
Nature  |  Vol 623  |  2 November 2023  |  115

Article

Human-like systematic generalization
through a meta-learning neural network

Brenden M. Lake1 ✉ & Marco Baroni2,3

The power of human language and thought arises from systematic compositionality—
the algebraic ability to understand and produce novel combinations from known
components. Fodor and Pylyshyn1 famously argued that artificial neural networks
lack this capacity and are therefore not viable models of the mind. Neural networks
have advanced considerably in the years since, yet the systematicity challenge
persists. Here we successfully address Fodor and Pylyshyn’s challenge by providing
evidence that neural networks can achieve human-like systematicity when optimized
for their compositional skills. To do so, we introduce the meta-learning for
compositionality (MLC) approach for guiding training through a dynamic stream
of compositional tasks. To compare humans and machines, we conducted human
behavioural experiments using an instruction learning paradigm. After considering
seven different models, we found that, in contrast to perfectly systematic but rigid
probabilistic symbolic models, and perfectly flexible but unsystematic neural
networks, only MLC achieves both the systematicity and flexibility needed for
human-like generalization. MLC also advances the compositional skills of machine
learning systems in several systematic generalization benchmarks. Our results show
how a standard neural network architecture, optimized for its compositional skills,
can mimic human systematic generalization in a head-to-head comparison.

People are adept at learning new concepts and systematically combin-
ing them with existing concepts. For example, once a child learns how
to ‘skip’, they can understand how to ‘skip backwards’ or ‘skip around
a cone twice’ due to their compositional skills. Fodor and Pylyshyn1
argued that neural networks lack this type of systematicity and are
therefore not plausible cognitive models, leading to a vigorous debate
that spans 35 years2–5. Counterarguments to Fodor and Pylyshyn1
have focused on two main points. The first is that human compositional
skills, although important, may not be as systematic and rule-like as
Fodor and Pylyshyn indicated3,6,7. The second is that neural networks,
although limited in their most basic forms, can be more systematic
when using sophisticated architectures8–10. In recent years, neural
networks have advanced considerably and led to a number of break-
throughs, including in natural language processing. In light of these
advances, we and other researchers have reformulated classic tests of
systematicity and reevaluated Fodor and Pylyshyn’s arguments1. Nota-
bly, modern neural networks still struggle on tests of systematicity11–18—
tests that even a minimally algebraic mind should pass2. As the technol-
ogy marches on19,20, the systematicity debate continues.

In this Article, we provide evidence that neural networks can achieve
human-like systematic generalization through MLC—an optimization
procedure that we introduce for encouraging systematicity through
a series of few-shot compositional tasks (Fig. 1). Our implementation
of MLC uses only common neural networks without added symbolic
machinery, and without hand-designed internal representations or
inductive biases. Instead, MLC provides a means of specifying the

desired behaviour through high-level guidance and/or direct human
examples; a neural network is then asked to develop the right learning
skills through meta-learning21.

To demonstrate the abilities of MLC, we evaluated humans and
machines side by side on the same tests of systematic generalization.
Specifically, we used instruction-learning tasks in a pseudolanguage to
examine human and machine learning of structured algebraic systems
(details of the procedures are provided in the ‘Behavioural methods:
few-shot learning task’ section of the Methods). We also examined
behaviour in response to highly ambiguous linguistic probes, designed
to characterize human inductive biases and how these biases could
either facilitate or hamper systematic generalization (see the ‘Behav-
ioural methods: open-ended task’ section of the Methods). Across these
evaluations, MLC achieves (or even exceeds) human-level systematic
generalization. MLC also produces human-like patterns of errors when
human behaviour departs from purely algebraic reasoning, showing
how neural networks are not only a capable but also a superior model-
ling tool for nuanced human compositional behaviour (see ‘Modelling
results’). In a final set of simulations (see the ‘Machine learning bench-
marks’ section of the Methods), we show how MLC improves accuracy
on popular benchmarks11,16 for few-shot systematic generalization.

Behavioural results
First, we measured human systematic generalization, going beyond clas-
sic work that relied primarily on thought experiments to characterize

https://doi.org/10.1038/s41586-023-06668-3

Received: 4 January 2023

Accepted: 21 September 2023

Published online: 25 October 2023

Open access

 Check for updates

1Department of Psychology and Center for Data Science, New York University, New York, NY, USA. 2Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain. 3Department
of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain. ✉e-mail: brenden@nyu.edu

https://doi.org/10.1038/s41586-023-06668-3
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06668-3&domain=pdf
mailto:brenden@nyu.edu

116  |  Nature  |  Vol 623  |  2 November 2023

Article

human abilities1–3. Our experimental paradigm asks participants to pro-
cess instructions in a pseudolanguage in order to generate abstract out-
puts (meanings), differing from artificial grammar learning22, statistical
learning23 and program learning24 in that explicit or implicit judgments
of grammaticality are not needed. Instead, the participants generate
sequences of symbols in response to sequences of words, enabling
computational systems to directly model the resulting data by building
on the powerful sequence-to-sequence (seq2seq) toolkit from machine
learning25,26. All experiments were run on Amazon Mechanical Turk,
and detailed procedures are described in the ‘Behavioural methods:
few-shot learning task’ and ‘Behavioural methods: open-ended task’
sections of the Methods. The complete set of human and machine
responses is viewable online (Data availability).

Systematic generalization was evaluated through a few-shot learn-
ing paradigm. As illustrated in Fig. 2, the participants (n = 25) were
provided with a curriculum of 14 study instructions (input/output

pairs) and asked to produce outputs for 10 query instructions (see the
‘Behavioural methods: few-shot learning task’ section of the Methods).
The study instructions were consistent with an underlying interpre-
tation grammar, which derives outputs from inputs through a set of
compositional rewrite rules (see the ‘Interpretation grammars’ sec-
tion of the Methods). To perform well, the participants must learn the
meaning of words from just a few examples and generalize to more
complex instructions. The participants were able to produce output
sequences that exactly matched the algebraic standard in 80.7% of
cases (indicated by an asterisk in Fig. 2b (i)). Chance performance
is 2.8% for two-length output sequences if the length is known, and
exponentially less for longer sequences. Notably, participants also
generalized correctly in 72.5% of cases to longer output sequences
than seen during training (an example is shown as the last instruction
in Fig. 2b (i)), which is a type of generalization that neural networks
often struggle with11. When deviating from this algebraic standard,

Query instruction:
skip twice

Study examples:

Query instruction:
tiptoe backwards
around a cone

Study examples:

jump twice

jump skip walk backwards

walk around a cone

tiptoe

Query output: Query output:

Compare with
behavioural target

a b

Compare with
behavioural target

skip twice
tiptoe backwards
around a cone

Fig. 1 | MLC for acquiring compositional skills through a dynamic stream
of compositional tasks (episodes). a, During training, episode a presents a
neural network with a set of study examples and a query instruction, all
provided as a simultaneous input. The study examples demonstrate how to
‘jump twice’, ‘skip’ and so on with both instructions and corresponding outputs
provided as words and text-based action symbols (solid arrows guiding the
stick figures), respectively. The query instruction involves compositional use

of a word (‘skip’) that is presented only in isolation in the study examples, and
no intended output is provided. The network produces a query output that is
compared (hollow arrows) with a behavioural target. b, Episode b introduces
the next word (‘tiptoe’) and the network is asked to use it compositionally
(‘tiptoe backwards around a cone’), and so on for many more training episodes.
The colours highlight compositional reuse of words. Stick figures were adapted
from art created by D. Chappard (OpenClipArt.org).

Primitives

Function 1

Function 2

Function 3

Function compositions

Study instructions

(i) Human responses (ii) MLC responses

a
Query instructions

b

dax wif

lug zup

lug kiki wif

dax kiki lug

dax fep

lug fep

lug kiki wif fep

lug fep kiki wif

wif blicket dax

lug blicket wif
wif blicket dax kiki lug

wif kiki dax blicket lug

zup kiki dax
(19)*

(1)1-to-1

(2)IC
zup kiki dax

(85.9%)*

(3.6%)1-to-1

(4.5%)IC

(1.8%)1-to-1

dax blicket zup
(21)*

(1)1-to-1

(1)

(1)1-to-1

dax blicket zup
(85.4%)*

(3.3%)1-to-1

(4.6%)

(2.9%)1-to-1

zup fep kiki lug
(17)*

(1)

(1)

(1)

zup fep kiki lug
(86%)*

(1.5%)1-to-1

(2.5%)IC

(1.5%)1-to-1

zup blicket wif kiki dax fep
(14)*

(1)

(1)

(1)

(69.5%)*

(3.0%)

(3.0%)

(2.5%)

zup blicket wif kiki dax fep

Fig. 2 | Few-shot instruction-learning task that involves responding to
instructions (linguistic strings) by generating sequences of abstract
outputs (coloured circles). a,b, Based on the study instructions (a; headings
were not provided to the participants), humans and MLC executed query
instructions (b; 4 of 10 shown). The four most frequent responses are shown,
marked in parentheses with response rates (counts for people and the

percentage of samples for MLC). The superscript notes indicate the algebraic
answer (asterisks), a one-to-one error (1-to-1) or an iconic concatenation
error (IC). The words and colours were randomized for each participant and a
canonical assignment is therefore shown here. A black circle indicates a colour
that was unused in the study set.

Nature  |  Vol 623  |  2 November 2023  |  117

model adult compositional skills but not the process by which adults
acquire those skills, which is an issue that is considered further in the
general discussion. MLC source code and pretrained models are avail-
able online (Code availability).

