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Abstract
Albert Einstein, during the development of his precious theory of relativity evoked a fascinating
proverb; ”Two things are infinite in this world! One is the beauty of universe and the other is human
stupidity. Though! I am not sure about the beauty of universe.” Perhaps, the inspirational notion
from the aforementioned proverb may yield in the form of DIVINE RATIO, the magical proportion.
When one talks about the beauty of universe from the stand point of Mathematics, one would
probably think about this enthusiastic number. The present article is intended to discuss the
compatibility of Divin structure in Einstein as well as conformal Einstein spaces. A brief research
on the compatibility of Divine structure with many well known Einstein as well as conformal Einstein
equations has been carried out and based on the compatibility conditions, new kinds of spaces
e.g., Divine Einstein and conformally Divine Einstein spaces have been generated. Moreover,
some new tensor fields e.g., Divine Yang, Divine Bach etc. and the three new looking conformally
Divine Einstein equations have also been established.
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1 Introduction
The great scientist Johannes Kepler (1571-1630) had evoked a fascinating stanza: Geometry has two
great treasures; one is the theorem of Pythagoras and the other is the division of line into extreme
and mean ratio. The first we may compare to a measure of gold; the second we may name a precious
jewel.” The Golden ratio, synonymously cited as Golden proportion, Golden number, Golden mean,
Golden section, Divine ratio, Divine section, Golden cut, mean of the Phidias and Divine proportion,
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has been a well known irrational number 1.6180339887 · · · , in this planet, which has an enthusiastic
mystic behavior to almost living and non-living things of the world. The Golden ratio was evolved
by the famous founder of Geometry, i,e., Euclid as a formalized system around 300 BC. At the time
the Golden ratio was discovered in Greece by Euclid, the Greece was experiencing a golden era
and the citizens of Greece were typically known for their elegant art and architecture. Really, Euclid
exposed a visually pleasing geometric ratio, which has been confirmed as the composition of beauty
by many artists, architects and mathematicians. However, from the ancient literature concerning the
Greece, it has been found that the discovery of Divine ratio is attributed to Pythagoras or his followers
[Fischler (1998)]. But at the ground root, around 300 BC, Euclid had provided the very first written
literature on the Divine ratio as a line divided into extreme and mean ratio. Since the discovery of
Divine proportion till the date, a huge amount of research has been carried out by researchers and it
has been found that the Divine proportion appears almost everywhere in this universe. For instance,
the Golden ratio appears in the dimension of human body, structure of musical compositions and in
the ratio of harmonious sound frequencies [Livo (2002)].
Besides, many natural and human manufactured objects in this world have some mathematical
descriptions due to Divine ratio, for example, the petal arrangement of roses and the objects having
pentagonal symmetry such as, inflorescence of many flowers and phyllotaxis objects have some
numerical exposition due to Fibonacci numbers which are themselves defined as the Divine proportions
[Crâşmăreanu and Hreţcanu (2008)]. Moreover, out of the Divine proportion, there arises a Divine
spiral whose familiar coil shape can be seen everywhere in nature, such as in the DNA structure
and fingerprints, sun flowers and seashells, storm clouds and tornados. Nevertheless, the prime
examples of the use of Golden ratio in architecture are the great pyramid of Giza (built around 2560
BC)[Fischler (2000)] and the holy temple of Parthenos in Greece, built and decorated between 432-
447 BC. Let us now recall a brief digest regarding Divine ratio.
In Mathematics and nature, two quantities are said to be in Divine ratio, if the ratio of the sum of
quantities to larger quantity is equal to the ratio of the larger quantity to the smaller one. Euclid’s
definition concerning to Golden ratio states that ”A straight line is said to have been cut in extreme
and mean ratio when, as the whole line is to the greater segment, so is the greater to the lesser”
[Encyclopedia (2011)], [Fischler (2000)]. Moreover, according to Crâşmăreanu and Hreţcanu (2008),
the Golden proportion partitions a line segment into a major subsegment and a minor subsegment in
such a fashion that the proportion of entire line segment and major subsegment and the proportion of
major subsegment and minor subsegment must be equal to the number φ (the Phidias number). The
first Greek letter φ (read as ’phi’) is used for Divine proportion in the honor of great Greek sculptor
Phidias who lived around 450 BC [Fischler (1998)]. The Golden ratio, which is indicated by φ is
the real positive root of the quadratic equation x2 − x − 1 = 0 and has the value φ = 1+

