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Abstract

The present paper is an extension of the work published in Kumar and Vishwakarma (Proceedings of the
National Academy of Sciences, India, Section A: Physical Sciences, 90(5): 933-939, 2020). In this paper,
various sample allocation schemes are utilized to derive the mathematical expressions for mean square errors
(MSEs) of several well-known estimators of population mean in stratified random sampling. Moreover, the
effects of various allocation schemes on the estimation of mean, are demonstrated theoretically as well as
empirically. The findings of the study reveal that the Neyman allocation provides a smaller variance (or MSE,
as the case may be) as compared to that of Equal and Proportional allocation schemes for the concerned
estimators. Moreover, the proposed classes of estimators are dominant over the pre-existing estimators under
the various allocation schemes considered in the study.
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1 Introduction
It is well known that the efficiency of an estimator, for the population parameter, is directly proportional to the
sample size, i.e., the larger the sample size, the more efficient is the estimator. This result is widely used at the
estimation stage when the sampling units are evenly distributed over the target population, and the samples are
selected by using simple random sampling (SRS) design. However, in case of a heterogeneous target population,
the efficiency can be greatly increased by dividing the target population into homogeneous sub-groups, known
as strata, and then selecting samples from each stratum separately.

In stratified random sampling, the selection of samples from each stratum can be carried out by utilizing various
allocation methods, for instance, equal allocation, proportional allocation, optimum allocation, and Neyman
allocation.

There are many practical situations in which stratified random sampling is desired and preferred as compared
to other sampling designs. It is widely used in studies dealing with the estimation of population parameters
for sub-groups of a population, and to analyze the relationships between two or more sub-groups. For instance,
persons of different ages tend to have different blood pressures, so in a blood pressure study it would be helpful
to stratify the target population by age groups, and to estimate the blood pressures separately for each age
group. A stratified sample may be more convenient to administer and may also result in a lower cost for the
survey. For instance, sampling frames may be constructed differently in different strata (see Lohr [1]).

In most of the surveys, the target population consists of heterogeneous units, and in that situation the SRS
design does not yield precise estimators for the population parameters (such as population mean, population
variance, etc.) of the variable under study. Hence, it becomes indispensable to adopt stratified random sampling
in that case.

In the past as well as in the recent times, several authors have given their noteworthy and innovative contributions
towards the development of estimation strategies for estimating the population mean of the study variable under
stratified random sampling. Some remarkable contributions in this direction have been made by Kadilar and
Cingi [2], Singh and Vishwakarma [3, 4], Shabbir and Gupta [5, 6], Singh et al. [7], Tailor et al. [8], Vishwakarma
and Singh [9], Vishwakarma and Kumar [10], Nidhi et al. [11], and Shahzad et al. [12]. Also, some recent
significant contributions in stratified random sampling have been made by Cetin and Koyuncu [13], Kumar and
Vishwakarma [14], Yadav and Tailor [15], Bhushan et al. [16], and Kumar et al. [17].

It is a well known fact that the sample allocation schemes have significant role in stratified random sampling.
Considering the given fact, an attempt has been made in this paper to extend the work published in Kumar
and Vishwakarma [14] for the cases of various sample allocation schemes and to describe, theoretically as well
as empirically, the effects of various allocation schemes on the efficiency of well-known estimators of population
mean (Ȳ ) of the study variable Y in stratified random sampling. The works in the subsequent sections are
organized as follows.

The Section 2 provides a detailed review of the estimation strategies in stratified random sampling by revealing
the various well-known estimators for population mean (Ȳ ) of the study variable Y . In Section 3, a methodology
is developed for obtaining the mathematical expressions for mean square errors (MSEs) of the class of separate
regression-cum-ratio estimators (Ts) as developed in Kumar and Vishwakarma [14] under various allocation
schemes. Moreover, in Section 4, a methodology is developed for obtaining the mathematical expressions for
MSEs of the class of combined regression-cum-ratio estimators (Tc) as developed in Kumar and Vishwakarma
[14] under various allocation schemes. Furthermore, in Section 5, the variances and MSEs of several pre-existing
estimators are elaborated for the concerned sample allocation schemes. Also, in Sections 6 and 7, the necessary
and sufficient conditions (NASCs) for the dominance of Ts and Tc, respectively, over the well-known pre-existing
estimators, are obtained for the concerned allocation schemes. In addition, an empirical analysis is carried out
in Section 8 for demonstrating the relative efficiencies of the classes of estimators Ts and Tc over the well-known
estimators, under various allocation schemes. Finally, the results and conclusion are given in Sections 9 and 10,
respectively.
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2 Some Pre-Existing Estimators of the Population Mean
In this section, we have revealed the various well-known estimators for population mean (Ȳ ) of the study
variable Y in stratified random sampling, along with their MSEs. To proceed further, we consider a finite
population U = {U1, U2, ..., UN} consisting of N units, and the units being partitioned into L distinct strata
with hth-stratum containing Nh units, (h = 1, 2, ..., L), such that

∑L
h=1Nh = N . Let Y and X be the study and

auxiliary variables, respectively, taking the values yhi and xhi on the ith unit (i = 1, 2, ..., Nh) of the hth-stratum.
Further, let nh be the size of the sample drawn from the hth-stratum by using simple random sampling without
replacement (SRSWOR) scheme such that

∑L
h=1 nh = n.

