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Abstract

Aims: The dynamics of HIV-1 induced AIDS is attributed to several biological variables,
which characterize the stage, virulence and morbidity of the disease. The aim of this research is
to use a necessary and sufficient subset of these immunological variables to construct a
clinically plausible mathematical model of the patho-physiological dynamics of HIV-1 induced
AIDS during the acute and chronic phases. This model incorporates the interactions between
uninfected CD4+ T cells, HIV-1 infected CD4+ T cells, HIV-1 virions in the blood plasma, and
specific cytotoxic CD8+ T cells. The major objective is to derive mathematical criteria
depicting conditions under which the HIV-1 virions can be maintained definitely at the
subclinical viral blood plasma level such that the HIV-1 seropositive person does not develop
full-blown AIDS.
Study Design: The model is based on contemporary published patho-physiological data on
acute and clinical chronic phase HIV-1 induced AIDS. These data are meticulously condensed
into a clinically plausible four-compartmental mathematical model that incorporates the
dynamics and interactions between non-HIV-1 infected CD4+ T lymphocytes. HIV-1 infected
lymphocytes, free HIV-1 virions in the blood plasma, and HIV-1 specific cytotoxic CD8+ T
lymphocytes. The relevant stoichiometric interaction rate constants, apoptotic rate constants,
rate constants for viral recruitment from latent reservoirs, and other relevant parameters are
clearly exhibited in the mathematical model. The role of CD4+ T cell-induced syncytia is
explicitly incorporated into the HIV-1 virion dynamical equation.
Place and Duration of Study: This research was done at Fayetteville State University, North
Carolina USA and is sponsored by the FSU Mini-Grant Award and the HBCU Graduate STEM
Grant. The research was conducted during the Spring of 2012.
Methodology: The deterministic nonlinear HIV-1 AIDS patho-physio-dynamical equations are
analyzed using the techniques of dynamical system theory, principles of linearized stability,
Hartman-Grobman theory and other relevant mathematical techniques. The clinically desirable
equilibrium states are and their local existence and global stability are analyzed. Investigative
computer simulations are performed illustrating some physiological outcomes.
Results: Mathematical criteria are derived under which the clinically desired outcomes can
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occur. These criteria are presented in terms of theorems. Investigative computer simulations are
presented which elucidate a number of physiological scenarios of primary HIV-1 infection,
involving the annihilation and persistence of HIV-1 in the absence of AIDS Pharmacotherapy.
Conclusion: This research has demonstrated the existence of plausible criteria under which an
HIV-1 sero-positive person can be maintained at an asymptomatic chronic state indefinitely.
Some of the criteria are configured in terms of clinically measurable and biological quantifiable
parameters which have been verified by the computer simulations.

Keywords: HIV-1 annihilation criteria, mathematical model, computer simulations, acute and
chronic phase.

1 Introduction

Human Immunodeficiency Virus (HIV) belongs to a family of ribonucleic (RNA) lenti-viruses. In
particular, the epidemiologically common subtype called HIV-1 is implicated for causing the
Human Acquired Immunodeficiency Syndrome (AIDS). The pathogenesis of AIDS can be
divided into three main phases called the acute phase, the clinical latency phase and the full-blown
AIDS phase.

The HIV-1 virion uses the glycoprotein gp120 to locate the CD4 surface molecules and the host
cells. By means of CCR5 or CXCR4, the HIV-1 virions fuses to the host cell surfaces and
eventually enter the cell. The CD4+ T cells are the major targets for the HIV-1 virions. But
macrophages, monocytes, neurons, astrocytes, and microglia cells in the central nervous system
(CNS) possess CCR5 chemokine co-receptors and hence are targets of HIV-1 virions. These
findings are summarized in [1-3]. The pathogenesis of HIV-1 infection comprises the virus life
cycle, the host cellular environment and the viral load in the infected person. There exist strains of
HIV-1 virus known as T-tropic and M-tropic which interact respectively with the CXCR4 and
CCR5 chemokine co-receptors.