√
5

2
=

1.6180339887 · · · . Furthermore, the quadratic equation x2 − x − 1 = 0 is called the ”Fibonacci” or
”Golden” equation. Euclid has defined the Golden ratio as a line cut in extreme and mean ratio and
the proportion is now often seen in simple geometric figures like pentagram, decagon and dodecagon
etc.
The equation x2 − x − 1 = 0, which is usually called Fibonacci has two real solutions φ and its
conjugate φ̄ = 1 − φ. It is noteworthy that the Divine ratio and its conjugate are connected in the
following fashion [Seiichi and Akifumi (2008)]:



φ+ φ̄ = 1

φ · φ̄ = −1

φ−1 = φ− 1

(φ̄)−1 = −φ

φ−1 + (φ̄)−1 = −1

, (1.1)
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and 

φ−1 · (φ̄)−1 = −1

φ2 = 1 + φ

φ̄2 = 2− φ

φ2 + φ̄2 = 3

φ2 · φ̄2 = 1

. (1.2)

The intention of the present article is to investigate the compatibility and functioning of Divine
ratio and hence the Divine structure for conformal Einstein’s spaces. For this purpose and to obtain
new expressions for Einstein’s theory of relativity, we have concerned the precious articles [Hreţcanu
and Crâşmăreanu (2009)], [Crâşmăreanu and Hreţcanu (2008)]. Even the considerable amount of
research pertaining Golden differential geometry and applications of Golden ratio on Riemannian
manifolds has been carried out by Hreţcanu and Crâşmăreanu (2009) and Crâşmăreanu and Hreţcanu
(2008), then also to meet our purpose, in the following subsection, we outline some prerequisites
discussed by Hreţcanu and Crâşmăreanu (2009) and Crâşmăreanu and Hreţcanu (2008).

1.1 Structures on Manifolds Due to Golden Ratio: Divine Structures
The notions of constructing a Golden structure on a C∞-differentiable real manifold as well as on
a Riemannian manifold have been extensively discussed by Hreţcanu and Crâşmăreanu (2009),
Crâşmăreanu and Hreţcanu (2008) and Hreţcanu and Crâşmăreanu (2007). In order to evolve such a
beautiful structure, the concepts of f−structures [Yano and Kon (1984)] and their extended form, i.e.,
polynomial structures [Goldberg and Yano (1970)] on a manifold have been consulted. It is mentioned
that a polynomial structure on a manifold looks like a C∞ tensor field F of type (1, 1) , which has been
defined on a differentiable manifold N in such a way that the following algebraic equation is satisfied
[Hreţcanu and Crâşmăreanu (2009)]:

Q(x) = xn + anx
n−1 + · · ·+ a2x+ a1I = 0, (1.3)

where I stands for identity mapping and for x = F , Fn−1(p), Fn−2(p), · · · , F (p), I are linearly
independent for every p ∈ N .
From the above detail, Crâşmăreanu and Hreţcanu (2008) has developed a beautiful concise definitions
as follows:

Definition 1.1 (Goldberg and Yano (1970)). LetN be a C∞-differentiable real manifold. A tensor field
F of the type (1,1) on M is said to define a polynomial structure if F satisfies the algebraic equation:

Q(x) = xn + a”nx
n−1 + · · ·+ a2x+ a1I = 0,

where Fn−1(p), Fn−2(p), · · · , F (p), I are linearly independent ∀ p ∈ N .

Also, for Q(x) = x2 + 1 (or Q(x) = x2 − 1), one can obtain an almost complex structure J
(respectively, an almost product structure P ). Further, Crâşmăreanu and Hreţcanu (2008) delineated
that existence of an almost complex structure induces a condition on the dimension of N , such as it
is even. For Q(x) = x2, the concept of almost tangent structure T [Miron and Anastasiei (1994)] has
also been suggested by Crâşmăreanu and Hreţcanu (2008).
On the basis of [Goldberg and Petridis (1973)], an almost product structure P for N has been
generated by Hreţcanu and Crâşmăreanu (2009). For more details regarding the establishment
of such complex structures, readers are suggested to refer [Hreţcanu and Crâşmăreanu (2009)],
[Crâşmăreanu and Hreţcanu (2008)] and [Hreţcanu and Crâşmăreanu (2007)].

From what has been follows, Hreţcanu and Crâşmăreanu (2009) and Crâşmăreanu and Hreţcanu
(2008) have mentioned a Divine structure as a polynomial structure along with the structure polynomial
of the type Q(x) = x2 − x− I as below:
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Definition 1.2 (Hreţcanu (2007)). A Golden structure on the manifold N of dimension n is a tensor
field G of type (1, 1), which satisfies the equation:

G2 = G+ I. (1.4)

The following features of Golden structureG have also been worked out by Hreţcanu and Crâşmăreanu
(2009) and Crâşmăreanu and Hreţcanu (2008):

Proposition 1.1. A Golden structure G on an n-dimensional manifold N has the power

Gn = FnG+ Fn−1I, (1.5)

where n is any integer and (Fn)n is the well known Fibonacci sequence.