As shown in Fig. 4 and detailed in the ‘Architecture and optimizer’ sec-
tion of the Methods, MLC uses the standard transformer architecture26
for memory-based meta-learning. MLC optimizes the transformer for
responding to a novel instruction (query input) given a set of input/
output pairs (study examples; also known as support examples21), all of
which are concatenated and passed together as the input. This amounts
to meta-learning because optimization occurs over dynamically chang-
ing episodes (each with new study and query examples) rather than a
static dataset; specifically, each episode constitutes a different seq2seq
task30,31 defined through a randomly generated latent grammar for inter-
preting inputs as outputs (see the ‘Meta-training procedures for MLC
and MLC variants’ section of the Methods). To succeed, the transformer
must find parameter values that are capable of extracting meanings
from the study words and composing them to answer queries, relying on
meta-learning but also innovations in the transformer architecture that
were not envisioned in Fodor and Pylyshyn’s arguments1 (for example,
variable length input, parameter sharing and self-attention). On test
episodes, the model weights are frozen and no task-specific param-
eters are provided32. Finally, given the end goal of modelling human
responses (including errors), we stochastically pair each query with
either the algebraic output sequence (generated through the episode’s
grammar) or a heuristic output sequence (sampled through one-to-one
translations or misapplied rules), at approximately the same ratios as
observed empirically (see the ‘Meta-training procedures for MLC and
MLC variants’ section of the Methods).

MLC is capable of optimizing models for highly systematic behav-
iour. The most systematic run produced a transformer that was per-
fectly systematic (100% exact match accuracy) when choosing the
best responses on the same few-shot instruction-learning task given to
people (Fig. 2; see the ‘Evaluation procedures’ section of the Methods
for details and Supplementary Information 1 for model variability
across 10 runs) and additionally capable of inferring novel rules that
did not participate in meta-learning (Supplementary Information 1).
An informal analysis of this run further shows that MLC is also capable
of more subtle and bias-driven behaviours; when sampling from the
distribution of model outputs (Fig. 2b), the transformer produced
systematic outputs at an average rate (82.4%) close to human perfor-
mance (80.7%), and appropriately handled longer output sequences
at a rate (77.8%) near human levels (72.5%). Moreover, like people, the

Response 1
1-to-1, IC, ME

Query instructions with human responses

a

fep

fep fep

fep wif

fep dax fep

fep dax kiki

zup fep

kiki dax fep

Response 2
IC, ME

gazzer

gazzer gazzer

gazzer lug

gazzer zup gazzer

gazzer zup dax

wif gazzer

dax zup gazzer

Response 1
1-to-1, IC, ME

Query instructions with MLC responses

b

blicket

blicket blicket

blicket gazzer

blicket zup blicket

blicket zup fep

tufa blicket

fep zup blicket

Response 2
ME

tufa

tufa tufa

tufa kiki

tufa dax tufa

tufa dax wif

fep tufa

wif dax tufa

Response 3
ME

… …

dax

dax dax

dax wif

dax gazzer dax

dax gazzer kiki

fep dax

kiki gazzer dax

Fig. 3 | Open-ended instruction task. a,b, The participants produced
responses (sequences of coloured circles) to the queries (linguistic strings)
without seeing any study examples. Each column shows a different word
assignment and a different response, either from a different participant (a) or
MLC sample (b). The leftmost pattern (in both a and b) was the most common

output for both people and MLC, translating the queries in a one-to-one
(1-to-1) and left-to-right manner consistent with iconic concatenation (IC). The
rightmost patterns (in both a and b) are less clearly structured but still generate
a unique meaning for each instruction (mutual exclusivity (ME)).

the responses were still highly non-random and suggestive of strong
inductive biases. Many errors involved ‘one-to-one’ translations that
mapped each input word to exactly one output symbol, as if all words
were primitives rather than functions (24.4% of all errors; marked with
1-to-1 in Fig. 2b (i)). Other errors involved applying a function but mix-
ing up its arguments, often in ways that suggest an ‘iconic concatena-
tion’ bias for maintaining the order of the input words in the order of
the output symbols (23.3% of all errors involving function 3 followed
this pattern; marked with IC in Fig. 2b (i)). These response patterns
can be compared to biases in language acquisition more generally;
indeed, forms of one-to-one27 and iconic concatenation28,29 are widely
attested in natural language.

These inductive biases were evaluated more directly through an
open-ended instruction task in which the participants were not influ-
enced by study examples and, therefore, their a priori preferences are
more likely to shine through. Different human participants (n = 29)
were asked to make plausible guesses regarding the outputs of seven
unknown instructions and how they relate to one another (responding
to ‘fep fep’ or ‘fep wif’ with a series of coloured circles), without seeing
any input/output examples to influence their responses (see Fig. 3 for
the full task and the ‘Behavioural methods: open-ended task’ section
of the Methods for details). Despite the unconstrained nature of the
test, people’s responses were highly structured and confirm the previ-
ous two inductive biases. People’s responses also followed a third bias
related to mutual exclusivity that encourages assigning unique mean-
ings to unique words27. Reflecting the strong influence of the biases, the
majority of participants (17 out of 29; 58.6%) responded with a pattern
analogous to that in Fig. 3a,b (left), which is perfectly consistent with all
three inductive biases. Across all responses, 18 out of 29 participants
followed one-to-one (62.1%), 23 out of 29 (79.3%) followed iconic con-
catenation and all but two followed mutual exclusivity in producing a
unique response to each instruction (27 out of 29; 93.1%).

Modelling results
We next evaluated MLC on its ability to produce human-level systematic
generalization and human-like patterns of error on these challenging
generalization tasks. A successful model must learn and use words in
systematic ways from just a few examples, and prefer hypotheses that
capture structured input/output relationships. MLC aims to guide a
neural network to parameter values that, when faced with an unknown
task, support exactly these kinds of generalizations and overcome pre-
vious limitations for systematicity. Importantly, this approach seeks to

118  |  Nature  |  Vol 623  |  2 November 2023

Article

MLC transformer made errors reflecting one-to-one translations (56.3%
of errors; 24.4% for people) and iconic concatenations (13.8% of errors
involving function 3; 23.3% for people). MLC can also predict which
instructions are easier or harder for people on average (Pearson’s
r = 0.788, P = 0.031, two-tailed permutation test, n = 10 items; item-level
performance is shown in Extended Data Fig. 1). Formally, in Table 1
(few-shot learning), we compare models through the log-likelihood
of all the human responses (Fig. 2b (i)) given the model predictions33.
In the rest of this paragraph, when we say that one model outperforms
another, there is a difference of 8 natural log points or greater. The
MLC transformer (Table 1; MLC) outperforms more rigidly systematic
models at predicting human behaviour. This includes a probabilistic
symbolic model that assumes that people infer the gold grammar
but make occasional arbitrary lapses (symbolic (oracle); details of all
of the symbolic and basic seq2seq models are provided in the ‘Alter-
native neural and symbolic models’ section of the Methods) and a
transformer optimized on the same training episodes as MLC although
with strictly algebraic (rather than also bias-based) output responses
(MLC (algebraic only); details of all of the MLC variants are provided
in the ‘Meta-training procedures for MLC and MLC variants’ section
of the Methods). MLC also outperforms a basic seq2seq transformer
fit to the patterns in Fig. 2 without meta-learning and an MLC model
optimized for copying rather than systematic generalization (MLC
(copy only); during training, the query examples always match one
of the study examples). The MLC transformer performs comparably
to a probabilistic symbolic model that assumes that people infer the
gold grammar but respond stochastically with lapses based on the
human inductive biases (symbolic (oracle/biases)). Indeed, MLC was
similarly optimized to (implicitly) infer systematic rules and respond
with the same biased-based patterns, and it is therefore natural that
the two models would perform similarly. The top-performing MLC
(joint) was jointly optimized on both the few-shot learning task and
the open-ended human responses, as described in the next paragraph.

Although human few-shot learning behaviour can be well character-
ized by either MLC or a probabilistic symbolic model, a test of more
open-ended behaviour emphasizes MLC’s relative strengths. The same
transformer architecture was optimized on open-ended participant
behaviour and then asked to fill in outputs for the seven instructions
one by one (Fig. 3; see the ‘Evaluation procedures’ section of the

Methods). The MLC transformer responded exactly like the modal
human participant in 65.0% of samples (Fig. 3b (left)), perfectly instan-
tiating the three key inductive biases. An informal analysis further
revealed that MLC captured more nuanced patterns of response that
only partially use the inductive biases (Fig. 3b (right)). Across all model
samples, 66.0% followed one-to-one (62.1% for people), 85.0% fol-
lowed iconic concatenation (79.3% for people) and the vast majority
(99.0%) chose a unique response for each unique command (93.1%
for people). Model predictions were also evaluated through fivefold
cross-validation33: MLC and other models were optimized on responses
for either 23 or 24 participants (depending on the cross-validation
split) and then predicted responses for held-out participants. Per-
formance was scored by log-likelihood and is summarized in Table 1
(open-ended) (summed over five cross-validation splits, averaged over
three runs). In the rest of this paragraph, when we say that one model
outperforms another, there is a difference of 57 natural log points or
greater. MLC outperforms all alternatives, including the same highly
algebraic MLC model as described in the previous experiment (MLC
(algebraic only)) and a probabilistic symbolic model that uses the
three inductive biases to generate responses but, in contrast to MLC,
is not capable of optimizing for other patterns in the human behaviour
(Table 1; symbolic (oracle/biases)). Importantly, a single transformer
can be optimized for both the few-shot learning and open-ended
instruction tasks (MLC (joint)); in fact, this is the strongest overall
model across experiments for predicting human behaviour (addi-
tional analysis is shown in Extended Data Fig. 5 and Supplementary
Information 1).

