

British Journal of Mathematics & Computer Science 1(3): 121-128, 2011

SCIENCEDOMAIN international www.sciencedomain.org

Constancy of Holomorphic Sectional Curvature for Indefinite *s*-Manifolds

Jae Won Lee^{1*}

¹Department of Mathematics, Academia-Sinica, Taipei 10617, Taiwan.

Research Article

Received 2nd March 2011 Accepted 6th April 2011 Online Ready 2nd May 2011

Abstract

Kumar et al. (2009) provided an algebraic characterization for an indefinite Sasakian manifold to reduce to a space of constant ϕ^- holomorphic sectional curvature. In this present paper, we generalize the characterization for indfinite S^- manifolds, which is a space of constant ϕ^- holomorphic sectional curvature if and only if $R(X,\phi X)X$ is proportional to ϕX .

Keywords: sectional curvature; S - manifold; indefinite S - manifold;

1 Introduction

For an almost Hermitian manifold (M^{2n}, g, J) with dim(M) = 2n > 4, Tanno (1973) has proved;

Theorem 1.1

Let
$$dim(M) = 2n > 4$$
 and assume that almost Hermitian manifold (M^{2n}, g, J) satisfies
 $R(JX, JY, JZ, JX) = R(X, Y, Z, X)$ (1)

for every tangent vectors X, Y and Z. Then (M^{2n}, g, J) is of constant holomorphic sectional curvature at x if and only if

$$R(X, JX)X$$
 is proportional to JX (2)

^{*} Corresponding author: Email: jaewon@math.sinica.edu.tw

for every tangent vector X at $x \in M$.

Tanno (1973) has also proved an analogous theorem for Sasakian manifolds as

Theorem 1.2

A Sasakian manifold ≥ 5 is of constant ϕ – sectional curvature if and only if

$$R(X,\phi X)X$$
 is proportional to ϕX (3)

for every tangent vector X such that $g(X,\xi) = 0$.

Nagaich (1993) has proved the generalized version of Theorem 1.1, for indefinite almost Hermitian manfiolds as

Theorem 1.3

Let (M^{2n}, g, J) , (n > 2) be an indefinite almost Hermitian manifold satisfies (1), then (M^{2n}, g, J) is of constant holomorphic sectional curvature at x if and only if

$$R(X, JX)$$
 X is proportional to JX (4)

for every tangent vector X at $x \in M$.

Kumar et al. (2009) generalized Theorem 1.2 for an indefinite Sasakian manifold as

Theorem 1.4

Let $(M^{2n+1}, \phi, \eta, \xi, g)$, $(n \ge 2)$ be an indefinit Sasakian manifold. Then M^{2n+1} is of constant ϕ – sectional curvature if and only if

$$R(X,\phi X)X$$
 is proportional to ϕX (5)

for every vector field X such that $g(X,\xi) = 0$.

In this paper, we generalize Theorem 1.4 for an indefinite S – manifold by proving the following

Theorem 1.5

Let $(\overline{M}^{2n+r}, \overline{\phi}, \overline{\eta}^{\alpha}, \overline{\xi}_{\alpha}, \overline{g})$, $(n \ge 2)$ be an indefinite S-manifold. Then M^{2n+r} is of constant ϕ -sectional curvature if and only if

$$R(X,\phi X)X$$
 is proportional to ϕX (6)

for every vector field X such that $g(X, \overline{\xi}_{\alpha}) = 0$, for any $\alpha \in \{1, \dots, r\}$.

2 Preliminaries

2.1 An S-manifold

Definition 2.1

A g.f.f – manfield $(\overline{M}^{2n+r}, \overline{\phi}, \overline{\xi}_{\alpha}, \overline{\eta}^{\alpha})$ is called an S-manifold if it is normal and $d\overline{\eta}^{\alpha} = \Phi$, for any $\alpha \in \{1, \dots, r\}$, where $\Phi(X, Y) = \overline{g}(X, \phi Y)$ for any $X, Y \in \Gamma(T\overline{M})$. The normality condition is expressed by the vanishing of the tensor field $N = N_{\phi} + \sum_{\alpha=1}^{r} 2d\overline{\eta}^{\alpha} \otimes \overline{\xi}_{\alpha}$, N_{ϕ} being the Nijenhuis torsion of ϕ .