By making use of explicit expression for the Fibonacci (i.e., the Binet’s formula) [Livo (2002)];

Fn =
φn − (1− φ)n√

5
, (1.6)

the new version of (1.5) has been evolved as

Gn =
φn − (1− φ)n√

5
G+

φn−1 − (1− φ)n−1

√
5

I. (1.7)

Proposition 1.2 (Hreţcanu and Crâşmăreanu (2009), Crâşmăreanu and Hreţcanu (2008)). .......

1. The eigenvalues of a Golden structure G are the Golden ratio φ and (1− φ).
2. The Golden structureG is the isomorphism on the tangent space TxN of manifoldN , ∀ x ∈ N .
3. It follows that G is invertible and its inverse Ĝ ≡ G−1 satisfies:

Ĝ2 = −Ĝ+ I. (1.8)

It has been notified by Hreţcanu and Crâşmăreanu (2009) and Crâşmăreanu and Hreţcanu
(2008) that Golden structure appears in pairs; namely if G is a Golden structure then Ḡ = I − G
is also a Golden structure. But that in case of almost tangent structures (T and − T ), almost
complex structures (J and − J) and for the almost product structures (P and − P ), it is obvious to
seek for a connection between Golden structure and product structures.

Theorem 1.1 (Crâşmăreanu and Hreţcanu (2008)). An almost product structure P induces a Golden
structure as below:

G =
1

2
(1 +

√
5P ). (1.9)

Conversely, any Golden structure G yields an almost product structure,

P =
1√
5

(2G− I). (1.10)

In the above mentioned relation it is evident that Ḡ = I − G ↔ P̄ = −P . Likewise, if N be
endowed with an almost tangent structure T , one can say that

Gt =
1

2
(I +

√
5T ) (1.11)

is a tangent Golden structure on the manifold (N,T ). Also the equation

G2
t −Gt +

1

4
I = 0 (1.12)

is the equation verified by tangent Golden structure.
The complex Golden structure Gc has also been delineated by Crâşmăreanu and Hreţcanu (2008)
as follows:
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Definition 1.3. Let (N, J) be an almost complex manifold. Then the tensor field Gc defined by;

Gc =
1

2
(I +

√
5J) (1.13)

is called the complex Golden structure on N, J .

Moreover, the polynomial equation justified by Gc is given as;

G2
c −Gc +

3

2
I. (1.14)

Hreţcanu and Crâşmăreanu (2009) and Crâşmăreanu and Hreţcanu (2008) have constructed the
Golden structure on Riemannian manifolds and produced various delighting consequences. They
have defined the Golden structure G on the Riemannian manifold as below:

Definition 1.4 (Hreţcanu and Crâşmăreanu (2009), Crâşmăreanu and Hreţcanu (2008)). The Golden
Riemannian structure is a pair (g,G), which satisfies the compatibility condition:

g(GX,Y ) = g(X,GY ),∀ tangent vector fieldsX,Y ∈ TxN. (1.15)

Also, a Riemannian manifold (N, g), endowed with a Golden structure G, such that the Riemannian
metric g isG-compatible is known as Golden Riemannian manifold and symbolized as a triple (N, g,G).

2 Divine Structure on Conformal Einstein
SPACES

Before discussing the functioning of Divine proportion as well as Divine structure on conformal
Einstein spaces, let us go through the basic notions concerning Einstein and conformal Einstein
spaces and outline some noteworthy expressions which are the necessary pre-requisites to pursue
the proposed objectives.

It has been a wide spread fact that the Riemannian manifold (M, g) has feedback of three
main curvatures. The first one is the Riemannian curvature tensor Rijkl itself, which is equivalent
to sectional curvature function on some tangent plane. This curvature has the biquadratic form that
provides adequate information from the curvature stand point. The second is Ricci curvature (or,
contracted curvature) Rij , which is obtained by taking trace of Riemannian curvature with respect to
metric gij . Finally, the scalar curvature R, known as a scalar function on M , which can be obtained
by taking trace of Rij with respect to metric tensor gij .
It is also remarkable that whenever the dimension n of the manifold equals to 3, the Ricci tensor bears
adequate information as the Riemannian tensor.