During the acute phase of HIV-1 infection, the person is seropositive after exposure and
immunological reaction to the initial viral inoculum. The person experiences transient infection
resembling mononucleosis for 1-12 weeks. The symptomatic primary HIV-1 infection is usually
characterized by fever, lymphadenopathy, pharyngitis, arthralgia, rash and lethargy. This is called
acute retroviral syndrome (ARS) and is experienced by most but not all of the HIV-1 infected
persons. During this phase, large amount of HIV-1 virions are produced inside the patient body.
Inside the patient body, the HIV-1 viral envelope decoates and HIV RNA, reverse transcriptase,
integrase and other viral protein enter the host cell leading to formation of a pre-integration
complex inside the host cell such as the CD4+ T cells. Then reverse transcriptase is used to
produce HIV-1 viral DNA. The viral DNA is transported across the nucleus of the host cell and
integrates into the host DNA. The next step is the production of new HIV-1 viral proteins using
the HIV-1 viral RNA as genomic RNA. HIV proteases cleave newly synthesized polyproteins at
the appropriate places to create the mature protein components of an infectious HIV virion. Then
the new viral RNA and viral proteins migrate to the host surface and form a new immature HIV-
1provirus. The mature newly formed HIV-1 virions exit the host cell by a process called budding.
In particular, several millions of virus RNA copies may be released into the blood plasma of the
patient.

After 3 months, the chronic clinical latency phase starts. During this phase, the rate of HIV-1
replication in the host cell decreases as the CD4+ T cells numbers increases as a result of the
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cytotoxic intervention of the body’s immune system mounted by the CD8+ T cells. In particular, it
is possible at this stage for the blood plasma HIV-1 viral titre to be subclinical and plunge to
undetectable levels.  This may continue up to 8 years or longer, according to the results obtained
in [4-7].

The third phase of HIV-1 dynamics is characterized by a rapid exponential increase in the number
of HIV-1 virions in the blood plasma, increase in the number of HIV-1 infected CD4+ T cells and
a rapid decrease of uninfected CD4+ T cells to a level below 200 cells per microliter and a
complete failure of the anti-HIV cytotoxic activity of CD8+ T cells. The details are found in
[8,9].

Several mathematical models of HIV-1 dynamics have been constructed by many authors in
[4,10-16]. These authors proposed various mathematical models which describe certain aspects of
HIV-1 life cycle with the aim of finding criteria for cure of AIDS or present a quantitative analysis
of the dynamics of the HIV-1 virus. Authors in [17] presented a detailed analysis of three different
mathematical models with regard to local and global stability of infected and uninfected
equilibrium (steady) states of HIV-1 infection. Their analysis also included the dynamics of time
delay models. Authors in [18] performed an elaborate analysis of the global dynamics of a
mathematical model for HTLV-1 infection of CD4+ T cells with delayed CTL response. In
particular, they demonstrated that the time delay can destabilize the system equilibrium leading to
Hopf bifurcations and stable periodic oscillations. Similar analysis of the global dynamics of HIV-
1 infection of CD4+ T cells was done in [19]. They obtained some interesting results on the
stability of infected and non-infected equilibrium states of AIDS infection. A stochastic model for
HIV-1 population dynamics has been presented and analyzed in [20]. In particular, they analyzed
the random fluctuations associated with HIV-1 infection and dynamics. In the forthcoming paper,
we will present a stochastic model of HIV-1 dynamics which incorporates viral contributions from
latent reservoirs and also accounts for apoptosis. The interactions of the model equations will
incorporate mathematical analogues of the physiological processes suggested in the works
published in [5,8,21-29].

In this paper, new mathematical models for the acute phase and the asymptomatic clinical latency
phase are proposed and analyzed. In particular, elaborate and robust mathematical criteria will be
presented elucidating the conditions under which the chronic clinical latency phase can be
maintained indefinitely in the seropositive HIV-1 infected person.

2. Definition and Description of Model Parameters

The model of HIV-1 patho-physio- dynamics presented in this paper contains many variables and
constant parameters. These parameters include stoichiometric interaction coefficients, cellular
degradation rate constants, apoptotic rate constants, rate constants for production of immune cells
from the thymus gland via haematopoietic progenitors, rate constants for recruitment of HIV-1
virions from latent reservoirs, intra-specific competition rate constants between infected /
uninfected CD4+ T cells, and activation constants for CD4+/CD8+ T cells. The catalogue of
constants is presented as follows.

x1: the number density of un-infected CD4+ helper T-lymphocytes per unit volume
x2: the number density of HIV-1 infected CD4+ helper T-lymphocytes per unit volume
x3: the number density of HIV-1 virions in the blood plasma per unit volume
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x4: the number density of HIV-1 specific CD8+ cytotoxic T-lymphocytes per unit volume
S1:  rate of supply of un-infected antigen exposed CD4+ T4-lymphocytes from the Thymus
S2:  rate of supply of latently infected CD4+ T4-lymphocytes
S3: rate of supply of HIV-1 virions from macrophage, monocytes, microglial cells and other

lymphoid tissue different from T4-lymphocytes
S4:  rate of supply of CD8+ T8-lymphocytes from the Thymus
ai, bi: constant associated with activation of lymphocytes by cytokine interleukin-2 (IL-2)