If $(\overline{M}^{2n+r}, \overline{\phi}, \overline{\xi}_{\alpha}, \overline{\eta}^{\alpha})$ is an S-manifold, then it is known (Blair, 1970) that

$$(\overline{\nabla}_{X}\overline{\phi})Y = \overline{g}(\overline{\phi}X,\overline{\phi}Y)\overline{\xi} + \overline{\eta}(Y)\overline{\phi}^{2}(X)$$
⁽⁷⁾

$$\overline{\nabla}_X \overline{\xi}_\alpha = -\overline{\phi} X, \tag{8}$$

where $\overline{\xi} = \sum_{\alpha=1}^{r} \overline{\xi}_{\alpha}$ and $\overline{\eta} = \sum_{\alpha=1}^{r} \overline{\eta}^{\alpha}$.

Theorem 2.1

[1] An S-manifold M^{2n+r} has constant ϕ -sectional curvature c if and only if its curvature tensor field satisfies

$$= \frac{(c+3r)}{4} \{ \overline{g}(\overline{\phi}X, \overline{\phi}Z)\overline{\phi}^{2}Y - \overline{g}(\overline{\phi}Y, \overline{\phi}Z)\overline{\phi}^{2}X \}$$

$$+ \frac{(c-r)}{4} \{ \Phi(Z, Y)\phi X - \Phi(Z, X)\phi Y + 2\Phi(X, Y)\phi Z \}$$

$$- \overline{g}(\overline{\phi}Z, \overline{\phi}Y)\overline{\eta}(X)\overline{\eta} + \overline{g}(\overline{\phi}Z, \overline{\phi}X)\overline{\eta}(Y)\overline{\eta}$$

$$- \overline{\eta}(Y)\overline{\eta}(Z)\overline{\phi}^{2}X + \overline{\eta}(Z)\overline{\eta}(X)\overline{\phi}^{2}Y$$

$$(9)$$

for any vector fields $X, Y, Z, W \in \Gamma(T\overline{M})$.

An S – manifold M^{2n+r} with constant ϕ – sectional curvature c is called an S – space form and denoted by $M^{2n+r}(c)$.

When r = 1, an **S**-space form $M^{2n+1}(c)$ reduces to a Sasakian space form (Blair, 2002) and (9) reduces to

$$4R(X,Y,Z) = (c+3)\{\overline{g}(Y,Z)X - \overline{g}(X,Z)Y\} + (c-1)\{\Phi(X,Z)\phi Y - \Phi(Y,Z)\phi X + 2\Phi(X,Y)\phi Z$$
(10)
$$-\overline{g}(Z,Y)\eta(X)\eta + \overline{g}(Z,X)\eta(Y)\eta - \eta(Y)\eta(Z)X + \eta(Z)\eta(X)Y\}$$

for any vector fields $X, Y, Z, W \in \Gamma(T\overline{M})$, where $\xi_1 = \xi$ and $\eta^1 = \eta$.

When r = 0, an **S**-space form $M^{2n}(c)$ becomes a complex space form and (9) moves to

$$4R(X,Y,Z) = c\{\overline{g}(Y,Z)X - \overline{g}(X,Z)Y + \Phi(X,Z)\phi Y - \Phi(Y,Z)\phi X + 2\Phi(X,Y)\phi Z\}$$
(11)

3 Proof of Theorem 1.5

Let $(\overline{M}^{2n+r}, \overline{\phi}, \overline{\xi}_{\alpha}, \overline{\eta}^{\alpha}), \alpha \in \{1, \dots, r\}, (n \ge 2)$ be an indefinite S-manifold. To prove the theorem for $n \ge 2$, we shall consider cases when n = 2 and when n > 2, that is, when $n \ge 3$.

Case I

When the metric is space-like, that is, when $\overline{g}(X, X) = \overline{g}(Y, Y)$. The proof is similar as given by Lee and Jin (2011), so we drop the proof.

