

Journal of Engineering Research and Reports

Volume 25, Issue 6, Page 28-39, 2023; Article no.JERR.103351 ISSN: 2582-2926

Risk Analysis of Occupational Hazards Using HIRADC Approach in the Implementation of Occupational Safety and Health Management System

Iffat Shafwan Haristama ^{a++*}, Achfas Zacoeb ^{a#} and Lilya Susanti ^{a#}

^a Department of Civil Engineering, Brawijaya University, Indonesia.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JERR/2023/v25i6940

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/103351

Original Research Article

Received: 10/05/2023 Accepted: 12/07/2023 Published: 13/07/2023

ABSTRACT

The high construction intensity can increase the risk of construction work accidents if not supported by good work method planning, risk management, and supervision. Indonesian National Social Security Agency for Employment (BPJS) noted that in 2017 the number of work accidents reported reached 123,041 cases, while throughout 2018, it reached 173,105 cases. Furthermore, in 2019 it was 114,000 cases and experienced an increase in claims by 55.2% to 177,000 cases in 2020. Then, from January to September 2021, there were 82,000 work accidents and 179 occupational diseases, 65 percent of which were caused by Covid-19 [1]. One approach to risk management is Hazard Identification, Risk Assessment, and Determining Control (HIRADC) to identify hazards, assess whether the risks on the job fall into the category of danger or very dangerous, and control

⁺⁺ Graduate Student;

[#]Assistant Professor;

^{*}Corresponding author: Email: Iffatshafwanh1@gmail.com;

J. Eng. Res. Rep., vol. 25, no. 6, pp. 28-39, 2023

the hazards that will happen. The study's objectives include identifying jobs at risk of occupational accidents during construction, analyzing the level of risk of occupational accidents to implement the occupational safety and health management system during construction, and providing control measures to reduce the risk of accidents. The results of the study stated that from a total of 49 hazard identification in the project construction work, there are 142 accident risks, with a percentage of 14% of the risks included in the high-level risk criteria, 86% included in the medium-level risk criteria, and there are no risks in the low-level risk criteria.

Keywords: Work accident; accident identification; severity index.

1. INTRODUCTION

The increases in population caused by significant urbanization in Bogor City projects several surrounding cities as buffer cities. One of the buffer districts of Bogor City is Cibinong. Therefore, the development of facilities and infrastructure in Cibinong in the last five years has been very rapid. The high intensity of development can increase the potential risk of construction work accidents if not supported by good work method planning, risk management, and supervision. Indonesian National Social Security Agency for Employment (BPJS) noted that in 2017 the number of work accidents reported reached 123,041 cases. while throughout 2018, it reached 173,105 cases. Furthermore, in 2019 it was 114,000 cases and experienced an increase in claims by 55.2% to 177,000 cases in 2020. Then, from January to September 2021, there were 82,000 work accidents and 179 occupational diseases, 65 percent of which were caused by Covid-19 [1]. Construction sites are dangerous places where injury or death or illness can cause to workers. These can happen due to electrocution, falling from height, injuries from tools, equipment and machines; being hit by moving construction vehicles. injuries from manual handling operations, illness due to hazardous substance such as dust, chemicals, etc [2].

There are 82 risks originating from 29 construction jobs, with the percentage of the risk level being 44% of the risks at priority level 1, which causes the impact of death and permanent injury, priority level 2, which causes severe but non-permanent injury. As much as 24% of the risks fall into the moderate category, and priority level 3 as much as 32% of the risks fall into the low and mild category [3]. The impact caused from working accidents is relatively significant, besides deaths and workers' life quality decline, working accidents in construction projects causes project delays, increasing product cost, medical burden, and other negative

consequences [4]. Based on the data, an improvement effort with risk management from the identification stage, hazard risk assessment, risk control, and the implementation stage of the construction safety management system. One approach to risk management is Hazard Identification, Risk Assessment, and Determining Control (HIRADC) as an effort to identify hazards, assess whether the risks on the job fall into the category of danger or very dangerous, and control the hazards that will occur. The purposes of this research include identifying jobs occupational accidents during at risk of construction, analyzing the level of risk of occupational accidents implement to occupational safety and health management systems during construction, and determining control to reduce the risk of accidents.

2. LITERATURE REVIEW AND RESEARCH

2.1 Construction Accident

The definition of a construction accident according to the Regulation of the Minister of Public Works and Housing is an event due to negligence at the construction work stage due to non-fulfillment of security, safety, health, and sustainability standards, which results in loss of property, work time, death, permanent disability, and environmental damage [5].