where i={1, 2, 4}
αi: constant associated with HIV-1 infection of CD4+ T4 helper cells
1: the number of HIV-1 virions produced per day by replication and budding in CD4+ T4

helper cells
2: rate constant associated with replication and “budding” of HIV-1 in syncytia CD4+ T4

helper cells per day per micro liter (l) and released into the blood plasma
3: the number of HIV-1 virions produced per day by replication and “budding” in non-

syncytia CD4+ T4 helper cells and released into the blood plasma
qi: constant depicting competition between infected and un-infected CD4+ T4 helper cells
ki: constant depicting degradation, loss of clonogenicity or  “death”
ei0: constant depicting death or degradation or removal by apoptosis (programmed cell

death)
Ki: constant associated with the killing rate of infected CD4+ T4 cells by CD8+ T8 cytotoxic

lymphocytes

3.  Model Description and Analysis

In this section, the mathematical formulation for the acute and chronic phase of HIV-1 patho-
physio-dynamics will be presented. In describing the model, the activation function is given by the
expression:

1
11 ),( xb

jjj
jexxaxxg  for j={1, 2, 4}

In particular, this function depicts the process of lymphocyte activation which is mediated by x1
(CD 4+) helper T cells, where aj, bj are constants associated with activation of lymphocytes by
cytokine interleukin-2 (IL-2).  These cells secrete a lymphokine called interleukin-2. In the
activation process, the aj coefficient is a measure of the duration whereas the bj coefficient
modulates the peak of the activation. If j equals to 1, then the interleukin-2 activation of helper T
cells x1 which is represented by ),( 11 xxg is an autocrine process; otherwise, the

),( 1 jxxg activation function depicts a paracrine process for j={ 2,4}.

3.1 The Description of the Mathematical Model

3.1.1 The CD4+ T cell dynamics

1011211311
2

1111
11 exkxxqxxexaSx xb    (3.1)

The instantaneous number of uninfected CD4+ T cells in the blood plasma of the patient at any
time during the acute or chronic phase is equal to the rate of supply of uninfected CD4+ T cells
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from the thymus via hematopoietic progenitor cells ( 1S ); plus the activation/proliferative

recruitment of antigen activated and interleukin-2 stimulated CD4+ T cells (
112

11
xbexa 

); less the
number of CD4+ cells recruited into the pool of HIV-1 infected CD4+ T cells by infection with
HIV-1 virions ( 311 xx ); less the number of CD4+ T cells lost by intra-specific competition with

HIV-1 infected CD4+ T cells( 211 xxq ); less the number of CD4+ T cell lost by enzymatic
degradation( 11 xk ) and less the number of CD4+ T cells lost by apoptosis/exfoliative cytolytic

death( 10e ). The existence of the HIV-1 virion recruitment from the reservoirs as depicted by S1
explained in [26]. The autocrine activation term of the equation is explained [30]. The apoptotic
degradation term of the equation is discussed in [31].

3.1.2 The HIV-1 infected CD4+ dynamics

20421312221231221222
12 exxKxxkxxqxxexxaSx xb    (3.2)

The instantaneous number of HIV-1 infected CD4+ T cells in the blood plasma of the patient
during the acute or chronic phase is equal to the rate of supply of HIV infected CD4+ T cells from
resting CD4+ T cells ( 2S ); plus the activation/proliferative recruitment of antigen activated and

interleukin-2 stimulated HIV-1 infected CD4+ T cells (
12

212
xbexxa 

);  plus the addition of the
HIV-1 infected CD4+ T cells ( 312 xx );less the number of CD4+ T cells lost by intra-specific

competition with HIV-1 uninfected CD4+ T cells( 212 xxq ); less the number of HIV-1 infected
CD4+ T cell lost by enzymatic degradation( 22 xk ) and less the number of HIV-1 infected CD4+ T

cells lost as a result of budding of newly produced virions( 31x ); less the number of HIV-1

infected CD4+ T cells lost by cytolytic action by HIV-1 specific CD8+ T cells( 421 xxK ) and less

the number of HIV-1 infected CD4+ T cells lost by apoptosis/exfoliative cytolytic death( 20e ).
The existence of the reservoirs for latently infected CD4+ T cells as depicted by S2 term is

explained in [32]. The existence of the term 421 xxK is due to the research data from [8, 23].

