer encoder. Each of the resulting contextual embeddings are 
then marked according to their origin in one of the m study examples, 
which is done by adding an index embedding vector that enables the 
decoder to see which embedding came from which study example (one 
for each index 1, …, m). Finally, the set of contextual embeddings  
is passed to the standard transformer decoder. The decoder cross- 
attention layers are less expensive, O ST( ), because the target sequence 
length T, which does not include any study examples, is typically much 
shorter (T ≪ S).

Optimization. For each SCAN split, both MLC and basic seq2seq mod-
els were optimized for 200 epochs without any early stopping. For 
COGS, both models were optimized for 300 epochs (also without early 
stopping), which is slightly more training than the extended amount 
prescribed in ref. 67 for their strong seq2seq baseline. The batch size 
was 200 episodes for SCAN and 40 episodes for COGS. This more scal-
able MLC variant, the original MLC architecture (see the ‘Architecture 
and optimizer’ section) and basic seq2seq all have approximately the 
same number of learnable parameters (except for the fact that basic 
seq2seq has a smaller input vocabulary).

Each SCAN episode contained 10 study examples and 2 query exam-
ples (COGS used 8 study and 2 query), such that one query example 
was a randomly chosen study example (as an auxiliary copy task; see 
the ‘Meta-training procedures for MLC and MLC variants’ section) and 

the other query was distinct from the study examples and required 
generalization. All of the query and study examples were drawn from 
the training corpus. Each episode was scrambled (with probability 
0.95) using a simple word type permutation procedure30,65, and oth-
erwise was not scrambled (with probability 0.05), meaning that the 
original training corpus text was used instead. Occasionally skipping 
the permutations in this way helps to break symmetries that can slow 
optimization; that is, the association between the input and output 
primitives is no longer perfectly balanced. Otherwise, all model and 
optimizer hyperparameters were as described in the ‘Architecture 
and optimizer’ section.

SCAN: meta-training and testing. During SCAN meta-training  
(an example episode is shown in Extended Data Fig. 7), each episode is 
formed by sampling a set of study and query examples from the training 
corpus of a particular SCAN split (‘add jump’, ‘around right’ and so on). 
Given these examples, a simple permutation procedure remaps the full 
set of output actions (‘JUMP’, ‘RUN’, ‘WALK’, ‘LOOK’, ‘TURN LEFT’, ‘TURN 
RIGHT’) through a random permutation of these same set of actions, 
and remaps the input primitives (‘jump’, ‘run’, ‘walk’, ‘look’, ‘left’, ‘right’) 
through another random permutation to the same set of words. Note 
that several other input words (the mostly ‘functional’ words ‘turn’, 
‘twice’, ‘thrice’, ‘around’, ‘opposite’, ‘and’, ‘after’) have stable meanings 
that can be stored in the model weights. To make sense of an episode, 
MLC must become adept at inferring, from just a few study examples, 
how words map to meanings. MLC must also become adept at compo-
sition: it must systematically compose the inferred word meanings to 
correctly answer the queries.

During SCAN testing (an example episode is shown in Extended Data 
Fig. 7), MLC is evaluated on each query in the test corpus. For each 
query, 10 study examples are again sampled uniformly from the train-
ing corpus (using the test corpus for study examples would inadvert-
ently leak test information). Neither the study nor query examples 
are remapped; in other words, the model is asked to infer the original 
meanings. Finally, for the ‘add jump’ split, one study example is fixed 
to be ‘jump → JUMP’, ensuring that MLC has access to the basic meaning 
before attempting compositional uses of ‘jump’.