Moreover, the population means of the variables Y and X in the hth-stratum are Ȳh =
∑Nh

i=1 yhi/Nh and
X̄h =

∑Nh
i=1 xhi/Nh. The corresponding sample means in the hth-stratum are ȳh =

∑nh
i=1 yhi/nh and x̄h =∑nh

i=1 xhi/nh.

The sample means of the variables Y and X, in stratified random sampling, are given by

ȳst =

L∑
h=1

Whȳh and x̄st =

L∑
h=1

Whx̄h

whereWh = Nh/N is the stratum weight. Also, ȳst and x̄st are the unbiased estimators of the population means
Ȳ =

∑L
h=1WhȲh and X̄ =

∑L
h=1WhX̄h, respectively.

The separate ratio estimator for population mean Ȳ is defined by

ȳRS =

L∑
h=1

Whȳh

(
X̄h

x̄h

)
(1)

Also, the separate regression estimator for Ȳ is defined by

ȳlrs =

L∑
h=1

Wh[ȳh + bh(X̄h − x̄h)] (2)

Here, bh = syxh/s
2
xh denotes the sample regression coefficient of Y on X in the hth-stratum, where s2xh =

1
nh−1

∑nh
i=1(xhi − x̄h)2 and syxh = 1

nh−1

∑nh
i=1(yhi − ȳh)(xhi − x̄h).

The combined ratio estimator (see Singh [18]) for population mean Ȳ is defined by

ȳRC = ȳst

(
X̄

x̄st

)
(3)

Also, the combined regression estimator for Ȳ is defined by

ȳlrc = ȳst + b(X̄ − x̄st) (4)

where b =
(∑L

h=1W
2
hλhsyxh

/∑L
h=1W

2
hλhs

2
xh

)
, λh =

(
1
nh
− 1

Nh

)
.

The variance of stratified sample mean ȳst under SRSWOR scheme is given by

V ar(ȳst) =

L∑
h=1

W 2
hλhS

2
yh =

L∑
h=1

W 2
hλhȲ

2
hC

2
yh (5)

where Cyh = Syh/Ȳh.
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To the first order of approximation, the mean square errors (MSEs) of ȳRS , ȳlrs, ȳRC , ȳlrc are given, respectively,
by

MSE(ȳRS) =

L∑
h=1

W 2
hλh

(
S2
yh − 2RhSyxh +R2

hS
2
xh

)
(6)

MSE(ȳlrs) =

L∑
h=1

W 2
hλhS

2
yh

(
1− ρ2yxh

)
(7)

MSE(ȳRC) =

L∑
h=1

W 2
hλh

(
S2
yh − 2RSyxh +R2S2

xh

)
(8)

MSE(ȳlrc) =

L∑
h=1

W 2
hλhS

2
yh

(
1− ρ2yx

)
(9)

where

Rh =
Ȳh

X̄h

, R =
Ȳ

X̄
, ρyx =

∑L
h=1W

2
hλhSyxh√(∑L

h=1W
2
hλhS2

yh

)(∑L
h=1W

2
hλhS2

xh

) , ρyxh =
Syxh

SyhSxh

S2
yh =

1

Nh − 1

Nh∑
i=1

(yhi − Ȳh)2 , S2
xh =

1

Nh − 1

Nh∑
i=1

(xhi − X̄h)2

Syxh =
1

Nh − 1

Nh∑
i=1

(yhi − Ȳh)(xhi − X̄h)

3 Proposed Methodology for Separate Regression-cum-
Ratio Estimators

In this section, we have developed the methodology for obtaining the mathematical expressions for MSEs of the
class of separate regression-cum-ratio estimators (Ts) under various allocation schemes. To continue further, we
consider the following class of separate regression-cum-ratio estimators for the population mean Ȳ as developed
in Kumar and Vishwakarma [14]:

Ts =

L∑
h=1

Wh[ȳh + bh(X̄h − x̄h)]

(
αhX̄h + γh
αhx̄h + γh

)
(10)

where αh and γh are either real numbers or functions of some known parameters of auxiliary variable X, which
are determined such that the MSE of Ts is minimum.

It is also worth noting that for αh = 0, the class Ts reduces to the separate regression estimator ȳlrs in Eq. (2).

