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Abstract

Kumar et al. (2009) provided an algebraic characterization for an indefinite Sasakian manifold to
reduce to a space of constant ¢_holomorphic sectional curvature. In this present paper, we

generalize the characterization for indfinite S— manifolds, which is a space of constant¢_
holomorphic sectional curvature if and only if R(X,¢#X)X is proportional to ¢X

Keywords: sectional curvature; S-— manifold; indefinite S-— manifold;

1 Introduction

For an almost Hermitian manifold (M *",g,J) with dim(M) =2n> 4, Tanno (1973) has
proved;

Theorem 1.1

Let dim(M) = 2n > 4 and assume that almost Hermitian manifold (M *", g, J) satisfies
R(JIX,JY,JZ,IX)=R(X,Y,Z,X) 1)

for every tangent vectors X, Y and Z. Then (M?",g,J) is of constant holomorphic
sectional curvature at X if and only if
R(X,JX)X is proportional to JX (2

* Corresponding author: Email: jaewon@math.sinica.edu.tw
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for every tangent vector X at Xe M .

Tanno (1973) has also proved an analogous theorem for Sasakian manifolds as

Theorem 1.2
A Sasakian manifold > 5 is of constant ¢ — sectional curvature if and only if

R(X,#X)X is proportional to ¢X 3)
for every tangent vector X suchthat g(X,&) =0.

Nagaich (1993) has proved the generalized version of Theorem 1.1, for indefinite almost
Hermitian manfiolds as

Theorem 1.3

Let (M Zn,g,J), (n > 2) be an indefinite almost Hermitian manifold satisfies (1), then

M an g, J) is of constant holomorphic sectional curvature at X if and only if

R(X, JX)XisproportionaltoJX 4)
for every tangent vector X at Xe M .

Kumar et al. (2009) generalized Theorem 1.2 for an indefinite Sasakian manifold as

Theorem 1.4

Let (M, #,7,£,9), (N> 2) be an indefinit Sasakian manifold. Then M ™ is of constant
@ — sectional curvature if and only if

R(X,¢X)X is proportional to ¢X 5)
for every vector field X such that g(X,&) =0.

In this paper, we generalize Theorem 1.4 for an indefinite S —manifold by proving the
following
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Theorem 1.5

Let (M, ¢,77%,&,,3), (N> 2) be an indefinite S —manifold. Then M ?™" is of constant

@ — sectional curvature if and only if
R(X,#X)X is proportional to X ®)

for every vector field X such that g(X,f_a) =0, forany a €{1,---,r}.

2 Preliminaries

2.1 An S—manifold

Definition 2.1

A g.f.f —manfiold (M?™",4,& ,7“) is called an S—manifold if it is normal and
d7* =® forany @ e{1,---,r}, where ®(X,Y) = g(X,4Y) forany X , Y e(TM)

The normality condition is expressed by the vanishing of the tensor field
N =N, +Z;:12d 7°®&,, N, being the Nijenhuis torsion of ¢.
If (M, ¢,& ,77“) isan S—manifold, then it is known (Blair, 1970) that
(Vid)Y =Q(@X,8Y)E +77(Y)$*(X) ™
Vg, ==X, ®)
where & = Z;:fga and 77 = Z;zlﬁ“.
Theorem 2.1

[1] An S—manifold M ™" has constant ¢ — sectional curvature C if and only if its curvature
tensor field satisfies

R(X,Y,Z)
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- L2 g5x,52)5% - 9V, 92)5*X)
+%{®(Z,Y)¢X —D(Z, X)pY +2D(X,Y)gZ} 9)
~ G2,V TO0T + G2, P0T0)T
TOT@FX +T )T )FY
for any vector fields X,Y,Z,W e (TM).

An S — manifold M *"" with constant ¢ — sectional curvature C is called an S —space form
and denoted by M 2" (c).

When r =1, an S—space form M 2n+1(C) reduces to a Sasakian space form (Blair, 2002) and
(9) reduces to

4R(X,Y,Z)

=(c+3){g(Y,2)X -g(X,2)Y}
+(c=1){D(X,Z)gY —D(Y,Z)pX +2D(X,Y)4Z (10)
=g(Z,Y)n(X)n+g(Z, X)n(Y)n
—n(Y)n(Z)X +n(Z)n(X)Y}

for any vector fields X,Y,Z,W eT'(TM), where & =& and 77 =77.

When r =0, an S—space form M an (C) becomes a complex space form and (9) moves to

AR(X,Y,Z)=c{g(Y,Z)X - g(X,Z)Y
+O(X,Z)HY — DY, Z)PX +2D(X,Y)fZ} (1)

3 Proof of Theorem 1.5

Let (M?™",8,& ., 77%), a €{l,---,r}, (N> 2) be an indefinite S—manifold. To prove the
>2,

theorem for we shall consider cases when N =2 and when N > 2, that is, when N> 3.
Case |

When the metric is space-like, that is, when (X, X) =g(Y,Y). The proof is similar as given
by Lee and Jin (2011), so we drop the proof.