Machine learning benchmarks
Beyond predicting human behaviour, MLC can achieve error rates
of less than 1% on machine learning benchmarks for systematic gen-
eralization. Note that here the examples used for optimization were
generated by the benchmark designers through algebraic rules, and
there is therefore no direct imitation of human behavioural data. We
experiment with two popular benchmarks, SCAN11 and COGS16, focusing
on their systematic lexical generalization tasks that probe the handling
of new words and word combinations (as opposed to new sentence
structures). MLC still used only standard transformer components
but, to handle longer sequences, added modularity in how the study
examples were processed, as described in the ‘Machine learning bench-
marks’ section of the Methods. SCAN involves translating instructions
(such as ‘walk twice’) into sequences of actions (‘WALK WALK’). In the
‘add jump’ split, the training set has just one example of how to ‘jump’
(mapping to ‘JUMP’) and the test set probes compositional uses of

Table 1 | log-likelihood of human behaviour as predicted by
models

Model Few-shot learning Open-ended

Baseline −1,926.5 −1,547.0

Symbolic (oracle) −538.8 –

Symbolic (oracle/biases) −357.2 −1,008.5

Basic seq2seq −1,264.7 –

MLC (copy only) −1,586.4 −1,341.4

MLC (algebraic only) −496.9 −1,218.3

MLC (joint) −349.2 −635.7

MLC −358.1 −693.1

All of the models have fit lapse rates (see the ‘Alternative neural and symbolic models’ section
of the Methods). The baseline model samples symbols uniformly. For few-shot learning, the
most systematic run was analysed (based on likelihood of gold algebraic sequences). The
best scores are indicated in bold.

Query input Study examples (inputs/outputs)

…
dax blicket zup | dax | zup | wif |…| wif blicket dax | …

Query output

3×

3×

<EOS>

<SOS>

…

Fig. 4 | MLC architecture. A standard transformer encoder (bottom)
processes the query input along with a set of study examples (input/output
pairs; examples are delimited by a vertical line (∣) token). The standard decoder
(top) receives the encoder’s messages and produces an output sequence in
response. After optimization on episodes generated from various grammars,
the transformer performs novel tasks using frozen weights. Each box is an
embedding (vector); input embeddings are light blue (latent are dark).

Nature  |  Vol 623  |  2 November 2023  |  119

this verb (for example, ‘jump around right twice and walk thrice’),
paralleling our human learning task (‘zup’ is the analogue of ‘jump’ in
Fig. 2). COGS involves translating sentences (for example, ‘A balloon
was drawn by Emma’) into logical forms that express their meanings
(balloon(x1) ∨ draw.theme(x3, x1) ∨ draw.agent(x3, Emma)). COGS evalu-
ates 21 different types of systematic generalization, with a majority
examining one-shot learning of nouns and verbs. To encourage few-shot
inference and composition of meaning, we rely on surface-level
word-type permutations for both benchmarks, a simple variant of
meta-learning that uses minimal structural knowledge, described in
the ‘Machine learning benchmarks’ section of the Methods. These
permutations induce changes in word meaning without expanding
the benchmark’s vocabulary, to approximate the more naturalistic,
continual introduction of new words (Fig. 1).

The benchmark error rates are summarized in Table 2. On SCAN,
MLC solves three systematic generalization splits with an error rate
of 0.22% or lower (99.78% accuracy or above), including the already
mentioned ‘add jump’ split and ‘around right’ and ‘opposite right’,
which examine novel combinations of known words. On COGS, MLC
achieves an error rate of 0.87% across the 18 types of lexical generaliza-
tion. Without the benefit of meta-learning, basic seq2seq has error rates
at least seven times as high across the benchmarks, despite using the
same transformer architecture. However surface-level permutations
were not enough for MLC to solve the structural generalization tasks in
the benchmarks. MLC fails to handle longer output sequences (SCAN
length split) as well as novel and more complex sentence structures
(three types in COGS), with error rates at 100%. Such tasks require
handling ‘productivity’ (page 33 of ref. 1), in ways that are largely dis-
tinct from systematicity. However, MLC did handle novel sentence
structures in our few-shot instruction-learning task (77.8% correct on
queries with both longer input and output sequences than seen during
study; Fig. 2), suggesting that the right meta-training procedure can
promote productivity—a challenge we leave to future work.

Discussion
Over 35 years ago, when Fodor and Pylyshyn raised the issue of syste
maticity in neural networks1, today’s models19 and their language
skills were probably unimaginable. As a credit to Fodor and Pylyshyn’s
prescience, the systematicity debate has endured. Systematicity con-
tinues to challenge models11–18 and motivates new frameworks34–41.
Preliminary experiments reported in Supplementary Information 3
suggest that systematicity is still a challenge, or at the very least an
open question, even for recent large language models such as GPT-4.
To resolve the debate, and to understand whether neural networks
can capture human-like compositional skills, we must compare
humans and machines side-by-side, as in this Article and other recent
work7,42,43. In our experiments, we found that the most common
human responses were algebraic and systematic in exactly the ways
that Fodor and Pylyshyn1 discuss. However, people also relied on
inductive biases that sometimes support the algebraic solution and
sometimes deviate from it; indeed, people are not purely algebraic
machines3,6,7. We showed how MLC enables a standard neural net-
work optimized for its compositional skills to mimic or exceed human

systematic generalization in a side-by-side comparison. MLC shows
much stronger systematicity than neural networks trained in standard
ways, and shows more nuanced behaviour than pristine symbolic
models. MLC also allows neural networks to tackle other existing
challenges, including making systematic use of isolated primitives11,16
and using mutual exclusivity to infer meanings44.

Our use of MLC for behavioural modelling relates to other approaches
for reverse engineering human inductive biases. Bayesian approaches
enable a modeller to evaluate different representational forms and
parameter settings for capturing human behaviour, as specified
through the model’s prior45. These priors can also be tuned with behav-
ioural data through hierarchical Bayesian modelling46, although the
resulting set-up can be restrictive. MLC shows how meta-learning can be
used like hierarchical Bayesian models for reverse-engineering induc-
tive biases (see ref. 47 for a formal connection), although with the aid
of neural networks for greater expressive power. Our research adds
to a growing literature, reviewed previously48, on using meta-learning
for understanding human49–51 or human-like behaviour52–54. In our
experiments, only MLC closely reproduced human behaviour with
respect to both systematicity and biases, with the MLC (joint) model
best navigating the trade-off between these two blueprints of human
linguistic behaviour. Furthermore, MLC derives its abilities through
meta-learning, where both systematic generalization and the human
biases are not inherent properties of the neural network architecture
but, instead, are induced from data.

Despite its successes, MLC does not solve every challenge raised
in Fodor and Pylyshyn1. MLC does not automatically handle unprac-
tised forms of generalization or concepts outside the meta-learning
distribution, reducing the scope of entirely novel structures it can
correctly process (compare the encouraging results on learning novel
rules reported in Supplementary Information 1, with its failure on
the SCAN and COGS productivity splits). Moreover, MLC is failing to
generalize to nuances in inductive biases that it was not optimized for,
as we explore further through an additional behavioural and model-
ling experiment in Supplementary Information 2. In the language
of machine learning, we conclude that the meta-learning strategy
succeeds when generalization makes a new episode in-distribution
with respect to the training episodes, even when the specific test
items are out-of-distribution with respect to the study examples in
the episode. However, meta-learning alone will not allow a standard
network to generalize to episodes that are in turn out-of-distribution
with respect to the ones presented during meta-learning. The cur-
rent architecture also lacks a mechanism for emitting new symbols2,
although new symbols introduced through the study examples could
be emitted through an additional pointer mechanism55. Last, MLC
is untested on the full complexity of natural language and on other
modalities; therefore, whether it can achieve human-like systematic-
ity, in all respects and from realistic training experience, remains to
be determined. Nevertheless, our use of standard transformers will
aid MLC in tackling a wider range of problems at scale. For example,
a large language model could receive specialized meta-training56,
optimizing its compositional skills by alternating between standard
training (next word prediction) and MLC meta-training that continually
introduces novel words and explicitly improve systematicity (Fig. 1).

Table 2 | Error rates for systematic lexical generalization on machine learning benchmarks

Within-distribution generalization Systematic lexical generalization

Model SCAN Simple COGS Simple SCAN Add jump SCAN Around right SCAN Opp. right COGS Lexical

Basic seq2seq 0.00% 0.12% 99.27% 51.13% 100.00% 6.08%

MLC 0.02% 0.34% 0.22% 0.04% 0.06% 0.87%

Values are exact-match error rates averaged over five runs (0.00% is perfect and 100.00% is worst case). Simple splits evaluate within-distribution generalization. All other splits evaluate
systematic lexical generalization. The best scores are indicated in bold font. Opp, opposite.

120  |  Nature  |  Vol 623  |  2 November 2023

Article
For vision problems, an image classifier or generator could similarly
receive specialized meta-training (through current prompt-based
procedures57) to learn how to systematically combine object features
or multiple objects with relations.

Our study raises natural developmental questions. The specific pro-
cedure of optimizing over many related grammar-based tasks is not
developmentally plausible, but there are several ways in which the
greater principle—that systematicity can be honed through incentive
and practice—has developmental merit. First, children are not born
with an adult-like ability to compose functions; in fact, there seem to
be important changes between infancy58 and pre-school59 that could
be tied to learning. Second, children become better word learners
over the course of development60, similar to a meta-learner improving
with training. It is possible that children use experience, like in MLC, to
hone their skills for learning new words and systematically combining
them with familiar words. Beyond natural language, people require a
years-long process of education to master other forms of systematic
generalization and symbolic reasoning6,7, including mathematics, logic
and computer programming. Although applying the tools developed
here to each domain is a long-term effort, we see genuine promise in
meta-learning for understanding the origin of human compositional
skills, as well as making the behaviour of modern AI systems more
human-like.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06668-3.

1.	 Fodor, J. A. & Pylyshyn, Z. W. Connectionism and cognitive architecture: a critical analysis.
Cognition 28, 3–71 (1988).

2.	 Marcus, G. F. The Algebraic Mind: Integrating Connectionism and Cognitive Science
(MIT Press, 2003).

3.	 Johnson, K. On the systematicity of language and thought. J. Philos. 101, 111–139 (2004).
4.	 Symons, J. & Calvo, P. (eds) The Architecture of Cognition: Rethinking Fodor and Pylyshyn’s

Systematicity Challenge (MIT Press, 2014).
5.	 Hill, F. et al. Environmental drivers of systematicity and generalisation in a situated agent.