To the first order of approximation, the MSE of Ts is given by

MSE(Ts) =
L∑

h=1

W 2
hλh

[
S2
yh + (δhRh + βh)2S2

xh − 2(δhRh + βh)Syxh

]
(11)

where βh = Syxh/S
2
xh is the population regression coefficient of Y on X in the hth-stratum, and δh ={

αhX̄h

/
(αhX̄h + γh)

}
.
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The MSE of Ts at Eq. (11) is minimized for δh = 0, which is possible only when αh = 0. Substituting
δh = 0 in Eq. (11) yields the minimum MSE of Ts as

MSE(Ts)min =

L∑
h=1

W 2
hλhS

2
yh

(
1− ρ2yxh

)
= MSE(ȳlrs) (12)

Now, to apply various sample allocation schemes, we re-write the MSE of Ts in Eq. (11) as follows:

MSE(Ts) =

L∑
h=1

W 2
hλhψh =

L∑
h=1

W 2
h

(
1

nh
− 1

Nh

)
ψh (13)

where
ψh = S2

yh + (δhRh + βh)2S2
xh − 2(δhRh + βh)Syxh and Wh = Nh/N.

In the subsequent sub-sections, we will derive the mathematical expressions for MSEs of Ts under various
allocation schemes.

3.1 MSE of Ts under Equal Allocation Scheme
In case of equal allocation scheme, samples of equal sizes are selected from each stratum, i.e., nh = n/L, where
n denotes the overall sample size, and L represents the total number of strata.

Hence, on substituting nh = n/L in Eq. (13), the MSE of Ts under equal allocation scheme is obtained
as

MSE(Ts)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)ψh (14)

3.2 MSE of Ts under Proportional Allocation Scheme
In case of proportional allocation scheme, the sample size in the hth-stratum (i.e., nh) is proportional to the
respective stratum size (i.e., Nh). Symbolically, we have nh = (n/N)Nh = nWh, whereWh is the stratum weight
of the hth-stratum.

Hence, on substituting nh = nWh in Eq. (13), the MSE of Ts under proportional allocation scheme is obtained
as

MSE(Ts)Prop =
(N − n)

Nn

L∑
h=1

Whψh (15)

3.3 MSE of Ts under Optimum Allocation Scheme
In case of optimum allocation scheme, the optimum sample sizes in each stratum is obtained by considering a
cost function of the form:

c = c0 +

L∑
h=1

chnh (16)

where c = total sampling cost in stratified random sampling, c0 = overhead cost, ch = sampling cost per unit
in the hth-stratum, and nh = sample size in the hth-stratum.

Now, we shall obtain the optimum values of nh such that the MSE of Ts is minimized for a specified cost
c ≤ c∗.

12
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To proceed further, consider the Lagrangian function of the form:

L = MSE(Ts) + τ(c0 +

L∑
h=1

chnh − c∗) (17)

where τ is the Lagrange’s multiplier.

Now substituting Eq. (13) in Eq. (17), we have

L =

L∑
h=1

W 2
h

(
1

nh
− 1

Nh

)
ψh + τ(c0 +

L∑
h=1

chnh − c∗) (18)

Differentiating Eq. (18) with respect to nh, equating the result to zero, and then using the condition
∑L

h=1 nh =
n, we obtain the optimum value of nh as

nh =
nWh

√
ψh/
√
ch∑L

h=1Wh

√
ψh/
√
ch

(19)

Hence, substituting the value of nh from Eq. (19) in Eq. (13), the MSE of Ts under optimum allocation scheme
is obtained as

MSE(Ts)Opt =
1

n

(
L∑

h=1

Wh

√
ψh
√
ch

)(
L∑

h=1

Wh

√
ψh/
√
ch

)
−

L∑
h=1

W 2
hψh

Nh
(20)

3.4 MSE of Ts under Neyman Allocation Scheme
The Neyman allocation scheme is a particular case of optimum allocation scheme, in which the sampling cost
in each stratum is considered to be the same (i.e., c1 = c2 = ... = cL = c

′
).

Under Neyman allocation scheme, the sample size in the hth-stratum is obtained from Eq. (19) on replacing ch
with c

′
, and is given by

nh =
nWh

√
ψh∑L

h=1Wh

√
ψh

(21)

Hence, substituting the value of nh from Eq. (21) in Eq. (13), the MSE of Ts under Neyman allocation scheme
is obtained as

MSE(Ts)Neyman =
1

n

(
L∑

h=1

Wh

√
ψh

)2

−
L∑

h=1

W 2
hψh

Nh
(22)

4 Proposed Methodology for Combined Regression-cum-Ratio
Estimators

In this section, we have developed the methodology for obtaining the mathematical expressions for MSEs of the
class of combined regression-cum-ratio estimators (Tc) under various allocation schemes. To proceed further, we
consider the following class of combined regression-cum-ratio estimators for the population mean Ȳ as developed
in Kumar and Vishwakarma [14]:

Tc = [ȳst + b(X̄ − x̄st)]
(
X̄M

x̄M

)
(23)

where X̄M =
∑L

h=1Wh(αhX̄h+γh) and x̄M =
∑L

h=1Wh(αhx̄h+γh). Also, the scalars αh and γh are determined
such that the MSE of Tc is minimum.
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It is worth mentioning that for αh = 0, the class Tc reduces to the combined regression estimator ȳlrc in Eq.
(4).