2.2 Risk Management

Risk management is managing risks starting from identifying hazards, assessing risk levels, and controlling risks [6]. Risk management can be defined as the process of taking calculated risks, reduces the likelihood that a loss will occur and minimizes the scale of the loss should it occur. The main objective of risk management process is to reduce the risk effect on the project objectives and thus improve decision-making [7].

2.2.1 HIRADC (hazard identification, risk assesment, and determining control)

HIRADC Identification. Risk (Hazard Assessment, and Determining Control) is a work program in which there is a process of recognizing hazards in a job, making hazard identification and the value of the risk of these hazards and then controlling the risks and hazards that have been identified [8]. Construction safety risk assessment is the calculation of the amount of potential based on the possibility of events that have an impact on the loss of construction, human life, public safety, and the environment that can arise from certain sources of danger, occurring in construction work [1]. Risk parameters are probability and severity. Probability is defined as the likelihood of a risk occurring due to the presence of a hazard. It is also the chance of an accident or event occurring. Severity is defined as the most likely outcome of a potential accident, including injuries and property damage [9]. Severity Index (SI) shows an index of how much the level of risk factors influences the performance of the people involved [10]. The severity index (SI) is calculated by Equation 1 [11].

$$SI = \frac{\sum_{i=1}^{5} a_{i} x_{i}}{5\sum_{i=0}^{5} x_{i}} \times 100\%$$
 (1)

With:

a_i = constant index

x_i = frequency of respondents

I = 1, 2, 3, 4, 5,...,n

 $x_1,\ x_2,\ x_3,\ x4,\ x_5$ are the respondent frequency responses

 $a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4, a_5 = 5$

 x_1 = respondent frequency "Very Rarely" then $a_1 = 1$

 x_2 = frequency of respondents "Rarely," then $a_2 = 2$

 x_3 = frequency of respondents "Moderately" then $a_3 = 3$

 x_4 = frequency of respondents "Often" then a_4 = 4

 x_5 = frequency of respondents "Very Often" then a_5 = 5

The severity index results will be processed into a classification of risk level points according to the indicators in Table 1 [12] and Table 2 [12]. Furthermore, the results are plotted in the risk matrix in Fig. 1 [5] using the probability and impact multiplication formula.

Table 1. Severity index for frequency

No	Category	SI Index	Value
1	Very often (SS)	87.5% ≤ SI ≤ 100%	5
2	Often (S)	62.5% ≤ SI ≤ 87.5%	4
3	Moderate (C)	37.5% ≤ SI ≤ 62.5%	3
4	Rare (J)	12.5% ≤ SI ≤ 37.5%	2
5	Very Rare (SJ)	0.00% ≤ SI ≤ 12.5%	1

Table 2. Severity index for impacts

No	Category	SI Index	Value
1	Very Large (SB)	87.5% ≤ SI ≤ 100%	5
2	Large (B)	62.5% ≤ SI ≤ 87.5%	4
3	Medium (S)	37.5% ≤ SI ≤ 62.5%	3
4	Small (K)	12.5% ≤ SI ≤ 37.5%	2
5	Very Small (SK)	0.00% ≤ SI ≤ 12.5%	1

		Impacts				
		1	2	3	4	5
2	1	1	2	3	4	5
Suc	2	2	4	6	8	10
due	3	3	6	9	12	15
Lee	4	4	8	12	16	20
ш.	5	5	10	15	20	25

Fig. 1. Impact and frequency matrix

2.3 Validity and Reliability Test

The validity test is an effort to ensure the level of validity in the design of statements and questionnaire questions submitted by researchers to respondents. The validity test is carried out by comparing the value of the r_{count} with the r_{table} [13]. If the value of the r_{count} is more than the level of significance, then the instrument is declared valid, but if the value of the r_{count} is less than the level of significance, then the instrument is declared invalid. The level of significant reliability is less than 5% can be seen in Table 3 [13].

The reliability test aims to test the level of consistency of the resulting instrument variable and whether it is reliable [14]. The test is carried out by comparing Cronbach's Alpha value with the significant level used as shown in Table 4 [14].

2.4 Determining Control

Determining control is an effort to eliminate or reduce risks and increase opportunities identified and assessed based on the construction safety risk assessment results. Determining control must implement an integrated risk control analysis of the results of hazard identification, namely by controlling based on the following [5]:

- 1) Engineering control;
- 2) Administrative control;
- 3) Human behavior aspects; and
- 4) Aspects of change and dynamics of construction work.