3.1.3 The blood plasma HIV-1 virion dynamics

30333133332233 exkxxxxxSx   (3.3)

The instantaneous number of HIV-1 virions in the blood plasma of the patient is equal to the rate

of supply of HIV-1 virions from the latently infected viral reservoirs ( 3S ); plus the number of

HIV-1 virions released from the syncytia of CD4+ T cells/dendritic cells/macrophages ( 322 xx );

plus the number of HIV-1 virions released from budding HIV-1 infected CD4+ T cells ( 33 x );

less the number of HIV-1 virions lost during infection of CD4+ T cells ( 313 xx ); less the number

of HIV-1 virions lost by enzymatic degradation/catabolism( 33 xk ) and less the number of HIV-1

virions lost in the form of unintegrated HIV-1 DNA molecules per provirus ( 30e ).  Also, the 30e
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term includes the HIV-1 infected CD4+ T cells which are no longer in the clone of uni-nucleated
CD4+ T cells due to the formation of multi-nucleated syncytia.

The inclusion of the ( 322 xx ) and ( 33 x ) terms account for the two mechanisms for HIV-1
virions production in the CD4+ T cells and dissemination into the blood plasma. In particular, it
has been demonstrated that HIV-1 induces cell-to-cell fusion with syncytia formation in some
AIDS patients. The syncytia conglomerate consists of both infected CD4+ cells and HIV-1
virions, which serve as an HIV-1 disseminating unit by the mechanism of virological synapse-
mediated cell adhesion and viral endocytosis, as discussed in [33, 34, 35]. These authors

concurred that the cell-to-cell-HIV-1 syncytia depicted by ( 322 xx ) is much more efficient
mechanism of HIV-1 infectivity as compared to the free virion mode of HIV-1 infectivity

represented by ( 33 x ).

3.1.4  The CD8+ T cells dynamics

404442241444
14 exkxxKexxaSx xb   (3.4)

The instantaneous number of HIV-1 specific CD8+ T cells is equal to the rate of supply the
thymus via hematopoietic progenitor cells; plus activation/proliferative recruitment of antigen

activated and interleukin-2 stimulated HIV-1 specific CD8+ T cells (
14

414
xbexxa 

); less the
number of CD8+ T cells lost during cytolysis of HIV-1 infected CD4+ T cells ( 422 xxK ); less the

number of HIV-1 specific CD8+ T cell lost by enzymatic degradation( 44 xk ); less the number of

HIV-1 specific CD8+ lost by apoptosis/exfoliative cytolytic death( 40e ).

3.2 The Cauchy Problem for Dynamics of HIV-1 during the Acute and Chronic
Phases

In this section, the initial value problem (Cauchy problem) for HIV-1 dynamics during the acute
and chronic phases will be mathematically analyzed and discussed with regard to well -
posedness, dissipativity of solutions, and invariance of non-negativity.

From the previous section, the mathematical model for HIV-1 dynamics during the acute and
chronic phases can be described in terms of the following deterministic, non-linear and coupled
ordinary differential equations. It is assumed that within certain biological limits the environment
of the interactions between the uninfected CD4+ T cells, HIV-1 infected CD4+ T cells, HIV-1
virions in the blood plasma, and HIV-1 specific CD8+ T cells is homogeneous, isotropic and
hence space independent. Thus ordinary differential equations can be used in the modeling. In the
future, mathematical models using partial differential equations, stochastic differential equations,
and delay differential equations will be presented. Thus the Cauchy problem is described by the
following system of equations:

(3.5)
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Let t0 be the time of the initial HIV-1 infection; and define tL, tP, repectively, as the time at which
the latency phase begins and the time at which the post latency phase of HIV-1 dynamics
commences in a patient. In particular, the phases [t0, tL],  [tL, tP] depict respectively the acute phase
and the chronic phase of primary HIV-1 induced AIDS.

3.3 Dissipativity and Boundedness of Solutions

In this subsection, the dissipativity of the model equations will be discussed.

Definition: Consider the autonomous system of ordinary differential equations:

}...,,2,1,0|{

),(,

)()(

0

00

nixx
CFandxxwhere

xtxxFx

i
n

i
n

nnn













(3.6)

Then the system (3.6) is dissipative if

In particular, the flow trajectories of the system are asymptotically uniformly bounded. For
dissipative systems, the existence of an interior equilibrium is a consequence of uniform
persistence, as discussed in [36-38]. Physiologically, the flow or output of a biological system is
dissipative if it is bounded such that the associated flow or output cannot exceed a certain
threshold or maximum value. Thus the physiological flow is homeostatically controlled by
processes such as cell degradation, exfoliation, apoptosis, loss of clonogenicity and
enzymatic/hormonal modulation. This guarantees that the solutions to the system of differential
equations of the model are ultimately bounded and exhibit invariance of non-negativity.