Now, a Riemannian or a pseudo Riemannian manifold (M, g) of dimension n ≥ 2, is said to be
an Einstein manifold (E, g), if the Ricci tensor Rij is proportional to the metric tensor gij , i.e.,

Rij = µgij , (2.1)

where µ is a constant whose value can be calculated by transvecting (2.1) throughout with the inverse
metric tensor gij .
Thus the equation (2.1) becomes

Rij =
R

n
gij . (2.2)

By normalization, we can assume the following three possibilities due to equation (2.1).

i Rij = gij (when µ is positive)

91



British Journal of Mathematics and Computer Science 1(2), 87–100, 2011

ii Rij = −gij (when µ is negative)

iii Rij = 0 (when µ = 0).

Here the corresponding number µ = 1,−1, 0 is used to identify the sign of Einstein manifold.
In order to define the conformal Einstein spaces, let us rescale the Einstein metric gij (involved

in equations (2.1) and (2.2)) under conformal transformation. Since the basic notion of conformal
Einstein space comes out from the concept of transformation that preserves the angle and sense of
the angle, thereby the Einstein metric g̃ij is the conformal transformation of gij , if

g̃ij = e2ψgij , (2.3)

where ψ is any arbitrary smooth scalar function called the ”conformal parameter”.
Moreover, by requiring that

g̃ij g̃kj = δik = gijgkj . (2.4)

One can also obtain the rescaling of inverse Einstein metric as below:

g̃ij = e−2ψgij . (2.5)

Remark 2.1. One can also formulate the conformal rescaling as;

g̃ij = Ω2gij , (2.6)

where Ω is called the conformal factor.

Comparison between (2.3) and (2.6) yields the relation between conformal factor and conformal
parameter as ψ = ln Ω. Throughout the study, we shall use both of the above versions of conformal
rescaling.

Remark 2.2. As far as we deal with space-time continuum of Einstein, the space-time coordinates
xi and the conformal factor Ω or equivalently ψ will in general depend on the other parameters. In
particular, one can think if conformal rescaling of the form;

g̃ij(x
i) =

[
Ω(xi, s, s∗)

]2
gij [x

i, s, x∗], (2.7)

where the parameters (s, s∗) are complex stereographic coordinates on the 2-sphere.

Now, with the foregoing conformal rescaling theory, we define the conformal Einstein space as
follows:

Definition 2.1. An n-dimensional space with the metric gij is said to be conformal Einstein space
(Ẽ, g̃), if ∃ a conformal rescaling of the form (2.3) or (2.6), such that

R̃ij =
R̃

n
g̃ij . (2.8)

Further, to the rescaled Einstein metric g̃ij , we define a metric compatible connection ∇̃i (which
is assumed to be of Levi-Civita type and torsion free) such that

∇̃kg̃ij = 0 (2.9)

and (
∇̃i∇̃j − ∇̃j∇̃i

)
f = 0 (2.10)

for all scalar field f .
We, now, define a polynomial structure to an n-dimensional Einstein manifold (E, g), which is called
Divine structure (pre-defined by [Hreţcanu and Crâşmăreanu (2009), Crâşmăreanu and Hreţcanu
(2008), Hreţcanu and Crâşmăreanu (2007)]) as a (1, 1) tensor field like below:
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Definition 2.2. A Divine structure G on an n-dimensional Einstein space (E, g) verifies the condition;

G2 = GijG
j
i = Gij + δij , (2.11)

where δij is the well known Kronecker tensor. The same condition in global coordinate system has
been defined by Hreţcanu and Crâşmăreanu (2009) as,

G2 = G+ I, (2.12)

where I is an identity operator on the Lie algebra χ(E) of vector fields on E.

Using (2.11) or (2.12), one can delineate the Divine Einstein structure (g,G) as follows:

Definition 2.3. The Divine Einstein structure is a pair (g,G) which satisfies the compatibility condition:

girG
r
j = grjG

r
i , (2.13)

where Gijs are the components of Divine structure G. However, the same compatibility condition in
global coordinate system has been revealed by Hreţcanu and Crâşmăreanu (2009) as

g(G(U), V ) = g(U,G(V )), (2.14)

where U and V are supposed to be tangent vector fields ∈ χ(E).

The compatibility condition (2.13) can also be expressed as

grsG
r
iG

s
j = grjG

r
i + gij , (2.15)

or in global system [Hreţcanu and Crâşmăreanu (2009)],

g(G(U), G(V )) = g(G(U), V ) + g(U, V ), (2.16)

for every tangent vector fields U, V ∈ χ(E).
It is also a remarkable aspect that the Einstein metric g is invariant under the action of Divine structure
G), i.e.,

grsG
r
iG

s
j = gij or g(G(U), G(V )) = g(U, V ), (2.17)

for every tangent vector fields U, V ∈ χ(E).
By considering the Divine Einstein structure (2.13), let us now define Divine Einstein manifold as
follows:

Definition 2.4. An Einstein manifold (E, g) intimated with a Divine structure (g,G) is called a Divine
Einstein manifold. Thus a tripe (E, g,G) in which an Einstein metric g and a Divine structure G
compatible with g are involved, is called a Divine Einstein manifold.