To the first order of approximation, the MSE of Tc is given by

MSE(Tc) =

L∑
h=1

W 2
hλh

[
S2
yh + (RMαh + β)2S2

xh − 2(RMαh + β)Syxh

]
(24)

where β =
(∑L

h=1W
2
hλhSyxh

/∑L
h=1W

2
hλhS

2
xh

)
is the population regression coefficient of Y on X, and

RM = Ȳ /X̄M .

The MSE of Tc at Eq. (24) is minimized for

αh =
(βh − β)

RM
= αh(opt) (say) (25)

Substitution of αh(opt) in place of αh in Eq. (24) yields the minimum MSE of Tc as

MSE(Tc)min =

L∑
h=1

W 2
hλhS

2
yh

(
1− ρ2yxh

)
= MSE(ȳlrs) (26)

Now, to apply various sample allocation schemes, the MSE of Tc in Eq. (24) can be re-written as

MSE(Tc) =

L∑
h=1

W 2
hλhξh =

L∑
h=1

W 2
h

(
1

nh
− 1

Nh

)
ξh (27)

where
ξh = S2

yh + (RMαh + β)2S2
xh − 2(RMαh + β)Syxh and Wh = Nh/N.

Now, proceeding in a manner similar to that in Section 3, the expressions for MSEs of Tc under various allocation
schemes are obtained as follows:

MSE(Tc)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)ξh (28)

MSE(Tc)Prop =
(N − n)

Nn

L∑
h=1

Whξh (29)

MSE(Tc)Opt =
1

n

(
L∑

h=1

Wh

√
ξh
√
ch

)(
L∑

h=1

Wh

√
ξh/
√
ch

)
−

L∑
h=1

W 2
hξh
Nh

(30)

MSE(Tc)Neyman =
1

n

(
L∑

h=1

Wh

√
ξh

)2

−
L∑

h=1

W 2
hξh
Nh

(31)

5 MSEs of the Pre-Existing Estimators under various Allocation
Schemes

In this section, the variances and MSEs of several well-known estimators considered in Section 2 are obtained
by utilizing various sample allocation schemes as follows:

14
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(i) Variances of ȳst under various allocation schemes:

V ar(ȳst)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)S2
yh (32)

V ar(ȳst)Prop =
(N − n)

Nn

L∑
h=1

WhS
2
yh (33)

V ar(ȳst)Opt =
1

n

(
L∑

h=1

WhSyh
√
ch

)(
L∑

h=1

WhSyh/
√
ch

)
−

L∑
h=1

W 2
hS

2
yh

Nh
(34)

V ar(ȳst)Neyman =
1

n

(
L∑

h=1

WhSyh

)2

−
L∑

h=1

W 2
hS

2
yh

Nh
(35)

(ii) MSEs of ȳRS under various allocation schemes:

MSE(ȳRS)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)ζh ; ζh = S2
yh − 2RhSyxh +R2

hS
2
xh (36)

MSE(ȳRS)Prop =
(N − n)

Nn

L∑
h=1

Whζh (37)

MSE(ȳRS)Opt =
1

n

(
L∑

h=1

Wh

√
ζh
√
ch

)(
L∑

h=1

Wh

√
ζh/
√
ch

)
−

L∑
h=1

W 2
hζh
Nh

(38)

MSE(ȳRS)Neyman =
1

n

(
L∑

h=1

Wh

√
ζh

)2

−
L∑

h=1

W 2
hζh
Nh

(39)

(iii) MSEs of ȳlrs under various allocation schemes:

MSE(ȳlrs)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)S2
yh

(
1− ρ2yxh

)
(40)

MSE(ȳlrs)Prop =
(N − n)

Nn

L∑
h=1

WhS
2
yh

(
1− ρ2yxh

)
(41)

MSE(ȳlrs)Opt =
1

n

[
L∑

h=1

WhSyh

√(
1− ρ2yxh

)√
ch

][
L∑

h=1

WhSyh

√(
1− ρ2yxh

)
/
√
ch

]

−
L∑

h=1

W 2
hS

2
yh

(
1− ρ2yxh

)
Nh

(42)

MSE(ȳlrs)Neyman =
1

n

[
L∑

h=1

WhSyh

√(
1− ρ2yxh

)]2
−

L∑
h=1

W 2
hS

2
yh

(
1− ρ2yxh

)
Nh

(43)

(iv) MSEs of ȳRC under various allocation schemes:

MSE(ȳRC)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)Ωh ; Ωh = S2
yh − 2RSyxh +R2S2

xh (44)
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MSE(ȳRC)Prop =
(N − n)

Nn

L∑
h=1

WhΩh (45)