Case II

When the metric is time-like, that is, when $\overline{g}(X, X) = -\overline{g}(Y, Y)$. Here, if X is space-like, then Y is time-like or vice versa. First of all, assume that \overline{M} is of constant ϕ – holomorphic sectional curvature. Then (9) gives

$$R(X,\phi X)X = c\phi X \tag{12}$$

Conversely, let $\{X, Y\}$ be an orthonormal pair of tangent vectors such that $\overline{g}(\phi X, Y) = \overline{g}(X, Y) = \overline{g}(Y, \overline{\xi}_{\alpha}) = 0$, $\alpha \in \{1, \dots, r\}$ and $n \ge 3$. Then $\ddot{X} = \frac{X + \overline{\phi}Y}{\sqrt{2}}$ and $\ddot{Y} = \frac{\overline{\phi}^2 X + \overline{\phi}Y}{\sqrt{2}}$ also form an orthonormal pair of tangent vectors such that $\overline{g}(\phi \ddot{X}, \ddot{Y}) = 0$.

Then (12) and curvature properties give

$$0 = R(\ddot{X}, \phi \ddot{X}, \ddot{Y}, \ddot{X}) = \overline{g}(R(X, \phi X, X), \phi X) - \overline{g}(R(Y, \phi Y, Y), \phi Y) - 2\overline{g}(R(X, \phi Y, Y), \phi Y) + 2\overline{g}(R(X, \phi X, Y), \phi X)$$
(13)

From the assumption, we see that the last two terms of the right hand side vanish. Therefore, we get c(X) = c(Y).

Now, if $sp\{U,V\}$ is ϕ - holomorphic, then for $\phi U = aU + bV$ where a and b are constant.

Then we have

$$sp\{U, \phi U\} = sp\{U, aU + bV\} = sp\{U, V\}$$

Similarly,

$$sp\{V,\phi V\} = sp\{U,V\}, \qquad sp\{U,\phi U\} = sp\{V,\phi V\}$$

These imply

$$R(U, \phi U, U, \phi U) = R(V, \phi V, V, \phi V), or \quad c(U) = c(V)$$

If ${U,V}$ is not ϕ – holomorphic section, then we can choose unit vectors $X \in sp\{U, \phi U\}^{\perp}$ and $Y \in sp\{V, \phi V\}^{\perp}$ such that $sp\{X, Y\}$ is ϕ – holomorphic. Thus we get

$$c(U) = c(X) = c(Y) = c(V),$$

which shows that any ϕ – holomorphic section has the same ϕ – holomorphic sectional curvature.

Now, let n = 2 and let $\{X, Y\}$ be a set of orthonormal vectors such that $\overline{g}(X, X) = -\overline{g}(Y, Y)$ and $\overline{g}(X, \phi X) = 0$, we have c(X) = c(Y) as before. Using the property (6), we get

$$\begin{split} R(X,\phi X,X) &= c(X)\phi X\\ R(X,\phi X,Y) &= -R(X,\phi X,Y,\phi Y)\phi Y\\ R(X,\phi Y,X) &= -R(X,\phi Y,X,Y)Y - R(X,\phi Y,X,\phi Y)\phi Y\\ R(X,\phi Y,Y) &= R(X,\phi Y,Y,X)X + R(X,\phi Y,Y,\phi X)\phi X\\ R(Y,\phi X,Y) &= R(Y,\phi X,Y,X)X + R(Y,\phi X,Y,\phi X)\phi X\\ R(Y,\phi X,X) &= -R(Y,\phi X,X,Y)Y - R(Y,\phi X,X,\phi Y)\phi Y\\ R(Y,\phi Y,X) &= R(Y,\phi Y,X,\phi X)\phi X\\ R(Y,\phi Y,Y) &= -c(Y)\phi Y = -c(X)\phi Y \end{split}$$

Now, define $\hat{X} = aX + bY$ such that $a^2 - b^2 = 1$ and $a^2 \neq b^2$. Using above relations, we get

..

$$R(X,\phi X,X) = C_1 X + C_2 Y + C_3 \phi X + C_4 \phi Y$$

Note that C_1 and C_2 are not necessary for argument and we have

$$C_{3} = a^{3}c(X) + ab^{2}C_{5}$$
(14)
$$C_{4} = -b^{3}c(X) - a^{2}bC_{5},$$

where $C_5 = R(X, \phi X, Y, \phi Y) + R(X, \phi Y, X, \phi Y) + R(X, \phi Y, Y, \phi X)$.