COGS: meta-training and testing. The COGS output expressions 
were converted to uppercase to remove any incidental overlap  
between input and output token indices (which MLC, but not basic 
seq2seq, could exploit). As in SCAN meta-training, an episode of COGS 
meta-training involves sampling a set of study and query examples from 
the training corpus (see the example episode in Extended Data Fig. 8). 
The vocabulary in COGS is much larger than in SCAN; thus, the study 
examples cannot be sampled arbitrarily with any reasonable hope that 
they would inform the query of interest. Instead, for each vocabulary 
word that takes a permuted meaning in an episode, the meta-training 
procedure chooses one arbitrary study example that also uses that 
word, providing the network an opportunity to infer its meaning. Any 
remaining study examples needed to reach a total of 8 are sampled 
arbitrarily from the training corpus.

COGS is a multi-faceted benchmark that evaluates many forms of sys-
tematic generalization. To master the lexical generalization splits, the 
meta-training procedure targets several lexical classes that participate 
in particularly challenging compositional generalizations. As in SCAN, 
the main tool used for meta-learning is a surface-level token permuta-
tion that induces changing word meaning across episodes. These per-
mutations are applied within several lexical classes; for examples, 406 
input word types categorized as common nouns (‘baby’, ‘backpack’ and 
so on) are remapped to the same set of 406 types. The other remapped 
lexical classes include proper nouns (103 input word types; ‘Abigail’, 
‘Addison’ and so on), dative verbs (22 input word types; ‘given’, ‘lended’ 
and so on) and verbs in their infinitive form (21 input word types; such 
as ‘walk’, ‘run’). Surface-level word type permutations are also applied 
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to the same classes of output word types. Other verbs, punctuation 
and logical symbols have stable meanings that can be stored in the 
model weights. Importantly, although the broad classes are assumed 
and could plausibly arise through simple distributional learning68,69, 
the correspondence between input and output word types is unknown 
and not used.

In one case, COGS meta-learning goes beyond surface-level remap-
ping to use a minimal amount of semantic structure. To guide the net-
works toward flexible substitution of common nouns with proper nouns, 
any common noun input token has an independent chance of replace-
ment (probability 0.01) with an arbitrary proper noun input token, while 
also removing the preceding determiner token. Independently, any 
common noun output token can also be arbitrarily remapped (again with 
probability 0.01) to a proper noun output token, with the correspond-
ing minimal change to the structural form to remove the determiner (if 
remapping the output token ‘cookie’ to ‘John’, the cookie(xi) predicate 
is removed, occurrences of variable xi are replaced with ‘John’ and vari-
ables j > i are decremented by 1). As before, the correspondence between 
input and output tokens is unknown, both at the levels of a sentence and 
the whole dataset. Thus, during an episode of meta-training, a common 
noun (phrase) might correspond to a logical form expressing a proper 
noun or vice versa. At test, MLC must sort this out and recover how 
proper and common nouns work on the basis of the study examples.

During the COGS test (an example episode is shown in Extended 
Data Fig. 8), MLC is evaluated on each query in the test corpus. For each 
query, eight study examples are sampled from the training corpus, 
using the same procedure as above for picking study examples that 
facilitate word overlap (note that picking study examples from the 
generalization corpus would inadvertently leak test information). 
Neither the study nor query examples are remapped to probe how 
models infer the original meanings.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Human behavioural data are available at Zenodo (https://doi.org/ 
10.5281/zenodo.8274609). The complete set of human and machine 
responses is also illustrated and viewable in HTML at the previous link. 
The human behavioural data also appeared in a previous non-archival 
conference paper70.

Code availability
MLC source code and pretrained models are available online71, 
including MLC models of human behaviour (https://doi.org/10.5281/
zenodo.8274609) and MLC models applied to machine learning bench-
marks (https://doi.org/10.5281/zenodo.8274617). Any additional code 
is available on request.
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Extended Data Fig. 1 | Few-shot instruction learning task with full set of 
queries. Based on the study instructions (A; headings were not provided to 
participants), humans and the MLC model executed 10 query instructions by 
generating coloured circles from a fixed inventory (B; headings were not 
provided to participants). The percent of participants who produced each 