With the aid of the propositions (2.1) & (1.1) of [Hreţcanu and Crâşmăreanu (2009)] and [Crâşmăreanu
and Hreţcanu (2008)] respectively, we can prove the following:

Proposition 2.1. A Divine Einstein manifold (E, g,G) bears the property

Gn = FnG
i
j + Fn−1δ

i
j , (2.18)

for any integer number n > 0. Here (Fn)n is the well known Fibonacci sequence.

Proof. From equation (2.11), it is easy to get

G3 = 2Gij + δij ,

and in general, if we suppose that

Gn+1 = FnG
2 + Fn−1G

i
j = (Fn + Fn−1)Gij + Fnδ

i
j ,

which due to Fibonacci properties evidently produces (2.18).
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Proposition 2.2. The Divine Einstein structure (g,G) defined for an n-dimensional Einstein manifold
(E, g) bears the trace property, given as

trace (G2) = trace (G) + n. (2.19)

.

Proof. The equation (2.19) can be evidently derived from (2.11), if we operate (2.11) by trace operator
and note that trace δij = n. However, if we use the concept of orthonormal basis (E1, E2, · · ·Em) of
tangent space Tx(E) at a point x ∈ E [Hreţcanu and Crâşmăreanu (2009)], we have from (2.12)

g(G2Ei, Ei) = g(GEi, Ei) + g(Ei, Ei). (2.20)

Summing (2.20) with respect to i, the equation (2.19) automatically set up.

It is very clear that the proposition (2.5) of [Crâşmăreanu and Hreţcanu (2008)] also holds good
in our case, i.e.,

Proposition 2.3. The projector operators L1 and L2 defined on a Divine Einstein manifold satisfy the
conditions:

L1 + L2 = δij , L2
1 = L1, L2

2 = L2 (2.21)

and
GijoL1 = L1oG

i
j = (1− φ)L1, GijoL2 = L2oG

i
j = φL2, (2.22)

where
L1 =

1√
5

(φδij −Gij), and L2 =
1√
5

[(φ− 1)δij +Gij ]. (2.23)

Here, for every x ∈ E, the projectors L1&L2 for two complementary distributions DL1 and DL2

respectively are defined to be the systems of C∞-tensor fields of the type (1, 1) and will be given by
the relations;

πi(x) : DL1(x)→ DL1
i (x),

k∑
i=1

πi = I, πiπj = δijπi (2.24)

and

πi(x) : DL2(x)→ DL2
i (x),

k∑
i=1

πi = I, πiπj = δijπi. (2.25)

In order to discuss the conformally Divine Einstein manifolds, let us define the conformal Divine
structure as follows:

Definition 2.5. A Divine structure Gij characterized by (2.11) is said to be conformally well behaved
or conformally weighted (i.e., with weight w), if under the conformal transformation (2.3) or (2.6), ∃ a
real number w such that

Gij → G̃ij = ΩwGij . (2.26)

In case if w = 0, the Divine structure will be called conformally invariant.
To rescale the Divine structure Gij , just like for the Einstein metric g̃ij , one can have a metric
compatible connection ∇̃i which can be operated upon Gij as follows:

∇̃kGij = ∇kGij +QiklG
l
j −QnkjGin, (2.27)

where
Qijk = 2ψ(jδ

i
k) − gjkψi (2.28)
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and
ψi = Ω−1∇iΩ = ∇a(ln Ω); ψi = gijψj . (2.29)

In view of equations (2.6) and (2.2), we can now define the conformally Divine Einstein structure as
well as conformally Divine Einstein manifolds as below:

Definition 2.6. The conformally Divine Einstein structure is a pair (g̃, G̃) which verifies the compatibility
condition:

g̃irG̃
r
j = g̃rjG̃

r
i , (2.30)

where g̃ and G̃ are the rescaled Einstein metric (2.6) and rescaled Divine structure (2.26) respectively.