In Proc. International Conference on Learning Representations (ICLR) (2020).
6.	 O’Reilly, R. C. et al. in The Architecture of Cognition: Rethinking Fodor and Pylyshyn’s

Systematicity Challenge (eds Calvo, P. & Symons, J.) 191–226 (MIT Press, 2014).
7.	 Nam, A. J. & McClelland, J. L. What underlies rapid learning and systematic generalization

in humans? Preprint at http://arxiv.org/abs/2107.06994 (2021).
8.	 Smolensky, P. Tensor product variable binding and the representation of symbolic structures

in connectionist networks. Artif. Int. 46, 159–216 (1990).
9.	 Pollack, J. B. Recursive distributed representations. Artif. Int. 46, 77–105 (1990).
10.	 Kriete, T., Noelle, D. C., Cohen, J. D. & O’Reilly, R. C. Indirection and symbol-like processing

in the prefrontal cortex and basal ganglia. Proc. Natl Acad. Sci. USA 110, 16390–16395
(2013).

11.	 Lake, B. M. & Baroni, M. Generalization without systematicity: on the compositional skills of
sequence-to-sequence recurrent networks. In Proc. International Conference on Machine
Learning (ICML) (eds. Dy, J. & Krause, A.) 2873–2882 (PMLR, 2018).

12.	 Ettinger, A., Elgohary, A., Phillips, C. & Resnik, P. Assessing composition in sentence vector
representations. In Proc. 7th International Conference on Computational Linguistics,
(COLING 2018) 1790–1801 (Association for Computational Linguistics, 2018).

13.	 Bahdanau, D. et al. CLOSURE: assessing systematic generalization of CLEVR models.
In Proc. NAACL Workshop on Visually Grounded Interaction and Language (ViGIL)
(2019).

14.	 Keysers, D. et al. Measuring compositional generalization: a comprehensive method on
realistic data. In Proc. International Conference on Learning Representations (ICLR) (2019).

15.	 Yu, L. & Ettinger, A. Assessing phrasal representation and composition in transformers.
In Proc. Conference on Empirical Methods in Natural Language Processing (EMNLP)
4896–4907 (Association for Computational Linguistics, 2020).

16.	 Kim, N. & Linzen, T. COGS: a compositional generalization challenge based on semantic
interpretation. In Proc. Conference on Empirical Methods in Natural Language Processing
(EMNLP) 9087–9105 (2020).

17.	 Hupkes, D., Dankers, V., Mul, M. & Bruni, E. Compositionality decomposed: how do neural
networks generalize? J. Artif. Int. Res. 67, 757–795 (2020).

18.	 Press, O. et al. Measuring and narrowing the compositionality gap in language models.
Preprint at https://arxiv.org/abs/2210.03350 (2022).

19.	 Brown, T. B. et al. Language models are few-shot learners. In Proc. Advances in Neural
Information Processing Systems 33 (NeurIPS) (eds Larochelle, H. et al.) 1877–1901 (Curran
Associates, 2020).

20.	 OpenAI. GPT-4 technical report. Preprint at http://arxiv.org/abs/2303.08774 (2023).
21.	 Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta learning in neural networks:

a survey. IEEE Trans. Pattern Anal. Mach. Int. 44, 5149–5169 (2022).
22.	 Reber, A. Implicit learning of artificial grammars. Verb. Learn. Verb. Behav. 5, 855–863

(1967).
23.	 Aslin, R. N., Saffran, J. R. & Newport, E. L. Computation of conditional probability statistics

by 8-month-old infants. Psychol. Sci. 9, 321–324 (1998).
24.	 Stuhlmuller, A., Tenenbaum, J. B. & Goodman, N. D. Learning structured generative

concepts. In Proc. Thirty-Second Annual Conference of the Cognitive Science Society,
2296–2301 (2010).

25.	 Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks.
In Proc. Advances in Neural Information Processing Systems (eds Ghahramani, Z. et al.)
(Curran Associates, 2014).

26.	 Vaswani, A. et al. Attention is all you need. In Proc. Advances in Neural Information
Processing Systems 30 (eds Guyon, I. et al.) 5998–6008 (Curran Associates, 2017).

27.	 Markman, E. M. & Wachtel, G. F. Children’s use of mutual exclusivity to constrain the
meanings of words. Cogn. Psychol. 20, 121–157 (1988).

28.	 Haiman, J. The iconicity of grammar: isomorphism and motivation. Language 56, 515–540
(1980).

29.	 de Ruiter, L., Theakston, A., Brandt, S. & Lieven, E. Iconicity affects children’s comprehension
of complex sentences: the role of semantics, clause order, input and individual differences.
Cognition 171, 202–224 (2018).

30.	 Lake, B. M. Compositional generalization through meta sequence-to-sequence learning.
In Proc. Advances in Neural Information Processing Systems (NeurIPS) 32 (eds Wallach, H.
et al.) 9791–9801 (Curran Associates, 2019).

31.	 Conklin, H., Wang, B., Smith, K. & Titov, I. Meta-learning to compositionally generalize.
In Proc. 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (ACL-IJCNLP) 3322–3335
(Association for Computational Linguistics, 2021).

32.	 Chan, S. C. Y. et al. Data distributional properties drive emergent in-context learning in
transformers. In Advances in Neural Information Processing Systems 35 (eds Koyejo, S.
et al.) 18878–18891 (Curran Associates, 2022).

33.	 Myung, J. I. & Pitt, M. A. in Stevens’ Handbook of Experimental Psychology and Cognitive
Neuroscience (ed. Wixted, J. T.) 85–118 (John Wiley & Sons, 2018).

34.	 Collins, A. G. E. & Frank, M. J. Cognitive control over learning: creating, clustering, and
generalizing task-set structure. Psychol. Rev. 120, 190–229 (2013).

35.	 Chen, X., Liang, C., Yu, A. W., Song, D. & Zhou, D. Compositional generalization via neural-
symbolic stack machines. In Proc. Advances in Neural Information Processing Systems 33
(eds Larochelle, H. et al.) 1690–1701 (Curran Associates, 2020).

36.	 Russin, J., Jo, J., O’Reilly, R. C. & Bengio, Y. Systematicity in a recurrent neural network by
factorizing syntax and semantics. In Proc. 42nd Annual Meeting of the Cognitive Science
Society (eds Denison, S. et al.) (Cognitive Science Society. 2020).

37.	 Liu, Q. et al. Compositional generalization by learning analytical expressions. Adv. Neural
Inf. Proces. Syst. 33, 11416–1142 (2020).

38.	 Nye, M. I., Solar-Lezama, A., Tenenbaum, J. B. & Lake, B. M. Learning compositional rules
via neural program synthesis. In Proc. Advances in Neural Information Processing Systems
(NeurIPS) 33 (eds Larochelle, H. et al.) (Curran Associates, 2020).

39.	 Singh, G., Deng, F. & Ahn, S. Illiterate DALL-E learns to compose. In Proc. ICLR https://
openreview.net/group?id=ICLR.cc/2022/Conference (2022).

40.	 Smolensky, P., McCoy, R. T., Fernandez, R., Goldrick, M. & Gao, J. Neurocompositional
computing: from the central paradox of cognition to a new generation of AI systems. AI Mag.
(2022).

41.	 Zhou, D. et al. Least-to-most prompting enables complex reasoning in large language
models. In Proc. ICLR https://openreview.net/group?id=ICLR.cc/2023/Conference
(2023).

42.	 Franklin, N. T. & Frank, M. J. Generalizing to generalize: humans flexibly switch between
compositional and conjunctive structures during reinforcement learning. PLoS Comput.
Biol. 16, e1007720 (2020).

43.	 Dekker, R. B., Otto, F. & Summerfield, C. Curriculum learning for human compositional
generalization. Proc. Natl Acad. Sci. USA 119, e2205582119 (2022).

44.	 Gandhi, K. & Lake, B. M. Mutual exclusivity as a challenge for deep neural networks. In Proc.
Advances in Neural Information Processing Systems (NeurIPS) 33 (eds Larochelle, H. et al.)
14182–14192 (Curran Associates, 2020).

45.	 Griffiths, T. L., Chater, N., Kemp, C., Perfors, A. & Tenenbaum, J. B. Probabilistic models of
cognition: exploring representations and inductive biases. Trends Cogn. Sci. 14, 357–364
(2010).

46.	 Kemp, C., Perfors, A. & Tenenbaum, J. B. Learning overhypotheses with hierarchical Bayesian
models. Dev. Sci. 10, 307–321 (2007).

47.	 Grant, E., Finn, C., Levine, S., Darrell, T. & Griffiths, T. Recasting gradient-based meta-learning
as hierarchical bayes. In Proc. International Conference on Learning Representations (ICLR)
(2019).

48.	 Binz, M. et al. Meta-learned models of cognition. Preprint at http://arxiv.org/abs/2304.06729
(2023).

49.	 Grant, E., Peterson, J. C. & Griffiths, T. Learning deep taxonomic priors for concept learning
from few positive examples. In Proc. Annual Meeting of the Cognitive Science Society
(eds Goel, A. K. et al.) 1865–1870 (Cognitive Science Society, 2019).

50.	 Dezfouli, A., Nock, R. & Dayan, P. Adversarial vulnerabilities of human decision-making.
Proc. Natl Acad. Sci. USA 117, 29221–29228 (2020).

51.	 Kumar, S., Dasgupta, I., Daw, N. D., Cohen, J. D. & Griffiths, T. L. Disentangling abstraction
from statistical pattern matching in human and machine learning. PLoS Comput. Biol. 19,
e1011316 (2023).

52.	 Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T. Meta-learning with memory-
augmented neural networks. In Proc. International Conference on Machine Learning
(ICML) 1842–1850 (PMLR, 2016).

53.	 Wang, J. et al. Learning to reinforcement learn. Preprint at https://arxiv.org/abs/1611.05763
(2017).

https://doi.org/10.1038/s41586-023-06668-3
http://arxiv.org/abs/2107.06994
https://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2303.08774
https://openreview.net/group?id=ICLR.cc/2022/Conference
https://openreview.net/group?id=ICLR.cc/2022/Conference
https://openreview.net/group?id=ICLR.cc/2023/Conference
http://arxiv.org/abs/2304.06729
https://arxiv.org/abs/1611.05763

Nature  |  Vol 623  |  2 November 2023  |  121

54.	 McCoy, R. T., Grant, E., Smolensky, P., Griffiths, T. L. & Linzen, T. Universal linguistic inductive
biases via meta-learning. In Proc. 42nd Annual Conference of the Cognitive Science Society
(eds Denison, S. et al.) (Cognitive Science Society, 2020).