3. RESULTS AND DISCUSSION

3.1 Risk Identification

Risk identification was carried out based on literature studies and work methods used for the project. In addition, risk identification was also carried out in the form of visual observations in the field during the construction. The observations in the field resulted in various kinds of hazard identification, as seen in Fig. 2.

Fig. 2 show the activity of materials mobilization from the stockyard to the work site using vehicles and cranes if necessary. The activity has various kinds of hazard identification that can cause work accidents. An example of hazard identification is a skidding mobilization vehicle with various risks of work accidents, such as vehicles falling on workers, vehicles hitting workers, and workers being injured.

Ν	The	Level of Significance	Ν	The	Level of Significance	
_	5%	1%		5%	1%	
0	1	1	17	0.482	0.606	
1	0.999	0.999	18	0.468	0.590	
2	0.998	0.999	19	0.456	0.575	
3	0.997	0.999	20	0.444	0.561	
4	0.950	0.990	21	0.433	0.549	
5	0.878	0.959	22	0.432	0.537	
6	0.811	0.917	23	0.413	0.526	
7	0.754	0.874	24	0.404	0.515	
8	0.707	0.834	25	0.396	0.505	
9	0.666	0.798	26	0.388	0.496	
10	0.632	0.765	27	0.381	0.487	
11	0.602	0.735	28	0.374	0.478	
12	0.576	0.708	29	0.367	0.470	
13	0.553	0.684	30	0.361	0.463	
14	0.532	0.661	31	0.355	0.456	
15	0.514	0.641	32	0.349	0.449	
16	0.497	0.623				

Table 3. Significance reabillity

Cronbach's Alpha	Reliability Levels	
0.00 s/d 0.20	Unreliable	
0.20 s/d 0.40	Not Reliable Enough	
0.40 s/d 0.60	Moderate Reliable	
0.60 s/d 0.80	Reliable	
0.80 s/d 1.00	Very Reliable	

Fig. 2. Material mobilization from stockyard to work site

3.1.1 Hazard Identification in Structural Work

Table 5. Recapitulation hazard identification in structural work

No	Job Description	Hazard Identification	Risk
Α	Structural Work		
1	Column, Beam and Plate		
1.1	Mobilization of materials from	Material mobilization	Worker tripped
	stockyard to work site		Worker hit by a tool
			Worker hit
		Workers do not use PPE	Workers fall from tools or materials
		Mobilization vehicle	Vehicle hits worker
		derailed	Bumping into workers
			Worker injured
1.2	Rebar fabrication	Using rebar cutter	Injured worker
			Eye irritation
			Worker's hearing is impaired
		Rebar mobilization	Worker impaled by iron
1.3	Concrete reinforcing bars	Rebar mobilization	Worker hit
			Worker crushed by rebar
			Worker impaled by rebar
		Rebar installation	Worker punctured by tool/material
			Workers tripped over materials
			Falling from a height
			Pinched by wire cutters
1.4	Formwork fabrication	Panel mobilization	Worker hit
			Worker crushed by a panel
			Worker crushed by a panel
			Worker pinched by iron bracing
			Worker hit by iron bracing
			Worker punctured by tool/material
1.5	Concrete mixing	Concrete mixer lifting	Worker hit by mixer
			Worker crushed by mixer

No	Job Description	Hazard Identification	Risk
Α	Structural Work		
1	Column, Beam and Plate		
			Worker tripped
			Falling from a height
		Use of a vibrator	Worker electrocuted
			Falling from a height
2	Staircase		
2.1	Scaffolding work	Scaffolding installation	Worker hit by scaffolding
			Worker hit by tools/materials
			Falling from a height
			Scaffolding collapse
2.2	Formwork fabrication	Panel installation	Worker crushed by a panel
			Worker pinched by a panel
			Falling from a height
			Worker punctured by tool/material
2.3	Concrete mixing	Concrete mixer lifting	Worker hit
			Worker crushed by mixer
			Worker tripped
			Falling from a height
		Using vibrator	Worker electrocuted
		-	Falling from a height