The compatibility condition (2.30) can also be expressed as

g̃rsG̃
r
i G̃

s
j = g̃rjG̃

r
i + g̃ij . (2.31)

With the aid of (2.30) and (2.31), we have

Definition 2.7. An n-dimensional conformal Einstein manifold (Ẽ, g̃) satisfying the condition (2.8) is
called ”conformally Divine Einstein manifold”, if it intimates the conformally Divine Einstein structure
(g̃, G̃) revealed by (2.30) or (2.31). Thus, a triple (Ẽ, g̃, G̃) in which a conformal metric g̃ and a
conformal Divine structure G̃ compatible with g̃ are involved is known as conformally Divine Einstein
manifold.

In addition to conformally Divine Einstein manifold (Ẽ, g̃, G̃), we have the following useful proposition
identical to proposition (2.1).

Proposition 2.4. A conformally Divine Einstein manifold (Ẽ, g̃, G̃) bears the property;

G̃n = FnG̃
i
j + Fn−1δ̃

i
j , (2.32)

for any integer number n > 0. Here (Fn)n is the well known Fibonacci sequence.

Proof. Making use of the conformal rescalings (2.5), (2.6) and (2.26) and committing the verification
of proposition (2.1) in mind, we have,

G̃3 = 2G̃ij + δ̃ij

which produces
G̃3 = 2ΩwGij + Ω2gjkΩ−2gik ⇒ G̃3 = 2ΩwG̃ij + δij .

In particular, if w = 0, the last expression yields

G̃3 = 2Gij + δij .

Also, suppose that
G̃n == FnG̃

i
j + Fn−1δ̃

i
j , (∀n ≥ 0).

Then, we have
G̃n+1 = FnG̃

2 + Fn−1G̃
i
j = (Fn + Fn−1G̃

i
j + Fnδ̃

i
j ,

which due to Fibonacci properties evidently yields (2.32).

Likewise, with the support of conformal rescaling technique and proposition (2.2), one can state
the following:

Proposition 2.5. The conformally Divine Einstein structure (g̃, G̃) defined for some n-dimensional
conformal Einstein manifold (Ẽ, g̃) bears the trace property give as;

trace (G̃2) = trace (G̃) + n. (2.33)
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Proposition 2.6. The conformal projector operators L̃1 and L̃2 defined on a conformally Divine
Einstein manifold satisfy the conditions:

L̃1 + L̃2 = δij , L̃1
2

= L̃1, L̃2
2

= L̃2 (2.34)

and
G̃ijoL̃1 = L̃1oG̃

i
j = (1− φ)L̃1; G̃ijoL̃2 = L̃2oG̃

i
j = φL̃2, (2.35)

where
L̃1 =

1√
5

(φδij − ΩwGij); L̃2 =
1√
5

[(φ− 1)δij + ΩwGij ]. (2.36)

Here for every point x̃ ∈ Ẽ, the conformal projectors L̃1 and L̃2 for two complementary distributions
DL̃1 andDL̃2 respectively are defined to be the systems ofC∞-tensor fields of the type (1, 1) together
with the weight w and will be given by the relations:

π̃i(x̃) : DL̃1(x̃)→ DL̃1
i (x̃),

k∑
i=1

π̃i = I, π̃iπ̃j = δij π̃i, (2.37)

and

π̃i(x̃) : DL̃2(x̃)→ DL̃2
i (x̃),

k∑
i=1

π̃i = I, π̃iπ̃j = δij π̃i. (2.38)

Now keeping the foregoing digest in mind, in the following section, we attempt to discuss the three
popular versions of conformally Divine Einstein equations which may play vitally important role in the
study of Einstein’s general relativity and theory of gravitation.

3 Conformally Divine Einstein Equations
The cores of Einstein’s theory of relativity and gravitation are his field equations. In the present
discussion, we shall come across and concisely delineate three popular versions of conformal Einstein
equations by inducing conformally Divine Einstein structures to them so that the previously known
conformal Einstein equations could possess new look and advance significance.

The first version of conformal Einstein equation is very well known, while the second is less
known. But the basic similarity is that each of the two versions is a set of expressions containing
the Einstein metric gij and the conformal factor Ω. Now, from the definition (2.6), its evident that
the conformal Divine structure is compatible with conformally rescaled Einstein metric g̃ij . Hence,
it seems possible to introduce the conformal Einstein metric in terms of conformally Divine Einstein
structure in all those known conformal Einstein equations, which we want to establish in new fashion.