55.	 Vinyals, O., Fortunato, M. & Jaitly, N. Pointer networks. In Proc. Advances in Neural
Information Processing Systems (eds Cortes, C. et al.) (Curran Associates, 2015).

56.	 Chen, Y., Zhong, R., Zhan, S., Karypis, G. & He, H. Meta-learning via language model
in-context tuning. In Proc. 60th Annual Meeting of the Association for Computational
Linguistics (ACL) 719–730 (Association for Computational Linguistics, 2022).

57.	 Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image
generation with CLIP latents. Preprint at https://arxiv.org/abs/2204.06125 (2022).

58.	 Piantadosi, S. T., Palmeri, H. & Aslin, R. Limits on composition of conceptual operations in
9-month-olds. Infancy 23, 310–324 (2018).

59.	 Piantadosi, S. & Aslin, R. Compositional reasoning in early childhood. PLoS ONE 11,
e0147734 (2016).

60.	 Bergelson, E. The comprehension boost in early word learning: older infants are better
learners. Child Dev. Perspect. 14, 142–149 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://arxiv.org/abs/2204.06125
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Behavioural methods: few-shot learning task
The meaning of each word in the few-shot learning task (Fig. 2) is
described as follows (see the ‘Interpretation grammars’ section for
formal definitions, and note that the mapping of words to meanings
was varied across participants). The four primitive words are direct
mappings from one input word to one output symbol (for example,
‘dax’ is RED, ‘wif’ is GREEN, ‘lug’ is BLUE). Each output symbol is a circle
of a particular colour. The other three words are functional terms that
take arguments. Function 1 (‘fep’ in Fig. 2) takes the preceding primi-
tive as an argument and repeats its output three times (‘dax fep’ is RED
RED RED). Function 2 (‘blicket’) takes both the preceding primitive
and following primitive as arguments, producing their outputs in a
specific alternating sequence (‘wif blicket dax’ is GREEN RED GREEN).
Last, function 3 (‘kiki’) takes both the preceding and following strings
as input, processes them and concatenates their outputs in reverse
order (‘dax kiki lug’ is BLUE RED). We also tested function 3 in cases in
which its arguments were generated by the other functions, exploring
function composition (‘wif blicket dax kiki lug’ is BLUE GREEN RED
GREEN). During the study phase (see description below), participants
saw examples that disambiguated the order of function application
for the tested compositions (function 3 takes scope over the other
functions).

Thirty participants in the United States were recruited using Ama-
zon Mechanical Turk and the psiTurk platform61. All of the studies
were approved by the NYU IRB, protocol FY2018-1728, and obtained
informed consent. The participants were informed that the study inves-
tigated how people learn input–output associations, and that they
would be asked to learn a set of commands and their corresponding
outputs. Learning proceeded in a curriculum with four stages, with
each stage featuring both a study phase and a test phase (see Extended
Data Fig. 1 for the complete set of study and test instructions). In the
first three stages, during the study phase, the participants learned
individual functions from just two demonstrations each (functions 1
through 3; Fig. 2a). In the final stage, participants learned to interpret
complex instructions by combining these functions (function com-
positions; Fig. 2a). After all stages, there was a short survey that asked
about strategy and any technical problems. Participants spent an aver-
age of 23 min in the experiment (minimum 8 min and 41 s; maximum
41 min and 19 s).

Each study phase presented the participants with a set of example
input–output mappings. For the first three stages, the study instruc-
tions always included the four primitives and two examples of the
relevant function, presented together on the screen. For the last
stage, the entire set of study instructions was provided together to
probe composition. During the study phases, the output sequence
for one of the study items was covered and the participants were
asked to reproduce it, given their memory and the other items on
the screen. Corrective feedback was provided, and the participants
cycled through all non-primitive study items until all were produced
correctly or three cycles were completed. The test phase asked partici-
pants to produce the outputs for novel instructions, with no feedback
provided (Extended Data Fig. 1b). The study items remained on the
screen for reference, so that performance would reflect generaliza-
tion in the absence of memory limitations. The study and test items
always differed from one another by more than one primitive sub-
stitution (except in the function 1 stage, where a single primitive was
presented as a novel argument to function 1). Some test items also
required reasoning beyond substituting variables and, in particular,
understanding longer compositions of functions than were seen in the
study phase.

The response interface had a pool of possible output symbols that
could be clicked or dragged to the response array. The circles could be
rearranged within the array or cleared with a reset button. The study

and test set only used four output symbols, but the pool provided six
possibilities (that is, there were two extra colours that were not associ-
ated to words), to discourage reasoning by exclusion. The assignment
of words to colours and functions was randomized for each participant
(drawn from nine possible words and six colours), and the first three
stages were presented in random order.

We used several strategies to ensure that our participants were paying
attention. First, before the experiment, the participants practiced using
the response interface and had to pass an instructions quiz; they cycled
through the quiz until they passed it. Second, catch trials were included
during the test phases, probing the study items rather than new items,
with the answers clearly presented on the screen above. There was one
catch trial per stage (except the last stage had two); participants were
excluded if they missed two or more catch trials (n = 5). Finally, query
responses were also excluded if the corresponding study phases were
not completed correctly (for all items) within three attempts (13% of
remaining data).

For statistical analyses of the data from this experiment and else-
where, we tested for data normalcy and applied alternative nonpara-
metric or permutation tests when the assumptions were not met.

Interpretation grammars
The few-shot learning task evaluated with humans and machines is
defined through a set of compositional rewrite rules for translating
linguistic instructions to output sequences (Extended Data Fig. 2).
Inspired by formal semantics62, we denote a set of rules such as this as
the ‘interpretation grammar’. We refer to the grammar in Extended Data
Fig. 2 that defines the human learning task as the ‘gold interpretation
grammar’, whereas a different interpretation grammar is shown in
Extended Data Fig. 4. The rules apply one by one, based on their condi-
tions, until they produce an output sequence consisting of all terminal
symbols (coloured circles). A worked example of interpreting a complex
query is shown in Extended Data Fig. 3. Four of the rules define how the
primitive words (such as ‘dax’, ‘wif’) map to a single output symbol.
The other rules define functions (‘fep’, ‘blicket’ and ‘kiki’) that apply
when certain conditions are met through their arguments and, when
applied, initiate recursive calls of the interpretation process on their
intermediate outputs. Note that a different set of rules will define a dif-
ferent few-shot learning problem; this property is used to define many
different few-shot learning problems for optimizing MLC. Although
the situation does not arise for the study or query instructions in the
few-shot task (see the ‘Behavioural methods: few-shot learning task’
section), it is possible that two rules satisfy their conditions at the same
intermediate step. If so, the first rule in the interpretation grammar
listing is used in order to resolve the ambiguity.

Behavioural methods: open-ended task
The instructions were as similar as possible to the few-shot learning
task, although there were several important differences. First, because
this experiment was designed to probe inductive biases and does not
provide any examples to learn from, it was emphasized to the par-
ticipants that there are multiple reasonable answers and they should
provide a reasonable guess. Second, the participants responded to
the query instructions all at once, on a single web page, allowing the
participants to edit, go back and forth, and maintain consistency across
responses. By contrast, the previous experiment collected the query
responses one by one and had a curriculum of multiple distinct stages
of learning.

Thirty participants in the United States were recruited using
Mechanical Turk and psiTurk. The participants produced output
sequences for seven novel instructions consisting of five possible words.
The participants also approved a summary view of all of their responses
before submitting. There were six pool options, and the assignment
of words and item order were random. One participant was excluded
because they reported using an external aid in a post-test survey.

On average, the participants spent 5 min 5 s in the experiment (mini-
mum 2 min 16 s; maximum 11 min 23 s).

Implementation of MLC
Architecture and optimizer. As shown in Fig. 4, our MLC implementa-
tion uses a standard seq2seq transformer26. This architecture involves
two neural networks working together—an encoder transformer to
process the query input and study examples, and a decoder transformer
to generate the output sequence. Both the encoder and decoder have
3 layers, 8 attention heads per layer, input and hidden embeddings of
size 128, and a feedforward hidden size of 512. Following GPT63, GELU64
activation functions are used instead of ReLU. In total, the architec-
ture has about 1.4 million parameters. Note that an earlier version of
memory-based meta-learning for compositional generalization used
a more limited and specialized architecture30,65.

The encoder network (Fig. 4 (bottom)) processes a concatenated
source string that combines the query input sequence along with a
set of study examples (input/output sequence pairs). The encoder
vocabulary includes the eight words, six abstract outputs (coloured
circles), and two special symbols for separating the study examples
(∣ and →). The decoder network (Fig. 4 (top)) receives messages from the
encoder and generates the output sequence. The decoder vocabulary
includes the abstract outputs as well as special symbols for starting
and ending sequences (<SOS> and <EOS>, respectively). Sinusoidal
positional encodings are added to the input embeddings26.

MLC was trained to minimize the cross-entropy loss (averaged over
tokens) with the Adam optimizer and a batch size of 25 episodes. Each
episode contains many study examples and query examples (for exam-
ple, up to 14 study examples and 10 queries in optimization for the
few-shot learning task) and the effective sequence-level batch size
was therefore larger (for example, (14 + 10)25 = 600). Training lasted
for 50 epochs. The learning rate was 0.001, with a warm-up applied for
the first epoch and then a linear decrease to 0.00005 across training.
Dropout of 0.1 was applied to the input embeddings and transform-
ers. For meta-training procedures with a validation set (for example,
200 held-out grammars for few-shot instruction learning), a variant of
early stopping was used: although training was not actually truncated,
the best parameter setting (across intervals of 100 steps) was saved
according to the validation loss. All of the networks were trained using
a NVIDIA Titan RTX GPU.