On the other hand,

$$R(\hat{X},\phi\hat{X},\hat{X}) = c(\hat{X})\phi\hat{X} = c(\hat{X})\{a\phi X + b\phi Y\}$$
(15)

Comparing (14) and (15), we get

$$a^{2}c(X) + b^{2}C_{5} = c(\hat{X})$$
(16)

$$-b^{2}c(X) - a^{2}C_{5} = c(\hat{X})$$
(17)

On Solving (16) and (17), we have

$$c(X) = c(\hat{X})$$

Similary, we can prove

$$c(Y) = c(Y)$$

Therefore, \overline{M} has constant ϕ – holomorphic sectional curvature. W

Theorem 3.1 (Kumar et al., 2009)

Let $(M^{2n+1}, \phi, \eta, \xi, g)$, $(n \ge 2)$ be an indefinit Sasakian manifold. Then M^{2n+1} is of constant ϕ – sectional curvature if and only if

$$R(X,\phi X)$$
 Xisproportional to ϕX (18)

for every vector field X such that $g(X,\xi) = 0$.

Proof. When r = 1, an indefinite S-space form $M^{2n+1}(c)$ reduces to a Sasakian space form. The proof follows from (10) and Theorem 1.5.

Remark 3.1

In this paper, we have considered the cases of space-like and time-like vectors only. However, we are still investigating the same results for lightlike vectors.

4 Conclusion

Here is the brief discussion over the main outcome of this article revealed in favor of algebraic characterization in indefinite S-manifolds. In Section 2, let us given the general Sasakian manifolds, called indefinite S-manifolds. After then, we introduced curvature tensors in an inde finite S-manifold. By using Riemannian curvature tensor on indefinite S-manifold, we generalized algebraic result from Kumar et al (2009) on the indefinite S-manifold. Restrictin to dimensions on indefinite S-manifolds, we could have old results on indefinite almost hermitian manifolds.

References

Blair, D. E. (1970). Geometry of manifolds with structural group $U(n) \times O(s)$. J. Diff. Geometry, 4, 155–167.

Blair, D. E. (2002). Riemannian geometry of contact and symplectic manifolds. Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA.,

Brunetti, L., Pastore, A.M. (2008). Curvature of a class of indefinite globally framed f-manifolds. Bull. Math. Soc. Sci. Math. Roumanie, **51** (99), 3, 138–204.

Brunetti, L., Pastore, A.M. (2010). Lightlike hypersurfaces in indefinite S-manifolds. Differential Geometry-Dynamical systems, 12, 18-40.

Duggal, Krishan L., Bejancu, A. (1996). Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. Kluwer Academic Publishers, Dordrecht.

Ikawa, T., Jun, J.B. (1997). On sectional curvatures of normal contact Lorentzian manifold. Korean J. Math. Sciences J., 4, 27-33.

Kobayashi, S., Nomizu, K. $(1963-1969)_{\bullet}$ Foundations of differential geometry. Vol. I, II, Interscience Publishers, New York.

Kumar, R., Rani, R., Nagaich, R.K. (2009). Constancy of ϕ – holomorphic sectional curvature for indefinite Sasakian manifold. Int. Electron. J. Geom., 2(1), 34-40.

Lee, J. W., Jin, D. H. (2011). Constancy of ϕ^- holomorphic sectional curvature in generalized $g \cdot f \cdot f^-$ manifolds, arXiv:1103.5266v1.

Nagaich, R.K. (1993). Constancy of holomorphic sectional curvature in indefinite almost Hermitian manifolds. Kodai Math. J., 16, 327-331.

Tanno, S. (1973). Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kodai Math. Sem. Rep., 25, 190–201.

^{© 2011} Lee; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.