3.1 The First Version of Conformally Divine Einstein Equations
Let us assume that the rescaled metric g̃ij is an Einstein one so that the equation (2.8) comes true.
However, if we use the following conformal rescalings of the Ricci tensor Rij and the curvature scalar
R under the transformation g̃ij = Ω2gij [Bergman (2004):

R̃ij = Rij + (n − 2)∇iψj + gij∇kψk − (n − 2)ψiψj + (n − 2)gijψkψ
k (3.1)

and
R̃ = Ω−2[R+ 2(n− 1)∇kψk + (n− 1)(n− 2)ψkψ

k], (3.2)
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where ψi = ∇i(ln Ω) and ψi = ∇i(ln Ω). Then equation (2.8) becomes

Rij −
R

n
gij + (n− 2)∇iψj −

(n− 2)

n
gij∇kψk − (n− 2)ψiψj+

+
(n− 2)

n
gijψkψ

k. (3.3)

The expression (3.3) stands for the first well known conformal Einstein equation.
Now, it is very obvious from equation (2.13) and (2.15) that the Einstein metric gij isG-compatible and
hence involving the condition (2.15) in (3.3), we have a new looking conformal equation as follows:

Rij −
R

n
(grsG

r
iG

s
j − grjGri ) + (n− 2)∇iψj −

(n− 2)

n
(grsG

r
iG

s
j − grjGri )×

∇kψk − (n− 2)ψiψj +
(n− 2)

n
(grsG

r
iG

s
j − grjGri ).ψkψk = 0. (3.4)

The equation (3.4) must be called the first version of conformally Divine Einstein equation. Here
it should be committed in mind that this version of conformally Divine Einstein equation is a set of
equations for both the Divine Einstein structure (g,G) and the conformal parameter ψ. Moreover, this
version can be used in pursuing the null-infinity and gravitational radiation and is solvable for the pair
((g,G), ψ).

3.2 The Second Version of Conformally Divine Einstein Equations
In order to obtain the second version of conformally Divine Einstein equations, we propose the method
discussed by Perkins (2006). According to Perkins (2006), one may simply conformally transform the
set of Yang and Bach conditions (Yijk = 0, Bij = 0) which are equivalent to the vacuum Einstein
equations given by;

Rij −
1

2
gijR+ Λgij = 0, (3.5)

where Λ is the cosmological constant.
Here to develop our second version of the conformally Divine Einstein equations, we start with
the conformal transformations of Yang and Bach tensors, after that we introduce the G-compatible
Einstein metric gij in both of the transformations and eventually put forward the vanishing of these G-
compatible conformally transformed equations.The step by step mathematical procedure is as follows:
The Yang tensor Yijk under the conformal transformation (2.6) can be expressed in terms of the
symmetric connection ∇i and the well known Weyl tensor Cijkl as follows [Perkins (2006)]:

Ỹijk = Yijk + ψlC
l
ijk = ∇lClijk + ψlC

l
ijk, (3.6)

where the Weyl tensor Cijkl has the form [Bergman (2004)]:

Cijkl = Rijkl +
2

n(n− 2)

(
δilR[jk] − δikR[jl] − gjlgimR[mk] + gjkg

imR[ml] − (n− 2)δijR[lk]

)
−

− 1

(n− 2)

(
δilRjk − δikRjl − gjlgimRmk + gjkg

imRml
)

+
R

(n− 1)(n− 2)

(
gjkδ

i
l − gjlδik

)
. (3.7)

Now, since the Einstein metric is G-compatible, we make use of the following three relations in (3.7)

gij = grsG
r
iG

s
j − grjGri , (3.8)

gij = grsGirG
j
s − grjGir, (3.9)

and
δij = G2 −Gij . (3.10)
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We obtain a lengthy but straight forward relation as;

C
i [Divine]
jkl = Rijkl +

2

n(n− 2)
{G2R[jk] −GijR[jk] −G2R[jl] +GikR[jl]−

− (grsG
r
jG

s
l − grlGrj )(GirGms grs − grmGir)R[mk] + (grsG

r
jG

s
k − grkGrj )×

(GirG
m
s g

rs − grmGir)R[ml] − (n− 2)(G2 −Gij)R[lk]} −
1

(n− 2)
{G2Rjk −GijRjk−

−G2Rjl +GikRjl − (grsG
r
jG

s
l −rl Grs)(GirGms grs − grmGir)Rmk+

+ (grsG
r
jG

s
k − grkGrkj)(GirGms grs − grmGir)Rml}+

+
R

(n− 1)(n− 2)
{(grsGrjGsk − grkGrj )(G2 −Gil)− (grsG

r
jG

s
j − grlGrj )(G2 −Gik)}. (3.11)

We shall evoke this lengthy expression as a Divine-Weyl tensor and will symbolize it by Ci [Divine]jkl .
Employing this Divine-Weyl tensor in equation (3.6), we have

Ỹ
[Divine]
ijk = ∇iCi [Divine]jkl + ψiC

i [Divine]
jkl , (3.12)

where Ỹ [Divine]
ijk will be cited as a conformal Divine Yang tensor and can be calculated easily using