sequence exactly as prescribed algebraically is shown. Similarly, the percent of 
samples from MLC that match the prescribed sequence is shown in parentheses, 
which correlates with the human values (Pearson’s r = 0.788, p = 0.031 via 
permutation test, two-tailed, n = 10 items). The words and colours were 
randomized for each participant.
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Extended Data Fig. 2 | The gold interpretation grammar that defines  
the human instruction learning task. The double brackets (⟦⟧) denote the 
interpretation function for translating linguistic instructions into sequences 
of abstract outputs (colour circles). Each human participant received a different 
permutation of words and colours. Symbols xi and ui denote variables:  
xi applies to arbitrary non-empty strings, while ui applies only to ‘dax’, ‘wif’, 
‘lug’, and ‘zup’.



Extended Data Fig. 3 | Using the gold interpretation grammar for 
processing ‘zup blicket wif kiki dax fep’. Each step is annotated with the next 
re-write rules to be applied, and how many times (e.g., 3 × , since some steps 
have multiple parallel applications). A rule’s condition is met if and only if it 

matches the entire string inside the brackets (⟦ ⟧); for instance, only the ‘kiki’ 
rule applies on the first step because its condition matches two arbitrary 
non-empty sequences on either side of ‘kiki,’ thus being able to encompass the 
entire input.
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Extended Data Fig. 4 | Example meta-learning episode and how it is 
processed by different MLC variants. The interpretation grammar defines 
the episode but is not observed directly and must be inferred implicitly. Set 1 
has 14 input/output examples consistent with the grammar, used as Study 
examples for all MLC variants. Set 2 has 10 examples, used as Query examples 

for most MLC variants (except copy only). Pseudocode for the bias-based 
transformation process is shown here for the instruction ‘tufa lug fep’. This 
transformation is applied to the query outputs before MLC and MLC ( joint) 
process them. Here, flip (p) is a coin flip that returns True with probability p.



Extended Data Fig. 5 | Human responses for the (A) few-shot learning  
task and (B) open-ended task that most favour MLC ( joint) compared  
to a MLC model optimized for individual tasks only. Panel (A) shows the 
average log-likelihood advantage for MLC ( joint) across five patterns (that is, 

ll(MLC ( joint)) - ll(MLC)), with the algebraic target shown here only as a 
reference. A black circle indicates a colour that was unused in the study set. 
Panel (B) shows three participant responses.
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Extended Data Fig. 6 | Handling long in-context sequences with a MLC 
transformer. The query input sequence (shown as ‘jump twice after run twice’) 
is copied and concatenated to each of the m study examples, leading to m 
separate source sequences (3 shown here). A shared standard transformer 
encoder (bottom) processes each source sequence to produce latent 
(contextual) embeddings. The contextual embeddings are marked with the 

index of their study example, combined with a set union to form a single set  
of source messages, and passed to the decoder. The standard decoder (top) 
receives this message from the encoder, and then produces the output sequence 
for the query. Each box is an embedding (vector); input embeddings are light 
blue and latent embeddings are dark blue.



Extended Data Fig. 7 | Example SCAN meta-training (top) and test (bottom) 
episodes for the ‘add jump’ split. The word and action meanings are changing 
across the meta-training episodes (‘look’, ‘walk’, etc.) and must be inferred from 

the study examples. During the test episode, the meanings are fixed to the 
original SCAN forms. Here, the latter probes a compositional use of ‘jump’.
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Extended Data Fig. 8 | Example COGS meta-training (top) and test (bottom) 
episodes. Word meanings are changing across the meta-training episodes 
(here, ‘driver’ means ‘PILLOW’, ‘shoebox’ means ‘SPEAKER’ etc.) and must be 

inferred from the study examples. The meanings are fixed to the original forms 
during the test episode. This test episode probes the understanding of ‘Paula’ 
(proper noun), which just occurs in one of COGS’s original training patterns.
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