3.1.2 Hazard Identification in Architectural Work

	Table 0. Reca	pitulation nazaru identification il	
No	Job Description	Hazard Identification	Risk
В	Architectural Work		
1	Brick Installation		
1.1	Scaffolding work	Installation of scaffolding	Worker hit by scaffolding
			Worker hit by tools/materials
			Falling from a height
			Scaffolding collapse
1.2	Practical column work	Practical installation of column	Eye irritation from dust
		cuttings	Worker's hearing is impaired
		Practical column fixing	Worker punctured by tool/material
			Pinched by wire cutters
		Formwork installation	Worker crushed by a panel
			Worker pinched by a panel
			Worker punctured by tool/material
		Pratical column casting	Workers pouring concrete
			Falling on formwork
			Electrocution of vibrator
1.3	Brick installation	Brick installation	Brick fall
			Injured by tools/materials
			Eye irritation from dust
			Impaired hearing
			Falling from a height
2	Plastering Work		
2.1	Plastering work	Plastering installation	Eye irritation
			Skin irritation
			Injured by tools
			Falling from a height
		Using bar jidar	Bar jidar fall
			Scratched by jidar
			Pierced by jidar
3	Ceiling Installation		
3.1	Preparation work	Scaffolding installation	Worker hit by scaffolding

Table 6. Recapitulation hazard identification in architectural work

Worker hit by tools/materials

No	Job Description	Hazard Identification	Risk
В	Architectural Work		
			Falling from a height
			Scaffolding collapse
3.2	Ceiling work	Using drill	Eye irritation
			Electrocution
			Equipment fall
			Impaired hearing
		Installation of ceiling frame	Falling on the ceiling frame
			Injured by tools/materials
			Falling from a height
		Ceiling installation	Falling tools/materials
			Falling on the ceiling
			Injured by tools
			Falling from a height
4	Door and Window Installat	ion	
4.1	Preparation work	Window and door mobilization	Worker hit
			Worker hit by door/window
			Workers tripped over materials
			Injured by tools/materials
			Pinched worker
4.2	Door and window	Installation of doors and windows	Worker hit by door/window
	installation		Worker wedged in door/window
		Using drill	Electrocution
			Worker's hearing is impaired
		Finishing	Skin irritation
			Impaired breathing
5	Painting Work		
5.1	Painting Work	Material mobilization	Worker tripped
			Worker hit by material
		Wall surface cleaning	Eye irritation from dust
			Injured by tools
			Falling from a height
		Painting work	Impaired breathing
		-	Injured by tools
			Falling from a height

3.1.3 Hazard Identification in MEP Work

Table 7. Recapitulation hazard identification in MEP

No	Job Description	Hazard Identification	Risk
С	Plumbing Installation		
1	Pipe Installation		
1.1	Pipe installation	Material mobilization	Worker tripped Worker hit by material
		Using drill	Electrocution Worker's hearing is impaired Eye irritation Falling from a height
		Pipe installation	Falling tools/materials Injured by tools Impaired hearing Falling from a height
2	Hydrant Installation		
2.1	Hydrant installation	Material mobilization	Worker tripped Falling on tools/materials
		Hydrant installation	Impaired hearing Injured by tools/materials Electrocution

D	Mechanical Work		
1	Lift Installation		
1.1	Preparation work	Material mobilization	Worker hit Material fallout Worker tripped
			Injured by tools/materials Impaired hearing Exposed to lift debris
1.2	Lift installation	Chainblock broken	The lift fell down
			Causes vibration
			Exposed to lift debris
		Electrical installation	Worker tripped
			Electrocution
			Injured by tools
E	Electrical Work		
1	Panel and Feeder Cable Installa	tion	
1.1	Panel work and feeder cables	Electrical installation	Worker electrocuted
			Workers burned
			Injured by tools
2	Power Lighting Installation		
2.1	Cable installation	Ladder mobilization	Worker tripped
		Lloing drill	VVORKET TAILS DOWN THE LADDER
		Using unit	Morker's bearing is impaired
			Evo irritation from dust
			Eye initation non dust Falling from a beight
		Electrical installation	
			Workers suffer burns

3.2 Severity Index

The severity index calculation determines significant risks in terms of probability and

impact. The severity index value is generated using the Equation 1 formula in the form of a percentage (%).