(3.12).
Similarly, writing the conformal transformation for the Bach tensor Bij as follows [Perkins (2006)]:

B̃ij = ∇̃k∇̃lC̃lijk +
1

2
R̃kl C̃

l
ijk = Ω−2(∇k∇lClijk +

1

2
Rkl C

l
ijk) = Ω−2Bij . (3.13)

The involvement of Divine-Weyl tensor (3.11) in equation (3.13) naturally yields

B̃
[Divine]
ij = Ω−2(∇k∇lCl [Divine]ijk +

1

2
Rkl C

l [Divine]
ijk ), (3.14)

where the symbol B̃[Divine]
ij stands for the Divine Bach tensor.

Eventually, according to Perkins (2006), putting forward the vanishing of (3.12) and (3.14), we have{
Ỹ

[Divine]
ijk = 0,

B̃
[Divine]
ij = 0.

(3.15)

Thus we have obtained the second version of conformally Divine Einstein equations by setting the
right hand sides of (3.12) and (3.14) equal to zero, i.e.,{

∇iCi [Divine]jkl + ψiC
i [Divine]
jkl = 0,

(∇k∇lCl [Divine]ijk + 1
2
Rkl C

l [Divine]
ijk ) = 0.

(3.16)

3.3 The Third Version of Conformally Divine Einstein Equations
In the modern literature of conformal Einstein’s theory, it has been proposed that one can fabricate
the conformal Einstein equations without the explicit involvement of conformal parameter ψ [Perkins
(2006)]. This fabrication can be done by combining the first version of the conformal Einstein equations
with conformal Yang equations of the second version. Here, to develop the third version of conformally
Divine Einstein equations, we follow the approach developed by Perkins (2006) and combine the first
conformally Divine Einstein equations (3.4) with the conformally Divine Yang equations (3.16) as
follows:

Rij −
R

n
(grsG

r
iG

s
j − grjGri ) + (n− 2)∇iψj −

(n− 2)

n
(grsG

r
iG

s
j − grjGri )×

∇kψk − (n− 2)ψiψj +
(n− 2)

n
(grsG

r
iG

s
j − grjGri ).ψkψk = 0. (3.17)
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and
∇iCi [Divine]jkl + ψiC

i [Divine]
jkl = 0. (3.18)

Now, a natural question arises at this end that how to combine the above two conformally Divine
Einstein equations? To overcome this difficulty, we shall follow the techniques revealed by Perkins
(2006) as below:
At the very first, we may somehow strive for the solution of conformally Divine Einstein equations
in terms of the components of gradient ψi, which determines them as the functions of Divine-Weyl
tensor (3.11). Since the Divine-Weyl tensor is itself a function of Einstein’s metric gij and this metric
is itself a function of Divine Einstein structure (g,G). Hence, ψi’s are then the functions of Divine
Einstein structure, i.e.,

ψi = Ki(g,G). (3.19)

In the next step, we should seek for the replacement of ψi of equation (3.17) with the Ki so as to
obtain equations involving only (g,G) and its derivatives.
The tediousness with this approach is that how to solve all conformally Divine Yang equations for ψi?
To rectify this issue Perkins (2006) has recommended some elegant devices which will be employed
in our future work. The readers, interested to know about these devices are requested to refer Perkins
(2006).

4 Concluding Remarks
Here is the brief discussion over some main outcomes of this article revealed in favor of functioning
of Divine ratio on conformal Einstein spaces.

a In the section (1), a brief digest on the historical evolution and applications of Divine number has
been discussed.

b In the subsection (1.1), we have studied the development of Divine structure and various algebraic
as well as geometric features of this beautiful structure. The Golden Riemann structure has
also been delineated.

c Section (2) has been the backbone of our research. In this section, initially Einstein and conformal
Einstein spaces are defined. Afterward, compatibility conditions of Divine structure with Einstein
metric (2.13), (2.15) and (2.17) are mentioned. Further, with the aid of these compatibility
conditions, we have discussed two new spaces called Divine Einstein and conformally Divine
Einstein spaces. Besides, some propositions regarding trace properties of (g,G), (g̃, G̃),
projector operators on (E, g,G), conformal behavior of (g,G) and conformal projector operators
on (Ẽ, g̃, G̃) are also revealed.

d Finally, in the section (3), which is the most crucial part of this article, by making use of compatibility
conditions (2.13), (2.15) and (2.17) we have attempted to evolve three new looking versions
of conformally Divine Einstein equations. Each of the three versions is lucidly discussed in
individual subsections of this section.

.
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