Meta-training procedures for MLC and MLC variants. MLC optimizes
the transformers for systematic generalization through high-level
behavioural guidance and/or direct human behavioural examples. To
prepare MLC for the few-shot instruction task, optimization proceeds
over a fixed set of 100,000 training episodes and 200 validation epi-
sodes. Extended Data Figure 4 illustrates an example training episode
and additionally specifies how each MLC variant differs in terms of
access to episode information (see right hand side of figure). Each
episode constitutes a seq2seq task that is defined through a randomly
generated interpretation grammar (see the ‘Interpretation grammars’
section). The grammars are not observed by the networks and must be
inferred (implicitly) to successfully solve few-shot learning problems
and make algebraic generalizations. The optimization procedures for
the MLC variants in Table 1 are described below.
MLC (algebraic only). The interpretation grammars that define each
episode were randomly generated from a simple meta-grammar. An
example episode with input/output examples and corresponding
interpretation grammar (see the ‘Interpretation grammars’ section)
is shown in Extended Data Fig. 4. Rewrite rules for primitives (first
4 rules in Extended Data Fig. 4) were generated by randomly pairing
individual input and output symbols (without replacement). Rewrite
rules for defining functions (next 3 rules in Extended Data Fig. 4) were
generated by sampling the left-hand sides and right-hand sides for
those rules. For the left-hand side (for example, ⟦u1 lug x1⟧ for the fifth

rule in Extended Data Fig. 4), rules chose an input symbol as function
name, whether the function has one or two arguments (with the func-
tion name appearing after the argument or in-between arguments,
respectively), and whether each argument can take arbitrary non-
empty strings (x1 or x2) or just the primitive inputs (u1 or u2). A rule’s
right-hand side was generated as an arbitrary string (length ≤ 8) that
mixes and matches the left-hand-side arguments, each of which are
recursively evaluated and then concatenated together (for example,
⟦x1⟧ ⟦u1⟧ ⟦x1⟧ ⟦u1⟧ ⟦u1⟧). The last rule was the same for each episode and
instantiated a form of iconic left-to-right concatenation (Extended
Data Fig. 4). Study and query examples (set 1 and 2 in Extended Data
Fig. 4) were produced by sampling arbitrary, unique input sequences
(length ≤ 8) that can be parsed with the interpretation grammar to
produce outputs (length ≤ 8). Output symbols were replaced uniformly
at random with a small probability (0.01) to encourage some robust-
ness in the trained decoder. For this variant of MLC training, episodes
consisted of a latent grammar based on 4 rules for defining primitives
and 3 rules defining functions, 8 possible input symbols, 6 possible
output symbols, 14 study examples and 10 query examples. The study
examples were presented in shuffled order on each episode.

The validation episodes were defined by new grammars that differ
from the training grammars. Grammars were only considered new if
they did not match any of the meta-training grammars, even under
permutations of how the rules are ordered. The gold interpretation
grammar that produced the few-shot instruction-learning task with
humans and machines (Extended Data Fig. 2) was also reserved for
testing in this way, with an additional structural requirement that gram-
mars for producing the training and validation episodes should also
not match the gold grammar through any permutation of the input
and output symbol assignments.

For successful optimization, it is also important to pass each study
example (input sequence only) as an additional query when training
on a particular episode. This effectively introduces an auxiliary copy
task—matching the query input sequence to an identical study input
sequence, and then reproducing the corresponding study output
sequence—that must be solved jointly with the more difficult gener-
alization task.
MLC for the few-shot instruction-learning task. Optimization closely
followed the procedure outlined above for the algebraic-only MLC vari-
ant. The key difference here is that full MLC model used a behaviourally
informed meta-learning strategy aimed at capturing both human suc-
cesses and patterns of error. Using the same meta-training episodes as
the purely algebraic variant, each query example was passed through a
bias-based transformation process (see Extended Data Fig. 4 for pseu-
docode) before MLC processed it during meta-training. Specifically,
each query was paired with its algebraic output in 80% of cases and
a bias-based heuristic in the other 20% of cases (chosen to approxi-
mately reflect the measured human accuracy of 80.7%). To create the
heuristic query for meta-training, a fair coin was flipped to decide
between a stochastic one-to-one translation and a noisy application
of the underlying grammatical rules. For the one-to-one translations,
first, the study examples in the episode are examined for any instances
of isolated primitive mappings (for example, ‘tufa → PURPLE’). Second,
each input symbol is mapped superficially to a single output symbol
(in a left-to-right manner) using either the corresponding primitive
mapping if observed as a study example, or using an arbitrary out-
put symbol if a primitive mapping is not observed (for example, if the
input symbol is a function name). For the noisy rule examples, each
two-argument function in the interpretation grammar has a 50% chance
of flipping the role of its two arguments. For example, as in Extended
Data Fig. 4, the rule ⟦u1 lug x1⟧ → ⟦x1⟧ ⟦u1⟧ ⟦x1⟧ ⟦u1⟧ ⟦u1⟧, when flipped,
would be applied as ⟦u1 lug x1⟧ → ⟦u1⟧ ⟦x1⟧ ⟦u1⟧ ⟦x1⟧ ⟦x1⟧.
MLC for the open-ended task. An epoch of optimization consisted of
100,000 episode presentations based on the human behavioural data.
To produce one episode, one human participant was randomly selected

Article
from the open-ended task, and their output responses were divided
arbitrarily into study examples (between 0 and 5), with the remaining
responses as query examples. Additional variety was produced by
shuffling the order of the study examples, as well as randomly remap-
ping the input and output symbols compared to those in the raw data,
without altering the structure of the underlying mapping. The models
were trained to completion (no validation set or early stopping).
MLC (joint). Optimization for the joint MLC model, tuned jointly for the
few-shot instruction and open-ended tasks, proceeded as described in
the two paragraphs above; each epoch combined 100,000 episodes of
the few-shot instruction learning optimization and 100,000 episodes
of the open-ended optimization. Finally, each epoch also included an
additional 100,000 episodes as a unifying bridge between the two
types of optimization. These bridge episodes revisit the same 100,000
few-shot instruction learning episodes, although with a smaller number
of the study examples provided (sampled uniformly from 0 to 14). Thus,
for episodes with a small number of study examples chosen (0 to 5,
that is, the same range as in the open-ended trials), the model cannot
definitively judge the episode type on the basis of the number of study
examples. The models were trained to completion (no validation set
or early stopping).
MLC (copy only). Optimization for the copy-only model closely followed
the procedure for the algebraic-only variant. Critically, this model
was trained only on the copy task of identifying which study example
is the same as the query example, and then reproducing that study
example’s output sequence (see specification in Extended Data Fig. 4;
set 1 was used for both study and query examples). It was not trained
to handle novel queries that generalize beyond the study set. Thus,
the model was trained on the same study examples as MLC, using the
same architecture and procedure, but it was not explicitly optimized
for compositional generalization.

Evaluation procedures. Few-shot instruction-learning task. MLC was
evaluated on this task in several ways; in each case, MLC responded to
this novel task through learned memory-based strategies, as its weights
were frozen and not updated further. MLC predicted the best response
for each query using greedy decoding, which was compared to the
algebraic responses prescribed by the gold interpretation grammar
(Extended Data Fig. 2). MLC also predicted a distribution of possible
responses; this distribution was evaluated by scoring the log-likelihood
of human responses and by comparing samples to human responses.
Although the few-shot task was illustrated with a canonical assignment
of words and colours (Fig. 2), the assignments of words and colours
were randomized for each human participant. Thus, to evaluate MLC
comparably, these factors were also randomized. For comparison with
the gold grammar or with human behaviour via log-likelihood, per-
formance was averaged over 100 random word/colour assignments.
Samples from the model (for example, as shown in Fig. 2 and reported
in Extended Data Fig. 1) were based on an arbitrary random assignment
that varied for each query instruction, with the number of samples
scaled to 10× the number of human participants.
Open-ended task. MLC was evaluated on sampling human-like responses
and predicting human responses through log-likelihood scores. Human
participants made plausible guesses for how to respond to 7 query
instructions (see the ‘Behavioural methods: open-ended task’ sec-
tion). They responded jointly to all 7 queries on the same web page; as
analysed in the main text, people’s predicted word meanings followed
strong consistency constraints across the responses. Thus, to model
these data, MLC cannot simply answer the queries independently.
Instead, MLC factorizes the problem of responding jointly to 7 query
inputs x1, …, x7 with 7 query outputs y1, …, y7 as

∣ ∣∏P y y x x P y x x y(, …, , …,) = (, ,), (1)
i

i i i i1 7 1 7
=1

7

< <

using (x1, y1), …, (xi−1, yi−1) as study examples for responding to query
xi with output yi. Thus, sampling a response for the open-ended task
proceeded as follows. First, MLC samples P(y1∣x1) with no study exam-
ples. Second, when sampling y2 in response to query x2, the previ-
ously sampled (x1, y1) is now a study example, and so on. The query
ordering was chosen arbitrarily (this was also randomized for human
participants).

For scoring a particular human response y1, …, y7 by log-likelihood,
MLC uses the same factorization as in equation (1). Performance was
averaged over 200 passes through the dataset, each episode with dif-
ferent random query orderings as well as word and colour assignments.

Alternative neural and symbolic models
In addition to the range of MLC variants specified above, the following
additional neural and symbolic models were evaluated.
Lapse model. All MLC, symbolic and neural models were fit to the
human behavioural responses (Table 1) with a lapse parameter λ. With
this parameter, the probability of a participant producing any given
output symbol s ∈ S is P s λ P s λ() = (1 −) () +M S

1 , where S (with cardinal-
ity ∣S∣) is the set of abstract outputs (colour circles) plus the end-
of-sequence token (<EOS>) and PM is the model prediction before the
lapse mechanism. If the model has no prediction for a particular sym-
bol (for example, this symbol extends beyond the model’s predicted
output sequence), P s() = S

1 .
Symbolic (oracle). This probabilistic symbolic model assumes that
people can infer the gold grammar from the study examples (Extended
Data Fig. 2) and translate query instructions accordingly. Non-algebraic
responses must be explained through the generic lapse model (see
above), with a fit lapse parameter. Note that all of the models compared
in Table 1 have the same opportunity to fit a lapse parameter.
Symbolic (oracle/biases). For the few-shot instruction-learning task, this
probabilistic symbolic model augments the oracle, described above, by
passing the algebraic input/output pairs through the same bias-based
transformation process used when optimizing MLC (see pseudocode
in Extended Data Fig. 4 and see the ‘MLC few-shot instruction-learning
task’ section for more description). Thus, using the gold grammar in
Extended Data Fig. 2, this model predicts a mixture of algebraic out-
puts, one-to-one translations and noisy rule applications to account
for human behaviour.