MSE(ȳRC)Opt =
1

n

(
L∑

h=1

Wh

√
Ωh
√
ch

)(
L∑

h=1

Wh

√
Ωh/
√
ch

)
−

L∑
h=1

W 2
hΩh

Nh
(46)

MSE(ȳRC)Neyman =
1

n

(
L∑

h=1

Wh

√
Ωh

)2

−
L∑

h=1

W 2
hΩh

Nh
(47)

(v) MSEs of ȳlrc under various allocation schemes:

MSE(ȳlrc)Equal =
1

nN2

L∑
h=1

Nh(LNh − n)S2
yh

(
1− ρ2yx

)
(48)

MSE(ȳlrc)Prop =
(N − n)

Nn

L∑
h=1

WhS
2
yh

(
1− ρ2yx

)
(49)

MSE(ȳlrc)Opt =
(
1− ρ2yx

) [ 1

n

(
L∑

h=1

WhSyh
√
ch

)(
L∑

h=1

WhSyh/
√
ch

)
−

L∑
h=1

W 2
hS

2
yh

Nh

]
(50)

MSE(ȳlrc)Neyman =
(
1− ρ2yx

) 1

n

(
L∑

h=1

WhSyh

)2

−
L∑

h=1

W 2
hS

2
yh

Nh

 (51)

Remark 5.1 From Eqs. (48), (49), (50), and (51), we have

MSE(ȳlrc)Equal =
(
1− ρ2yx

)
[V ar(ȳst)Equal] (52)

MSE(ȳlrc)Prop =
(
1− ρ2yx

)
[V ar(ȳst)Prop] (53)

MSE(ȳlrc)Opt =
(
1− ρ2yx

)
[V ar(ȳst)Opt] (54)

MSE(ȳlrc)Neyman =
(
1− ρ2yx

)
[V ar(ȳst)Neyman] (55)

6 Efficiency Comparisons for Separate Regression-cum-
Ratio Estimators

In this section, we have obtained the necessary and sufficient conditions (NASCs) for revealing the dominance of
the class of separate regression-cum-ratio estimators (Ts) over the well-known pre-existing estimators on utilizing
the MSE criterion, under various allocation schemes, as follows:

Case-I: Case of Equal Allocation
From Eqs. (14), (32), (36), and (40), we have
(i) MSE(Ts)Equal < V ar(ȳst)Equal if

L∑
h=1

Nh(LNh − n)
(
ψh − S2

yh

)
< 0 (56)

(ii) MSE(Ts)Equal < MSE(ȳRS)Equal if

L∑
h=1

Nh(LNh − n) (ψh − ζh) < 0 (57)
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(iii) MSE(Ts)Equal = MSE(ȳlrs)Equal if
ψh = S2

yh

(
1− ρ2yxh

)
(58)

i.e., ρ2yxhS
2
yh + (δhRh + βh)2S2

xh − 2(δhRh + βh)Syxh = 0 (59)

Case-II: Case of Proportional Allocation
From Eqs. (15), (33), (37), and (41), we have
(i) MSE(Ts)Prop < V ar(ȳst)Prop if

ψh < S2
yh (60)

i.e., (δhRh + βh) <
2Syxh

S2
xh

(61)

(ii) MSE(Ts)Prop < MSE(ȳRS)Prop if
ψh < ζh (62)

i.e., (δhRh + βh +Rh) <
2Syxh

S2
xh

(63)

(iii) MSE(Ts)Prop = MSE(ȳlrs)Prop if
ψh = S2

yh

(
1− ρ2yxh

)
(64)

i.e., ρ2yxhS
2
yh + (δhRh + βh)2S2

xh − 2(δhRh + βh)Syxh = 0 (65)

Case-III: Case of Optimum Allocation
From Eqs. (20), (34), (38), and (42), we have
(i) MSE(Ts)Opt < V ar(ȳst)Opt if

1

n

{(
L∑

h=1

Wh

√
ψh
√
ch

)(
L∑

h=1

Wh

√
ψh/
√
ch

)
−

(
L∑

h=1

WhSyh
√
ch

)(
L∑

h=1

WhSyh/
√
ch

)}

<

L∑
h=1

W 2
h

(
ψh − S2

yh

)
Nh

(66)

(ii) MSE(Ts)Opt < MSE(ȳRS)Opt if

1

n

{(
L∑

h=1

Wh

√
ψh
√
ch

)(
L∑

h=1

Wh

√
ψh/
√
ch

)
−

(
L∑

h=1

Wh

√
ζh
√
ch

)(
L∑

h=1

Wh

√
ζh/
√
ch

)}

<

L∑
h=1

W 2
h (ψh − ζh)

Nh
(67)

(iii) MSE(Ts)Opt = MSE(ȳlrs)Opt if

1

n

[(
L∑

h=1

Wh

√
ψh
√
ch

)(
L∑

h=1

Wh

√
ψh/
√
ch

)