3.2.1 Severity Index Levels in Structural Work

Table 8. Recapitulation of severity index levels in structural work

Severity Index Frequency	Severity Index Impact	Risk Level
52.26	65	Medium
62	56	Medium
54.26	60.10	Medium
65	44.42	Medium
69	71	High
67	63.10	High
64	62.12	Medium
63	65	High
42.42	59	Medium
44.42	64	Medium
46.38	63	Medium
52.25	61.10	Medium
57.20	40.42	Medium
56.25	65.00	Medium
47.37	65.00	Medium
54.26	67	Medium
59.16	60.16	Medium
55.21	63	Medium
63.11	67	High
49.32	66	Medium
57.21	68	Medium
50.32	58	Medium

Severity Index Frequency	Severity Index Impact	Risk Level
49.32	65	Medium
44.42	52	Medium
65	47.37	Medium
57	57.21	Medium
66	50	Medium
61	52.32	Medium
59.16	67	Medium
66	52.32	Medium
64.05	57	Medium
50.32	64	Medium
64	67	High
69	63	High
67	70	High
69.05	52	Medium
67	51.32	Medium
44.45	63	Medium
65.11	69	High
69.00	71	High
58.21	66	Medium
47.37	56.25	Medium
39.47	64.05	Medium
61.15	48.38	Medium

3.2.2 Severity Index Levels in Architectural Work

Table 9. Recapitulation of severity index levels in architectural work

Severity Index Frequency	Severity Index Impact	Risk Level
54.21	71	Medium
58.21	68	Medium
61.15	71	Medium
52.32	70	Medium
51.32	57	Medium
32.58	52	Medium
44.42	50	Medium
43.42	47	Medium
68.05	61	Medium
47.37	48	Medium
16.79	60	Medium
54.26	46	Medium
58.21	51	Medium
47.37	47	Medium
46.37	52	Medium
36.53	47	Medium
43	50	Medium
36.54	60	Medium
36.53	57	Medium
32.58	62	Medium
42.38	51	Medium
23.68	62	Medium
69	56.26	Medium
28.63	64	Medium
40.47	52	Medium
24.68	64	Medium
53.26	71	Medium
58.21	68	Medium
61.16	71	Medium
52.32	70	Medium
32.58	50	Medium
28.63	48	Medium
32.58	61	Medium
32.58	51	Medium

Severity Index Frequency	Severity Index Impact	Risk Level
71	56.21	Medium
65	64	High
57	50.32	Medium
32.58	56	Medium
72	54.26	Medium
50.32	58	Medium
58	50.32	Medium
40.47	49	Medium
28.63	46	Medium
32.58	49	Medium
28.63	51	Medium
53	53	Medium
34.53	66	Medium
31.58	49	Medium
44.42	56	Medium
28.63	59	Medium
60.16	48	Medium
53.26	50	Medium
31.58	49	Medium
36.53	52	Medium
24.68	49	Medium
36.53	46	Medium
51	36.53	Medium
47.32	51	Medium
32.58	51	Medium
51	36.53	Medium

3.2.3 Severity Index Levels in MEP Work

Table 10. Recapitulation of severity index levels in mep work

Severity Index Frequency	Severity Index Impact	Risk Level
32.58	49	Medium
66.05	49	Medium
52.32	48	Medium
32.58	48	Medium
44.42	53	Medium
51	69	Medium
44.42	60	Medium
40.47	64	Medium
36.53	51	Medium
51	69	Medium
36.53	49	Medium
32.58	48	Medium
52.32	51	Medium
52.32	49	Medium
40.47	61.05	Medium
48	50	Medium
49	61	Medium
49	65	Medium
45	62	Medium
58	65	Medium
47	70	Medium
48	66	Medium
46	32.58	Medium
48	40.47	Medium
61	47	Medium
50	53	Medium
51	51	Medium

Severity Index Frequency	Severity Index Impact	Risk Level	
48	50.36	Medium	
55	54.36	Medium	
53	68	Medium	
63	49	Medium	
66	58	Medium	
62	67	High	
32.58	63	Medium	
40.47	55	Medium	
49	47.37	Medium	
63	73.14	High	
50	56.26	Medium	

3.3 Determining Control

3.3.1 Mobilization vehicle slips control

Table 11. Mobilization vehicle slips control

No	Description	Activity
1	Engineering control	Create mobilization routes with adequate project safety signs.
2	Administrative control	Maintain cleanliness of the mobilization route from debris or garbage.
3	Human behavior aspects	Provide supervision and ensure the rider is in good condition

3.3.2 Panel Installation Control

Table 12. Panel installation control

No	Description	Activity
1	Engineering control	Plan execution procedures with hazard identification on each execution item
2 3	Administrative control Human behavior aspects	Supervise or control the cleanliness and air pollution of the work area Briefing workers on implementation procedures and giving warnings to focus on work.