The invariance of non-negativity, ultimate boundedness of solutions and dissipativity of the model
equations will be shown as follows:

Let
(3.7)

Where tL is the time at which the latency phase begins. Similarly, tP is the time at which the post
latency phase of HIV-1 dynamics commences in a patient and the time beyond which full-blown
AIDS occurs.

Differential inequalities are constructed in an attempt to obtain upper bounds on the values of xi, i
= {1,2,3,4}, based on some critical physiological interactions that affect their dynamics. The
processes chosen in this model include the supply rates Si, the IL-2 activation rates ,
clonogenic biodegradation rates (kixi) and apoptotic degradation rates (ei0).

The system of differential equations (3.5) reduce to the following differential inequalities,
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for ],[ 0 pttt  :
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Using the Kamke comparison technique (see [39]), the differential inequalities lead to the
following theorem.

Theorem 3.1

Let
(3.9)
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Then all solutions of the initial value problem (3.5) that originate in int+
4 will eventually enter

the set of A, such that the solution will be non-negative, ultimately bounded and remain in A for
all t +.

Proof

The differential inequalities (3.8) can be used to obtain the following expressions:
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(3.11)

Thus the flow associated with the system (3.5) is dissipative and non-negatively invariant if Si +Ci
– ei0 > 0. In particular, the flow associated with the model equations (3.5) will eventually enter the
set A and remains trapped in A for t +, if xi0 int+

4.

3.4 Criteria for Persistence of HIV-1 Virions in the Chronic Phase

In this section, the criteria for the persistence of HIV-1 virions during the chronic phase will be
derived. The definition of persistence and uniform persistence used in this section is similar to
those elucidated in [36-38].

The differential equation for the HIV-1 patho- physiodynamics during the clinical chronic phase
is:

30333133233 )( exkxxxStx   (3.11)

where S3 is the reflux and repopulation rate of the plasma HIV-1 virions from the lymphoid tissue,
microgial cells, reticules-endothelial cells, monocytes/macrophages and other sanctuaries. e30 is a
constant degradation rate of HIV-1 virions. 2 is the “budding” rate constant of HIV-1 virions.

Let

(3.12)

and
0303 eS

30333133233 )( exkxLxStx   (3.13)

By solving (3.13) using Kamke’s comparison technique, as discussed in [39, 40], the following
inequality is obtained:
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(3.14)

where k is a positive constant.

In particular, the following theorems arise immediately:

Theorem 3.2

Suppose

(i) 0303 eS
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Then

0)(inflim
2133

303
3 





 Lk

eStx
(3.15)

Where H is a bounded positive number of subclinical value.  As a consequence, the number of
HIV-1 virions in the blood plasma of the AIDS patient during the chronic phase will exhibit
persistence. The patient will not develop full-blown AIDS if the value of H is such that the patient
does not experience immune system paralysis.

Theorem 3.3

Suppose
(i) 0303  eS

(ii) 02133   Lk (3.16)

(iii)









2133

3030
Lk
eS

where ε is a small positive number.

Then the blood plasma HIV-1 viral titre is negligibly subclinical and the AIDS patient has
insignificant HIV-1 RNA copies in the blood plasma during the chronic phase.

Theorem 3.4

Suppose

(i) 02133   Lk (3.17)

(ii) 0303 eS

Then the number of HIV-1 virions in the blood plasma increases exponentially. The HIV-1
positive patient will develop full-blown AIDS. Consequently, the patient will ultimately loose
immuno-competency and eventually die as a result of opportunistic infections.

4 Analyses of the Physiological Outcomes

The clinically significant equilibrium patho-physiological outcomes of HIV-1 dynamics during
the acute and chronic phases will be analyzed in this section using the principles of linearized
stability. The outcomes are called equilibrium points or rest points of the model equations. The
analyses will involve five clinically interesting equilibrium outcomes labeled {Ei: i =1, 2, 3, 4, 5}.
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
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4.1 Criteria for Existence of Physiological Outcomes

(i) E1 = [0, 0, 0, 0]: this represents the case in which uninfected CD4+ T cells, infected CD4+

T cells, HIV-1 virions in blood plasma, and HIV-1 specific CD8+ T cells are all
destroyed. This leads to the immune system paralysis in which the patient dies of
opportunistic bacteria or viral infections. This case is clinically feasible if Si - ei0 =0.