−

{
L∑

h=1

WhSyh

√(
1− ρ2yxh

)√
ch

}{
L∑

h=1

WhSyh

√(
1− ρ2yxh

)
/
√
ch

}]

=

L∑
h=1

W 2
h

{
ψh − S2

yh

(
1− ρ2yxh

)}
Nh

(68)

Case-IV: Case of Neyman Allocation
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From Eqs. (22), (35), (39), and (43), we have
(i) MSE(Ts)Neyman < V ar(ȳst)Neyman if

1

n


(

L∑
h=1

Wh

√
ψh

)2

−

(
L∑

h=1

WhSyh

)2
 <

L∑
h=1

W 2
h

(
ψh − S2

yh

)
Nh

(69)

(ii) MSE(Ts)Neyman < MSE(ȳRS)Neyman if

1

n


(

L∑
h=1

Wh

√
ψh

)2

−

(
L∑

h=1

Wh

√
ζh

)2
 <

L∑
h=1

W 2
h (ψh − ζh)

Nh
(70)

(iii) MSE(Ts)Neyman = MSE(ȳlrs)Neyman if

1

n

( L∑
h=1

Wh

√
ψh

)2

−

{
L∑

h=1

WhSyh

√(
1− ρ2yxh

)}2
 =

L∑
h=1

W 2
h

{
ψh − S2

yh

(
1− ρ2yxh

)}
Nh

(71)

7 Efficiency Comparisons for Combined Regression-cum-Ratio
Estimators

In this section, we have obtained the necessary and sufficient conditions (NASCs) for revealing the superiority
of the class of combined regression-cum-ratio estimators (Tc) over the well-known pre-existing estimators on
utilizing the MSE criterion, under various allocation schemes, as follows:

Case-I: Case of Equal Allocation
From Eqs. (28), (32), (44), and (48), we have
(i) MSE(Tc)Equal < V ar(ȳst)Equal if

L∑
h=1

Nh(LNh − n)
(
ξh − S2

yh

)
< 0 (72)

(ii) MSE(Tc)Equal < MSE(ȳRC)Equal if

L∑
h=1

Nh(LNh − n) (ξh − Ωh) < 0 (73)

(iii) MSE(Tc)Equal < MSE(ȳlrc)Equal if

L∑
h=1

Nh(LNh − n)
{
ξh − S2

yh

(
1− ρ2yx

)}
< 0 (74)

Case-II: Case of Proportional Allocation
From Eqs. (29), (33), (45), and (49), we have
(i) MSE(Tc)Prop < V ar(ȳst)Prop if

ξh < S2
yh (75)

i.e., (RMαh + β) <
2Syxh

S2
xh

(76)

(ii) MSE(Tc)Prop < MSE(ȳRC)Prop if
ξh < Ωh (77)
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i.e., (RMαh + β +R) <
2Syxh

S2
xh

(78)

(iii) MSE(Tc)Prop < MSE(ȳlrc)Prop if
ξh < S2

yh

(
1− ρ2yx

)
(79)

i.e., ρ2yxS
2
yh + (RMαh + β)2S2

xh − 2(RMαh + β)Syxh < 0 (80)

Case-III: Case of Optimum Allocation
From Eqs. (30), (34), (46), and (50), we have
(i) MSE(Tc)Opt < V ar(ȳst)Opt if

1

n

{(
L∑

h=1

Wh

√
ξh
√
ch

)(
L∑

h=1

Wh

√
ξh/
√
ch

)
−

(
L∑

h=1

WhSyh
√
ch

)(
L∑

h=1

WhSyh/
√
ch

)}

<

L∑
h=1

W 2
h

(
ξh − S2

yh

)
Nh

(81)

(ii) MSE(Tc)Opt < MSE(ȳRC)Opt if

1

n

{(
L∑

h=1

Wh

√
ξh
√
ch

)(
L∑

h=1

Wh

√
ξh/
√
ch

)
−

(
L∑

h=1

Wh

√
Ωh
√
ch

)(
L∑

h=1

Wh

√
Ωh/
√
ch

)}

<

L∑
h=1

W 2
h (ξh − Ωh)

Nh
(82)

(iii) MSE(Tc)Opt < MSE(ȳlrc)Opt if

1

n

[(
L∑

h=1

Wh

√
ξh
√
ch

)(
L∑

h=1

Wh

√
ξh/
√
ch

)

−
(
1− ρ2yx

)( L∑
h=1

WhSyh
√
ch

)(
L∑

h=1

WhSyh/
√
ch

)]

<

L∑
h=1

W 2
h

{
ξh − S2

yh

(
1− ρ2yx

)}
Nh

(83)

Case-IV: Case of Neyman Allocation
From Eqs. (31), (35), (47), and (51), we have
(i) MSE(Tc)Neyman < V ar(ȳst)Neyman if