3.3.3 Electrical Installation

Table 13. Electrical installation control

No	Description	Activity
1	Engineering control	Use of personal protective equipment
2	Administrative control	Replace of workers have compentence and experience
3	Human behavior aspects	Give strict sanctions to workers if they do not use PPE

4. CONCLUSION

The highest value of severity index frequency and impact is slipping mobilization vehicles as a hazard identification with the risk of accidents, namely vehicles falling on workers, with SI values of frequency and impact of 69% and 71%, respectively. Furthermore, the second severity index value is the installation of formwork panels as a hazard identification with the risk of accidents, namely workers being hit by panels, with SI values of 67% and 70%, respectively. Finally, the third severity index value is electrical installation as hazard identification with the risk of accidents, namely electrocution, with SI values of 63% and 73%, respectively. The total of 49 hazard identification in the project construction work, there are 142 accident risks, with a percentage of 14% of the risks included in the high-level risk criteria, 86% included in the medium-level risk criteria, and there are no risks in the low-level risk criteria. Control is divided into two types, namely control planning and post-accident. Control planning is a preventive activity planned before work is carried out in the hope of reducing or eliminating the risk of accidents from the impact of occupational hazards.

ACKNOWLEDGEMENTS

Dr. Eng. Dr. Achfas Zacoeb, ST., MT. as the first supervisor who has taken the time, energy, and thoughts for guidance to the author so that this thesis can be completed. Dr. Eng. Lilva Susanti, ST., MT. as the second supervisor who has taken the time, energy, and thought for guidance to the author so that this thesis can be completed. Iffat Shafwan Haristama as myself who is always confident even though I have to get crash, smash, and bump into in carrying out this studv. mistakes All parties who have helped in the completion of this thesis that cannot be mentioned one by one.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- BPJS Employment. Graph of Work Accidents in Indonesia for the Last 5 Years. BPJS Employment; 2022. Accessed on Sept 9, 2022 at 20.15. Available:https://www.bpjsemployment.go.i d/informasi/grafik-kecelakaan-kerjadiindonesia-5-tahun-terakhir.html
- Purohit D, Siddiqui A, Nandan A, Yadav B. Hazard Identification and Risk Assessment in Construction Industry. International Journal of Applied Engineering Research. 2018;7639-7667.
- 3. Sudiasa W, Suardika N, Yuni E. Risk Analysis of Occupational Safety and Health of Building Construction with HIRADC Stage. Engineering Science and Application Development Media. 2021; 1412-8810.
- Machfudiyanto RA, Latief Y, Arifuddin R, Yogiswara Y. Identifcation of Safety Culture Dimensions Based On The Implementation of OSH Management System In Construction Company. Procedia Engineering. 2017;405-412.
- 5. Government of Indonesia. Ministerial Regulation Number 10 Guidelines for

Construction Safety Management Systems. Ministry of Public Works and Housing. Jakarta; 2021.

- Government of Indonesia. Ministerial Regulation Number 05. Guidelines for Occupational Safety and Health Management Systems. Ministry of Public Works. Jakarta; 2014.
- Issa UH. Implementation of Lean Construction Techniques For Minimizing The Risk Effect On Project Construction Time. Alexandria Engineering Journal. 2013;697-704.
- 8. Rompis S, Moniaga F. Analysis of Occupational Health and Safety Management System (SMK3) of Construction Project Using Hazard Identification and Risk Assessment Method. Realtech Journal. 2019;15: 65-73.
- 9. Celik E, Gul M. Hazard Identification, Risk Assessment and Control For Dam Construction Safety Using An Integrated BWM and MARCOS Approach Under Interval Type-2 Fuzzy Sets Environment. Automation in Construction 127. ELSEVIER. 2021;62-74.
- Peruzzi A, Kriswardhana W, Ratnaningsih A. Risk Assessment of Work Accidents Using the Domino Method in the Grand Dharmahusada Lagoon Apartment Project. Cycle: Journal of Civil Engineering. 2022;6:103-116.
- 11. Okta A, Ratnaningsih A, Sukmawati S. Identification of Non-Technical Internal Dominant Risks Affecting High-Rise Building Construction Costs Using the Severity Index Method. Journal of Civil and Environmental Engineering. 2020; 178-191.
- 12. Cahyo DS. Risk Management Analysis of High-Rise Building Project with Severity Method. Journal of Civil Engineering, Building, dan Transportation. 2022;6:140-147.
- Yusuf M, Daris L, Marzuki I. Theory & Application Research Data Analysis. Bogor: IPB Press; 2018.
- 14. Darma, B. Research Statistics Using SPSS. Jakarta: Guepedia; 2021.

© 2023 Haristama et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

> Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/103351