For the open-ended task, this probabilistic symbolic model opera-
tionalizes the three key inductive biases. Using the same factoriza-
tion as MLC does for the open-ended task (equation (1)), the response
sequence yi to query sequence xi is modelled based on previous partici-
pant responses, P(yi∣xi, x<i, y<i). Each input token within the sequence
xi is stochastically translated as a single output token in yi using a
left-to-right (iconic concatenation), one-to-one strategy. For exam-
ple, if xi is ‘dax wug’, a coloured circle for ‘dax’ is sampled in propor-
tion to the number of times ‘dax’ aligned with each coloured circle in
the previous x<i and y<i pairs. After handling ‘dax’, a coloured circle for
‘wug’ is sampled in the same manner. If a word is new (and does not
appear previously in x<i), its coloured circle is sampled from the set
of unused output symbols (that do not appear in y<i), implementing
mutual exclusivity. As with all models, a fit lapse parameter is also used.
Neural (basic seq2seq). A basic seq2seq transformer can be obtained
through a straightforward modification of the MLC diagram (Fig. 4):
the study examples were excluded from the input sequence, leaving the
transformer to process only the query input before producing the
query output. Given that only the architecture’s use has changed
(not the architecture itself), the model has approximately the same
number of learnable parameters as in MLC (except for the smaller
input vocabulary). Without access to study examples, the model is
poorly equipped for learning words with changing meanings; it has no
in-context memory and, therefore, all of its knowledge must be stored
in the learned weights. To perform the few-shot instruction-learning
task, the basic seq2seq model was trained in the typical way for

seq2seq modelling: training iterates over the input/output sequence
pairs with the aim of learning the target mapping. In this case, the
training set is the 14 study instructions and the test set is the 10 query
instructions (Extended Data Fig. 1). Otherwise, the same architecture
and optimizer was used as described in the ‘Architecture and optimizer’
section. The network was trained for 1,000 epochs over the batched
set of study instructions. It was not clear how much training would be
optimal and we wanted to examine this model under favourable condi-
tions. To this end, we gave it an additional advantage not offered to any
other model class: we tracked each step of the optimizer and selected
the best parameter values on the basis of the test loss. Typically, this
point was reached within a few dozen steps. Nevertheless, all 10 runs
failed to generalize systematically on the few-shot instruction task
(0% exact-match accuracy).

We informally examined a couple of other basic seq2seq variants.
First, we evaluated lower-capacity transformers but found that they
did not perform better. Second, we tried pretraining the basic seq2seq
model on the entire meta-training set that MLC had access to, includ-
ing the study examples, although without the in-context information
to track the changing meanings. Then model was then fine-tuned as
described above. On the few-shot instruction task, this improves the
test loss marginally, but not accuracy.

Machine learning benchmarks
Handling long in-context sequences. The tasks from the machine-
learning literature that we experimented with, SCAN11,66 and COGS16,
feature long sequences as (in-context) study examples. This raises
issues for the previous architecture (see the ‘Architecture and opti-
mizer’ section). Specifically, it is intractable to process a single source
sequence that consists of the concatenated query input sequence and
multiple study example sequences, which could have a worst-case
source sequence of length S ≈ 1,500 on COGS and potentially longer in
other applications (for each individual study example, the maximum
length in SCAN is 9 for inputs and 49 for outputs; the maximum length
in COGS is 22 for inputs and 154 for outputs). The bottlenecks are the
encoder self-attention layers, which are S()2O . A more scalable proce-
dure for applying a standard transformer (Extended Data Fig. 6) was
therefore developed for optimizing MLC on machine learning bench-
marks. We copy each query input sequence m times and concatenate
the copies separately with each of the m study examples. This creates
m smaller source sequences to be processed separately by the standard
transformer encoder. Each of the resulting contextual embeddings are
then marked according to their origin in one of the m study examples,
which is done by adding an index embedding vector that enables the
decoder to see which embedding came from which study example (one
for each index 1, …, m). Finally, the set of contextual embeddings
is passed to the standard transformer decoder. The decoder cross-
attention layers are less expensive, O ST(), because the target sequence
length T, which does not include any study examples, is typically much
shorter (T ≪ S).

Optimization. For each SCAN split, both MLC and basic seq2seq mod-
els were optimized for 200 epochs without any early stopping. For
COGS, both models were optimized for 300 epochs (also without early
stopping), which is slightly more training than the extended amount
prescribed in ref. 67 for their strong seq2seq baseline. The batch size
was 200 episodes for SCAN and 40 episodes for COGS. This more scal-
able MLC variant, the original MLC architecture (see the ‘Architecture
and optimizer’ section) and basic seq2seq all have approximately the
same number of learnable parameters (except for the fact that basic
seq2seq has a smaller input vocabulary).

Each SCAN episode contained 10 study examples and 2 query exam-
ples (COGS used 8 study and 2 query), such that one query example
was a randomly chosen study example (as an auxiliary copy task; see
the ‘Meta-training procedures for MLC and MLC variants’ section) and

the other query was distinct from the study examples and required
generalization. All of the query and study examples were drawn from
the training corpus. Each episode was scrambled (with probability
0.95) using a simple word type permutation procedure30,65, and oth-
erwise was not scrambled (with probability 0.05), meaning that the
original training corpus text was used instead. Occasionally skipping
the permutations in this way helps to break symmetries that can slow
optimization; that is, the association between the input and output
primitives is no longer perfectly balanced. Otherwise, all model and
optimizer hyperparameters were as described in the ‘Architecture
and optimizer’ section.

SCAN: meta-training and testing. During SCAN meta-training
(an example episode is shown in Extended Data Fig. 7), each episode is
formed by sampling a set of study and query examples from the training
corpus of a particular SCAN split (‘add jump’, ‘around right’ and so on).
Given these examples, a simple permutation procedure remaps the full
set of output actions (‘JUMP’, ‘RUN’, ‘WALK’, ‘LOOK’, ‘TURN LEFT’, ‘TURN
RIGHT’) through a random permutation of these same set of actions,
and remaps the input primitives (‘jump’, ‘run’, ‘walk’, ‘look’, ‘left’, ‘right’)
through another random permutation to the same set of words. Note
that several other input words (the mostly ‘functional’ words ‘turn’,
‘twice’, ‘thrice’, ‘around’, ‘opposite’, ‘and’, ‘after’) have stable meanings
that can be stored in the model weights. To make sense of an episode,
MLC must become adept at inferring, from just a few study examples,
how words map to meanings. MLC must also become adept at compo-
sition: it must systematically compose the inferred word meanings to
correctly answer the queries.

During SCAN testing (an example episode is shown in Extended Data
Fig. 7), MLC is evaluated on each query in the test corpus. For each
query, 10 study examples are again sampled uniformly from the train-
ing corpus (using the test corpus for study examples would inadvert-
ently leak test information). Neither the study nor query examples
are remapped; in other words, the model is asked to infer the original
meanings. Finally, for the ‘add jump’ split, one study example is fixed
to be ‘jump → JUMP’, ensuring that MLC has access to the basic meaning
before attempting compositional uses of ‘jump’.

COGS: meta-training and testing. The COGS output expressions
were converted to uppercase to remove any incidental overlap
between input and output token indices (which MLC, but not basic
seq2seq, could exploit). As in SCAN meta-training, an episode of COGS
meta-training involves sampling a set of study and query examples from
the training corpus (see the example episode in Extended Data Fig. 8).
The vocabulary in COGS is much larger than in SCAN; thus, the study
examples cannot be sampled arbitrarily with any reasonable hope that
they would inform the query of interest. Instead, for each vocabulary
word that takes a permuted meaning in an episode, the meta-training
procedure chooses one arbitrary study example that also uses that
word, providing the network an opportunity to infer its meaning. Any
remaining study examples needed to reach a total of 8 are sampled
arbitrarily from the training corpus.

COGS is a multi-faceted benchmark that evaluates many forms of sys-
tematic generalization. To master the lexical generalization splits, the
meta-training procedure targets several lexical classes that participate
in particularly challenging compositional generalizations. As in SCAN,
the main tool used for meta-learning is a surface-level token permuta-
tion that induces changing word meaning across episodes. These per-
mutations are applied within several lexical classes; for examples, 406
input word types categorized as common nouns (‘baby’, ‘backpack’ and
so on) are remapped to the same set of 406 types. The other remapped
lexical classes include proper nouns (103 input word types; ‘Abigail’,
‘Addison’ and so on), dative verbs (22 input word types; ‘given’, ‘lended’
and so on) and verbs in their infinitive form (21 input word types; such
as ‘walk’, ‘run’). Surface-level word type permutations are also applied

Article
to the same classes of output word types. Other verbs, punctuation
and logical symbols have stable meanings that can be stored in the
model weights. Importantly, although the broad classes are assumed
and could plausibly arise through simple distributional learning68,69,
the correspondence between input and output word types is unknown
and not used.

In one case, COGS meta-learning goes beyond surface-level remap-
ping to use a minimal amount of semantic structure. To guide the net-
works toward flexible substitution of common nouns with proper nouns,
any common noun input token has an independent chance of replace-
ment (probability 0.01) with an arbitrary proper noun input token, while
also removing the preceding determiner token. Independently, any
common noun output token can also be arbitrarily remapped (again with
probability 0.01) to a proper noun output token, with the correspond-
ing minimal change to the structural form to remove the determiner (if
remapping the output token ‘cookie’ to ‘John’, the cookie(xi) predicate
is removed, occurrences of variable xi are replaced with ‘John’ and vari-
ables j > i are decremented by 1). As before, the correspondence between
input and output tokens is unknown, both at the levels of a sentence and
the whole dataset. Thus, during an episode of meta-training, a common
noun (phrase) might correspond to a logical form expressing a proper
noun or vice versa. At test, MLC must sort this out and recover how
proper and common nouns work on the basis of the study examples.