1

n


(

L∑
h=1

Wh

√
ξh

)2

−

(
L∑

h=1

WhSyh

)2
 <

L∑
h=1

W 2
h

(
ξh − S2

yh

)
Nh

(84)

(ii) MSE(Tc)Neyman < MSE(ȳRC)Neyman if

1

n


(

L∑
h=1

Wh

√
ξh

)2

−

(
L∑

h=1

Wh

√
Ωh

)2
 <

L∑
h=1

W 2
h (ξh − Ωh)

Nh
(85)

(iii) MSE(Tc)Neyman < MSE(ȳlrc)Neyman if

1

n

( L∑
h=1

Wh

√
ξh

)2

−
(
1− ρ2yx

)( L∑
h=1

WhSyh

)2
 < L∑

h=1

W 2
h

{
ξh − S2

yh

(
1− ρ2yx

)}
Nh

(86)
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8 Empirical Study
In order to demonstrate the relative performances of the classes of estimators Ts and Tc over the pre-existing
estimators subjected to various allocation schemes, we have considered three natural population data sets. The
descriptions of the populations with the values of various parameters, are described below:
Population I- (Source: Murthy [19])
Y= factories in region
X= fixed capital
(see Table 1)
Population II- (Source: Kadilar and Cingi [20])
Y= amount of apple production
X= number of apple trees
(see Table 2)
Population III- (Source: Koyuncu and Kadilar [21])
Y= number of teachers
X= number of students
(see Table 3)

Table 1. Parameters of Population I

Stratum → 1 2 3 4
N = 80, n = 45, Nh 19 32 14 15
Ȳ = 5182.64, Ȳh 2967.95 4657.63 6537.21 7843.67
X̄ = 1126.46, X̄h 349.684 706.594 1539.57 2620.53
R = 4.6008, Syh 757.089 669.127 416.113 645.688
ρyx = 0.7769. Sxh 109.449 109.222 277.181 370.972

ρyxh 0.9364 0.9260 0.9835 0.9692

Table 2. Parameters of Population II

Stratum → 1 2 3 4 5 6
N = 854, n = 140, Nh 106 106 94 171 204 173
Ȳ = 2930, Ȳh 1536 2212 9384 5588 967 404
X̄ = 37600, X̄h 24375 27421 72409 74365 26441 9844
R = 0.0779, Syh 6425 11552 29907 28643 2390 946
ρyx = 0.8267. Sxh 49189 57461 160757 285603 45403 18794

ρyxh 0.82 0.86 0.90 0.99 0.71 0.89

Table 3. Parameters of Population III

Stratum → 1 2 3 4 5 6
N = 923, n = 180, Nh 127 117 103 170 205 201
Ȳ = 436.433, Ȳh 703.74 413 573.17 424.66 267.03 393.84
X̄ = 11440.50, X̄h 20804.59 9211.79 14309.30 9478.85 5569.95 12997.59
R = 0.0381, Syh 883.897 645.106 1033.43 810.676 403.749 711.669
ρyx = 0.9552. Sxh 30478.70 15181 27545.40 18218.30 8499.74 23096.70

ρyxh 0.936 0.996 0.994 0.983 0.989 0.965
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The mean square errors (MSEs) are computed under various allocation schemes for the well-known estimators
of Ȳ , and the findings are depicted in Table 4.

Table 4. MSEs under various allocation schemes for the estimators of Ȳ

Estimator Allocation Scheme Population I Population II Population III
ȳst Equal * * 2378.45

Proportional 4119.27 1707723.08 2446.14
Neyman 3844.34 697338.37 2229.14

ȳRS Equal * * 147.17
Proportional 2048.6 276768 153.32
Neyman 1309.81 137999 99.63

ȳlrs Equal * * 124.22
Proportional 466.89 171278 123.54
Neyman 353.15 76260.7 85.35

ȳRC Equal * * 247.79
Proportional 4023.67 380982 245.45
Neyman 1502.95 168925 162.26

ȳlrc Equal * * 208.34
Proportional 1632.99 540609 214.26
Neyman 1524 220754 195.26

Ts Equal * * 124.22
Proportional 466.89 171278 123.54
Neyman 353.15 76260.7 85.35

Tc Equal * * 124.22
Proportional 466.89 171278 123.54
Neyman 353.15 76260.7 85.35

* Data is not applicable

Table 5. PREs of various estimators of Ȳ under Equal Allocation Scheme

Estimator Population I Population II Population III
ȳst * * 100
ȳRS * * 1616.15
ȳlrs * * 1914.66
ȳRC * * 959.87
ȳlrc * * 1141.64
Ts * * 1914.66
Tc * * 1914.66

Bold values represent the maximum PREs.
* Data is not applicable

The percent relative efficiencies (PREs) are obtained for the well-known estimators of Ȳ with respect to the
stratified sample mean ȳst, under various allocation schemes, and the findings are demonstrated in Tables 5, 6
and 7. The PREs have been computed using the below mentioned formulae:

PRE(φ, ȳst)Equal =
V ar(ȳst)Equal

MSE(φ)Equal
× 100 ,

PRE(φ, ȳst)Prop =
V ar(ȳst)Prop

MSE(φ)Prop
× 100 ,
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PRE(φ, ȳst)Neyman =
V ar(ȳst)Neyman

MSE(φ)Neyman
× 100 ,

where φ = ȳst, ȳRS , ȳlrs, ȳRC , ȳlrc, Ts, Tc .