(ii) E2 = [ 1x̂ , 0, 0, 4x̂ ]: this represents the case in which infected CD4+ T cells and HIV-1
virions in blood plasma are all destroyed. Clinical doctors working with HIV-1 infected
patients would like to achieve this outcome. This equilibrium point is clinically possible
under the following necessary conditions:

(4.1)

(iii) E3 = [0, 2x , 3x , 0]: this depicts a clinically worst case situation in which both uninfected
CD4+ T cells and HIV-1 specific CD8+ T cells are destroyed. This equilibrium point is
clinically possible under the following necessary conditions:

(4.2)

(iv) E4 = [ 1
~x , 0, 0, 0]: this is the most clinically desirable equilibrium point in which infected

CD4+ T cells, plasma HIV-1 virions, and HIV-1 specific cytotoxic CD8+ T cells are all
annihilated. The necessary conditions for the existence of this equilibrium point are:

(4.3)

(v) E5 = [ 1x , 2x , 3x , 4x ]: this case can only exist if the equation (3.0) exhibits persistence
in which all the four factors co-exist. The details of showing persistence in nonlinear
systems of differential equations have been discussed in [39].

There are other equilibrium points such as E [x1, x2, 0, 0], E [0, 0, x3, x4] and many planar or axial
points. These are clinically uninteresting and are not considered in this paper, but will be analyzed
in a future paper.
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4.2 Linearized Stability Analysis of Physiological Outcomes

The Hartman-Grobman theorem ([40]) can be used to investigate the local physiological stability
of HIV-1 AIDS disease dynamics associated with the model equations, in the neighborhood of the
physiological outcomes (equilibrium states). The mathematical model is nonlinear and as such it is
difficult to obtain any meaningful quantitative criteria about the model. Fortunately, the Hartman-
Grobman theorem guarantees that the information contained in the linearized system and the
information contained the nonlinear system are equivalent in the neighborhood of the rest points.
The Jacobian matrix of linearization near any physiological outcome is denoted symbolically by

    ...,3,2,1)(: 44  kwhereMmEJ xijk (4.4)

4.2.1    Criteria for annihilation of HIV-1 virions during the acute and chronic phases

The Jacobian matrix of linearization in the neighborhood of E2 is given by the following matrix:
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The application of the principle of linearized stability and local stability theorems lead to the
following:

Theorem 4.1 Suppose

(i) 1
1

2ˆ
b

x 

(ii) 0ˆˆ 41
ˆ

12
12  xKexa xb

(iii) 33 k (4.6a)

(iv) 0ˆ 4
ˆ

14
12  kexa xb

Then the rest point ]ˆ,0,0,ˆ[ 412 xxE is local attractor. In particular, the HIV-1 infected CD4+ T
cells and the HIV-1 virions in the blood plasma of the AIDS patient are temporarily annihilated
during the acute and chronic phases in the absence of the pharmacotherapy.

Proof The eigen-values of the Jacobian matrix (4.5) are associated with the equilibrium points E2
are listed as follows:

(4.6b)

Using the principles of linearized stability as discussed in [20], it can be observed that the eigen-
values listed above are negative if the above conditions of (4.6a) hold.   

Theorem 4.2 Suppose the following conditions hold:

(i) 3

3

1
1

2ˆ




b

x

(ii) 1

ˆ
12

4

12ˆˆ
K
exax

xb


(4.7)

(iii) 4
ˆ

14
14ˆ kexa xb 

Then the local attractor E2 can be written in the following form:

]2,0,0,2[
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1
2

1
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E

b
b


(4.8)

Proof Using (4.6b) and setting

0ˆ2 11  xb and 0ˆ133  x


























4
ˆ

144

31333

41212
ˆ

122

1
ˆ

11111

14

12

11

ˆ

ˆ
ˆˆˆ

)ˆ2(ˆ

kexa

kx
xKkxqexa

kexbxa

xb

xb

xb










British Journal of Mathematics & Computer Science 4(11), 1450-1479, 2014

1463

For compatibility, (4.7)(i) is imposed. By implementing 0ˆˆ 41
ˆ

12
12  xKexa xb

in (4.6b), (4.7)(ii)
is obtained.

Observe that 4 in (4.6b) is negative if (4.7) (iii) holds. Hence, E2 is a local attractor under the
conditions specified in (4.7).

The clinical implication of Theorem 4.2

This result describes the transient annihilation of the HIV-1 virions and HIV-1 infected CD4+ T
cells occurs during the acute and chronic phases if CD4+ T cells and CD8+ T cells number

densities are given respectively by 1

2
b and 11

2
1
22

2
Kb
ea b

b

. In particular, the autocrine activation rate
function of CD4+ cells is given by

11
11111 ),( xbexxaxxg 

1
1

11
1

1

1 x
b

xx
b
a




The above equation is analogous to the Michaelis-Menten enzymatic-substrate activation reaction
rate function with

mK
b


1

1

Depicting the concentration of the CD4+ (x1) cells when the rate of autocrine actvation is half of
the maximum velocity and

max
1

1 V
b
a


depicting the maximum velocity of autocrine activation reaction of the CD4+ (x1) cells.