During the COGS test (an example episode is shown in Extended
Data Fig. 8), MLC is evaluated on each query in the test corpus. For each
query, eight study examples are sampled from the training corpus,
using the same procedure as above for picking study examples that
facilitate word overlap (note that picking study examples from the
generalization corpus would inadvertently leak test information).
Neither the study nor query examples are remapped to probe how
models infer the original meanings.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Human behavioural data are available at Zenodo (https://doi.org/
10.5281/zenodo.8274609). The complete set of human and machine
responses is also illustrated and viewable in HTML at the previous link.
The human behavioural data also appeared in a previous non-archival
conference paper70.

Code availability
MLC source code and pretrained models are available online71,
including MLC models of human behaviour (https://doi.org/10.5281/
zenodo.8274609) and MLC models applied to machine learning bench-
marks (https://doi.org/10.5281/zenodo.8274617). Any additional code
is available on request.

61.	 Gureckis, T. M. et al. psiTurk: An open-source framework for conducting replicable
behavioral experiments online. Behav. Res. Methods 48, 829–842 (2015).

62.	 Heim, I. & Kratzer, A. Semantics in Generative Grammar (Blackwell, 1998).
63.	 Radford, A., Narasimhan, K. R., Salimans, T. & Sutskever, I. Improving language

understanding by generative pre-training. Preprint at https://openai.com/research/
language-unsupervised (2018).

64.	 Hendrycks, D. & Gimpel, K. Gaussian error linear units (GELUs). Preprint at http://arxiv.org/
abs/1606.08415 (2020).

65.	 Mitchell, E., Finn, C. & Manning, C. Challenges of acquiring compositional inductive
biases via meta-learning. In Proc. AAAI Workshop on Meta-Learning and MetaDL
Challenge 138–148 (2021).

66.	 Loula, J., Baroni, M. & Lake, B. M. Rearranging the familiar: testing compositional
generalization in recurrent networks. Preprint at http://arxiv.org/abs/1807.07545 (2018).

67.	 Csordás, R., Irie, K. & Schmidhuber, J. The devil is in the detail: simple tricks improve
systematic generalization of transformers. In Proc. EMNLP 2021—2021 Conference on
Empirical Methods in Natural Language Processing 619–634 (Association for Computational
Linguistics, 2021).

68.	 Elman, J. Finding structure in time. Cogn. Sci. 14, 179–211 (1990).
69.	 Schulte im Walde, S. Experiments on the automatic induction of German semantic verb

classes. Comput. Linguist. 32, 159–194 (2006).
70.	 Lake, B. M., Linzen, T. & Baroni, M. Human few-shot learning of compositional instructions.

In Proc. 41st Annual Conference of the Cognitive Science Society (eds Goel, A. K. et al.)
611–617 (Cognitive Science Society, 2019).

71.	 Lake, B. M. brendenlake/MLC: meta-learning for compositionality (v1.0.0). Zenodo https://
doi.org/10.5281/zenodo.8274609 (2023).

Acknowledgements We thank T. Linzen for involvement in the design of the behavioural
studies; Y. Boureau, T. Brochhagen, B. Karrer, T. Kwan, G. Murphy and J. Russin for feedback on
earlier versions of this Article; the members of the NYU ConCats group, M. Frank, K. Gulordava,
G. Kruszewski, R. Levy and A. Williams for suggestions; and N. Kim for guidance on using COGS.

Author contributions B.M.L. and M.B. designed the research and edited the Article. B.M.L.
collected and analysed the behavioural data, designed and implemented the models, and
wrote the initial draft of the Article.

Competing interests The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-023-06668-3.
Correspondence and requests for materials should be addressed to Brenden M. Lake.
Peer review information Nature thanks Aaron Courville and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.5281/zenodo.8274609
https://doi.org/10.5281/zenodo.8274609
https://doi.org/10.5281/zenodo.8274609
https://doi.org/10.5281/zenodo.8274609
https://doi.org/10.5281/zenodo.8274617
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1807.07545
https://doi.org/10.5281/zenodo.8274609
https://doi.org/10.5281/zenodo.8274609
https://doi.org/10.1038/s41586-023-06668-3
http://www.nature.com/reprints

Extended Data Fig. 1 | Few-shot instruction learning task with full set of
queries. Based on the study instructions (A; headings were not provided to
participants), humans and the MLC model executed 10 query instructions by
generating coloured circles from a fixed inventory (B; headings were not
provided to participants). The percent of participants who produced each

sequence exactly as prescribed algebraically is shown. Similarly, the percent of
samples from MLC that match the prescribed sequence is shown in parentheses,
which correlates with the human values (Pearson’s r = 0.788, p = 0.031 via
permutation test, two-tailed, n = 10 items). The words and colours were
randomized for each participant.

Article

Extended Data Fig. 2 | The gold interpretation grammar that defines
the human instruction learning task. The double brackets (⟦⟧) denote the
interpretation function for translating linguistic instructions into sequences
of abstract outputs (colour circles). Each human participant received a different
permutation of words and colours. Symbols xi and ui denote variables:
xi applies to arbitrary non-empty strings, while ui applies only to ‘dax’, ‘wif’,
‘lug’, and ‘zup’.

Extended Data Fig. 3 | Using the gold interpretation grammar for
processing ‘zup blicket wif kiki dax fep’. Each step is annotated with the next
re-write rules to be applied, and how many times (e.g., 3 × , since some steps
have multiple parallel applications). A rule’s condition is met if and only if it

matches the entire string inside the brackets (⟦ ⟧); for instance, only the ‘kiki’
rule applies on the first step because its condition matches two arbitrary
non-empty sequences on either side of ‘kiki,’ thus being able to encompass the
entire input.

Article

Extended Data Fig. 4 | Example meta-learning episode and how it is
processed by different MLC variants. The interpretation grammar defines
the episode but is not observed directly and must be inferred implicitly. Set 1
has 14 input/output examples consistent with the grammar, used as Study
examples for all MLC variants. Set 2 has 10 examples, used as Query examples

for most MLC variants (except copy only). Pseudocode for the bias-based
transformation process is shown here for the instruction ‘tufa lug fep’. This
transformation is applied to the query outputs before MLC and MLC (joint)
process them. Here, flip (p) is a coin flip that returns True with probability p.

Extended Data Fig. 5 | Human responses for the (A) few-shot learning
task and (B) open-ended task that most favour MLC (joint) compared
to a MLC model optimized for individual tasks only. Panel (A) shows the
average log-likelihood advantage for MLC (joint) across five patterns (that is,

ll(MLC (joint)) - ll(MLC)), with the algebraic target shown here only as a
reference. A black circle indicates a colour that was unused in the study set.
Panel (B) shows three participant responses.

Article

Extended Data Fig. 6 | Handling long in-context sequences with a MLC
transformer. The query input sequence (shown as ‘jump twice after run twice’)
is copied and concatenated to each of the m study examples, leading to m
separate source sequences (3 shown here). A shared standard transformer
encoder (bottom) processes each source sequence to produce latent
(contextual) embeddings. The contextual embeddings are marked with the

index of their study example, combined with a set union to form a single set
of source messages, and passed to the decoder. The standard decoder (top)
receives this message from the encoder, and then produces the output sequence
for the query. Each box is an embedding (vector); input embeddings are light
blue and latent embeddings are dark blue.

Extended Data Fig. 7 | Example SCAN meta-training (top) and test (bottom)
episodes for the ‘add jump’ split. The word and action meanings are changing
across the meta-training episodes (‘look’, ‘walk’, etc.) and must be inferred from

the study examples. During the test episode, the meanings are fixed to the
original SCAN forms. Here, the latter probes a compositional use of ‘jump’.

Article

Extended Data Fig. 8 | Example COGS meta-training (top) and test (bottom)
episodes. Word meanings are changing across the meta-training episodes
(here, ‘driver’ means ‘PILLOW’, ‘shoebox’ means ‘SPEAKER’ etc.) and must be

inferred from the study examples. The meanings are fixed to the original forms
during the test episode. This test episode probes the understanding of ‘Paula’
(proper noun), which just occurs in one of COGS’s original training patterns.

	Human-like systematic generalization through a meta-learning neural network

	Behavioural results

	Modelling results

	Machine learning benchmarks

	Discussion

	Online content

	Fig. 1 MLC for acquiring compositional skills through a dynamic stream of compositional tasks (episodes).
	﻿Fig. 2 Few-shot instruction-learning task that involves responding to instructions (linguistic strings) by generating sequences of abstract outputs (coloured circles).
	﻿Fig. 3 Open-ended instruction task.
	Fig. 4 MLC architecture.
	Extended Data Fig. 1 Few-shot instruction learning task with full set of queries.
	Extended Data Fig. 2 The gold interpretation grammar that defines the human instruction learning task.
	Extended Data Fig. 3 Using the gold interpretation grammar for processing ‘zup blicket wif kiki dax fep’.
	Extended Data Fig. 4 Example meta-learning episode and how it is processed by different MLC variants.
	﻿Extended Data Fig. 5 Human responses for the (A) few-shot learning task and (B) open-ended task that most favour MLC (joint) compared to a MLC model optimized for individual tasks only.
	Extended Data Fig. 6 Handling long in-context sequences with a MLC transformer.
	Extended Data Fig. 7 Example SCAN meta-training (top) and test (bottom) episodes for the ‘add jump’ split.
	Extended Data Fig. 8 Example COGS meta-training (top) and test (bottom) episodes.
	Table 1 log-likelihood of human behaviour as predicted by models.
	Table 2 Error rates for systematic lexical generalization on machine learning benchmarks.