124



British Journal of Mathematics & Computer Science, 1(3): 121-128, 2011

Case Il

When the metric is time-like, that is, when (X, X)=-g(Y,Y). Here, if X is space-like,
then Y is time-like or vice versa. First of all, assume that M is of constant @ — holomorphic
sectional curvature. Then (9) gives

R(X,#X)X = cgX (12)

Conversely, let {X,Y} be an orthonormal pair of tangent vectors such that

a@X,Y)=g(X,Y)=g(Y,£,)=0, ae{l,---,r} and n>3. Then X = Xj/_gY and

V- ¢ X + @Y

2

Then (12) and curvature properties give

0=R(X,#X.Y,X) = G(R(X, X, X),#X) ~G(R(Y 4V ,Y),#Y)
—2G(R(X,4Y,Y),4Y) + 25 (R(X,9X,Y),4X) (13)

also form an orthonormal pair of tangent vectors such that § (¢5< ,Y“) =0.

From the assumption, we see that the last two terms of the right hand side vanish. Therefore, we
get ¢(X) =c(Y).

Now, if sp{U,V} is ¢ — holomorphic, then for U = al +bV where & and b are constant.
Then we have
sp{U,¢U}=sp{U,aU +bV}=sp{U,V}

Similarly,

sp{V,V}=sp{U,V},  sp{U,gU}=sp{V,4V}

These imply
RU,¢U .U, gU) =RV, V.V, V), 0or cU)=c(V)

If {U,V} is not ¢ — holomorphic section, then we can choose unit vectors X € sp{U, gU}"
and Y € sp{V,@V}" suchthat sp{X,Y} is ¢ — holomorphic. Thus we get

cU) =c(X)=c(Y)=c(V),
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which shows that any ¢ — holomorphic section has the same ¢ — holomorphic sectional
curvature.

Now, let n=2 and let {X,Y} be a set of orthonormal vectors such that
g(X,X)=-=g(Y,Y) and g(X,¢X) =0, we have c(X)=c(Y) as before. Using the
property (6), we get
R(X,¢X, X) =c(X)gX
R(X,#X,Y) =—R(X,¢X,Y, oY )oY
R(X,4Y,X)=-R(X,qY, X, Y)Y —=R(X,gY, X,8Y)gY
R(X,4Y,Y)=R(X,4Y,Y, X)X +R(X,qY,Y, X)X
R(Y,#X,Y)=R(Y,oX,Y, X)X +R(Y, XY, X)X
R(Y,oX, X) =—=R(Y,oX, X, Y)Y =R(Y, X, X, 4Y)gY
R(Y,oY,X) =R(Y,qY, X,sX )X
R(Y,#Y,Y)=—c(Y)gY = —c(X)gY

Now, define )2 =aX +bY suchthat a>—b%? =1 and a® = b?. Using above relations, we get
R(X,#X,X) = C, X +C,Y +CypX +C,gY

Note that C; and C, are not necessary for argument and we have
C, =a’c(X)+ab*C, (14)
C, = -b%(X)-a’C,,
where C; = R(X,éX,Y,dY)+R(X, Y, X,4Y)+R(X,4Y,Y,¢X).

On the other hand,
R(X, X, X)=c(X)gX =c(X){agX +bgv} (15)

Comparing (14) and (15), we get

a’c(X)+b%C, = ¢(X) (16)
—b%c(X)-a’C, = c(X) 17)
On Solving (16) and (17), we have
c(X)=c(X)
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Similary, we can prove

c(Y) =c(Y)

Therefore, M has constant @ — holomorphic sectional curvature. W

Theorem 3.1 (Kumar et al., 2009)

Let (M*"™,4,m,&,9), (n>2) be an indefinit Sasakian manifold. Then M 2™ is of constant
@ — sectional curvature if and only if

R(X,¢X) Xisproportionalto gX (18)
for every vector field X such that g(X,&) =0.

Proof. When r =1, an indefinite S—space form M 2n+l(C) reduces to a Sasakian space form.
The proof follows from (10) and Theorem 1.5.

Remark 3.1

In this paper, we have considered the cases of space-like and time-like vectors only. However, we
are still investigating the same results for lightlike vectors.

4 Conclusion

Here is the brief discussion over the main outcome of this article revealed in favor of algebraic
characterization in indefinite S—manifolds. In Section 2, let us given the general Sasakian
manifolds, called indefinite S —manifolds. After then, we introduced curvature tensors in an inde
finite S — manifold. By using Riemannian curvature tensor on indefinite S—manifold, we
generalized algebraic result from Kumar et al (2009) on the indefinite S — manifold. Restrictin to

dimensions on indefinite S— manifolds, we could have old results on indefinite almost hermitian
manifolds.-
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