Table 6. PREs of various estimators of Ȳ under Proportional Allocation Scheme

Estimator Population I Population II Population III
ȳst 100 100 100
ȳRS 201.08 617.02 1595.48
ȳlrs 882.28 997.05 1980.02
ȳRC 102.38 448.24 996.61
ȳlrc 252.25 315.89 1141.64
Ts 882.28 997.05 1980.02
Tc 882.28 997.05 1980.02

Bold values represent the maximum PREs.

Table 7. PREs of various estimators of Ȳ under Neyman Allocation Scheme

Estimator Population I Population II Population III
ȳst 100 100 100
ȳRS 293.50 505.32 2237.35
ȳlrs 1088.58 914.41 2611.61
ȳRC 255.79 412.81 1373.79
ȳlrc 252.25 315.89 1141.64
Ts 1088.58 914.41 2611.61
Tc 1088.58 914.41 2611.61

Bold values represent the maximum PREs.

9 Results
From Table 4, it is revealed that:

(i) In all the three populations, we have

V ar(ȳst)Neyman < V ar(ȳst)Prop

and MSE(φ)Neyman < MSE(φ)Prop

where φ = ȳRS , ȳlrs, ȳRC , ȳlrc, Ts, Tc .

(ii) In population III, we observe that

V ar(ȳst)Neyman < V ar(ȳst)Equal

and MSE(φ)Neyman < MSE(φ)Equal

(iii) The case of equal allocation is applied only in population III for the reason that nh = n/L = 180/6 = 30,
which is an integer value. Hence, in order to apply the equal allocation scheme in population III, the
samples of equal sizes (i.e., 30) are selected from each of the six stratum to make an overall sample of size
180.
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(iv) In all the three populations, the class of separate regression-cum-ratio estimators (Ts) is dominant over
the stratified sample mean (ȳst), and the separate ratio estimator (ȳRS) under various allocation schemes,
as was expected from the theoretical results of Section 6. Moreover, the performance of Ts is same as that
of the separate regression estimator (ȳlrs) for various allocation schemes.

(v) In all the three populations, the class of combined regression-cum-ratio estimators (Tc) is dominant
over the stratified sample mean (ȳst), the combined ratio estimator (ȳRC), and the combined regression
estimator (ȳlrc) under various allocation schemes, as was expected from the theoretical results of Section 7.
Furthermore, the performance of Tc is same as that of the separate regression estimator (ȳlrs) for various
allocation schemes.

Again, from Tables 5, 6, and 7, we observe that:

(i) In all the three allocation schemes (i.e., equal, proportional, and Neyman), the PREs of the class of separate
regression-cum-ratio estimators (Ts) are more as compared to ȳst, and ȳRS in the respective populations.

(ii) In all the three allocation schemes, the PREs of the class of combined regression-cum-ratio estimators (Tc)
are more as compared to ȳst, ȳRC , and ȳlrc in the respective populations.

(iii) In all the three allocation schemes, the PREs of the classes of estimators Ts, and Tc are equivalent to
that of the separate regression estimator (ȳlrs) in the respective populations, as was expected from the
theoretical results of Sections 3 and 4.

10 Conclusion
In this paper, the theory of estimation of mean in stratified random sampling has been enhanced by incorporating
various sample allocation schemes, viz. equal allocation, proportional allocation, optimum allocation, and
Neyman allocation. Moreover, the relevance and significance of various allocation schemes in the estimation
procedure have been explored. For instance, the case of equal allocation can be applied only when the ratio
n/L is an integer value. In a similar manner, the case of optimum allocation can be applied if we have a prior
information on the cost involved in the survey. Furthermore, if the sampling cost incurred is the same in each
stratum of the population under consideration, then the case of Neyman allocation is applied.

It can be observed from the empirical results that if all the allocation schemes are applicable to a given data,
then the Neyman allocation provides a smaller variance (or MSE as the case may be) for the concerned estimator
as compared to the other allocation schemes.

In view of the theoretical and empirical results, we conclude that the classes of estimators Ts and Tc, as developed
by Kumar and Vishwakarma [14], are dominant over the stratified sample mean (ȳst) and the other well-known
pre-existing estimators for the estimation of population mean (Ȳ ) of the study variable Y under various allocation
schemes. Moreover, it is also revealed that the performances of Ts and Tc are equivalent to that of the separate
regression estimator (ȳlrs).
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