Thus, Condition (i) of Theorem 4.2 specifies that the necessary condition for annihilation of the
HIV-1 virions and the HIV-1 infected CD4+ cells is that twice the Michaelis-Menton constant for
the CD4+ cell activation must be equal to the ratio of the HIV-1 production rate to the rate of
infection of CD4+ cells by the HIV-1 virions.

When the conditions of Theorem 4.2 are violated, the HIV-1 positive person who is at the chronic
stage of HIV infection will develop full-blown AIDS as described in [41]. On the other hand, if
the conditions of Theorem 4.2 hold, the HIV-1 positive person will have stable chronic latency as
described in [32].
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Theorem 4.3 Suppose the conditions of Theorem 4.1 hold, and the following additional
conditions hold:

(i) 1
1

2ˆ
b

x 

(ii) 33 k

(iii)
22

2

2

2
1

1

)ln(1ˆ2 aqwhere
a
q

b
x

b


(4.9)

(iv) 4
ˆ

14
14ˆ kexa xb 

Then E2 is a local attractor.

Proof The eigen-values of the Jacobian matrix of linearization as shown in (4.5) imply that the
equilibrium E2 is a local attractor if the conditions in (4.9) hold. In particular, the condition (iii) of

(4.9) is derived as follows. From (4.6b), we have the condition 2
ˆ

2
12 qea xb 

, which gives

22
2

2

2
1 )ln(1ˆ aqwhere

a
q

b
x 

Combining these results will obtain the condition (iii). The conditions ((i) – (iv) guarantee that the
eigen-values are negative. Hence, E2 is a locally asymptotically stable and a local attractor.

Theorem 4.4 Suppose

(i)
2

4

1 
b
b

(ii) 0ˆˆ 41
ˆ

12
12  xKexa xb

(4.10)

(iii) 0ˆˆˆ 41212
ˆ

12
12  xKkxqexa xb

(iv) 0ˆ 3133  kx

Then the rest point ]ˆ,0,0,ˆ[ 412 xxE is local attractor. In particular, the HIV-1 infected CD4+ T
cells and the HIV-1 virions in the blood plasma of the AIDS patient are temporarily annihilated
during the acute and chronic phases in the absence of the pharmacotherapy.

Proof Using the Jacobian matrix (4.5), implementing (4.10)(i), and performing a Laplace

expansion by the pivot 12131111111
11)2( kxqxexbxam xb    , the eigen-values are

listed as follows after simplification.

It is obvious that all of them are negative if (4.10)
holds. Hence the equilibrium E2 is a local attractor.
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4.2.2 The criteria for transient immune system paralysis during the acute and chronic
phases of AIDS

One of the rest points corresponding the immune system paralysis during primary AIDS infection
is E3. The Jacobian matrix of the linearization of the model equations in the neighborhood of E3 is
given as follows:

(4.11)

The application of the principles of linearized stability gives the following result:

Theorem 4.5

Let
(i) 023322  kkx 

(ii) 0)( 33222321  kxkx  (4.12)

Then the rest point E3 is local attractor.

Proof Using the Jacobian matrix of linearization (4.11), the eigen-spectrum of associated with E3
is given by:

}0}]{det[|{)( 343  EJE 
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Then the Routh-Hurwitz criterion as described in [40] can be used to show that 43 ,  are
negative when conditions (4.12) (i) and (ii) hold. Under these conditions, E3 is a local attractor
The clinical implication of Theorem 4.5

The immune system of the AIDS patient is overwhelmed by transient immune system paralysis
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when the conditions (4.12) hold and the HIV-1 sero-positive will eventually develop full-blown
AIDS.

The analysis of other rest points will be done in a future publication.

4.3 Global Stability Analysis of Physiological Outcomes

In this section, theoretical criteria will be presented for global stability of the clinically desirable
physiological outcome ]ˆ,0,0,ˆ[ 412 xxE .

Consider space

The model equations (3.5) correspondingly reduce to the following:

(4.13)

Consider the Liapunov functional:

(4.14)

The derivative of V along the solution curves of the model equations yields the result:
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and define define A={aij}M2X2(R) such that
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Where XT denotes the transpose of X and
*

V is negative definite if the eigen-values of A have
negative real parts.

In particular, the [aij]2x2 are defined as follows:

(4.22)

As the flow dynamics approaches the steady state E2[x1, 0, 0, x4], the following conditions hold:

(4.23)
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(4.24)

Hence, the sufficient criteria for the global asymptotic stability of E2 are specified in the following
theorem.
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Theorem 4.6 Suppose the following conditions hold:

(i) Criterion (4.1)

(ii) 1

2
1ˆ bx 

(iii) 4

1
4ˆ bx 

Then the clinically desirable rest point E2 is a global attractor.

The clinical implication of Theorem 4.6

Theorem 4.6 gives alternatively to two criterions which are otherwise different from Theorems
4.1-4.4, which characterizes the local stability of equilibrium point E2 as a local attractor.
Condition (ii) maintains that the CD4+ T cells concentration must greater than or equal to twice of
the Michaelis-Menten constant for the autocrine process CD4+ T cell activation. Condition (iii)
requires that the cytotoxic T lymphocytes concentration must greater than or equal to the
Michaelis-Menten constant of the T lymphocytes activation by the CD4+ T cells. The AIDS
patient will experience permanent annihilation of the infected CD4+ T cells and HIV-1 virions in
the blood plasma if the patient’s patho-physio-dynamics conforms to the conditions specified in
the theorem.

5 Computer Simulation Results and Discussion

In this section, investigative computer simulations are performed under specific parametric
configurations. It must be stated emphatically that Theorems 4.1 – 4.4 are applicable only to the
equilibrium configurations {Ei: i =1, 2, 3, 4, …, n}. of the patho-physiodynamics of HIV-1 virus
in the AIDS patient. These theorems are “if…then…” theorems and as such are fulfilled only
when the AIDS dynamics attains the equilibrium configuration in the patient. In particular, there
exist certain sufficient but not necessary criteria under which the AIDS patient can experience
clinically favorable outcomes. On the other hand, under the specified conditions of Theorems 4.1-
4.4 the predicted results are valid. The simulation results are presented in Sections 5.1 through 5.4.
The time profile for the simulation is measured in years.

The problem of parameter estimation in mathematical modeling of physiological systems is a non-
trivial one. There is a quasi-uniqueness of patho-physio-dynamics of disease in the patient and as
such no two persons have identical physiological parametric configurations for a given disease.
These phenomena have been discussed in the publication [21]. Several techniques concerning
parameter estimation have been discussed by many authors in [11, 13, 15-17, 26, 32, 42].

Theorems 4.1-4.4, however, are based on equilibrium configurations of patho-physio-dynamics of
AIDS. Thus, the techniques presented in the above references must be modified in order to obtain
relevant estimates of the dynamical variables presented in this paper. In particular, in vitro and in
vivo experiments as well as human biopsies from the peripheral blood of the AIDS patient are
required in order to accurately determine most of the dynamical variables and constants of the
model. Simulations based on equilibrium dynamics of AIDS using ACSL (Advanced Continuous
Simulation Language) will be presented in a forthcoming paper.
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5.1 Simulation results for hypothetical AIDS patient #1

The hypothetical patient #1 possesses a non-equilibrium patho-physio-dynamics parametric
configuration P1 presented in Table 1. The HIV-1 dynamics in this patient represents the classic
profile for the acute and clinically chronic phases of AIDS. The simulation results for patient #1
are exhibited in Fig. 1. It can observed that the HIV-1 infected CD4+ T cells and the blood
plasmas HIV-1 virions are completely eradicated in this patient without the use of anti-AIDS
pharmaco-therapeutic drug protocols.  In addition, patient #1 experiences immune system
reconstitution as the uninfected CD4+ T cells repopulate and proliferate towards their pre-HIV-1
infection carrying capacities.

5.2 Simulation results for hypothetical AIDS patient #2

For this simulation, the hypothetical AIDS patient #2 is assigned the patho-physiological
parameter configuration presented in Table 2. As in the previous simulation, the configuration P2
does not depict an equilibrium configuration. The simulation results are exhibited in Fig. 2. It can
be observed that the patient does not have a clinically favorable prognosis. Because the disease
has apparently progressed beyond the time point characterized as tp , which is defined as the
threshold time for full-blown AIDS.  As presented in Fig. 2, the patient undergoes immune system
paralysis in which the CD4+ T cells transiently destroyed. On the other hand, the cytotoxic
activity of CD8+ T cells appears to be potent as observed in the eradication of the HIV-1 infected
CD4+ T cells. Paradoxically the plasma HIV-1 viremia increases exponentially in the patient
resulting in a more morbid AIDS outcome.

5.3 Simulation results for hypothetical AIDS patient #3

The patho-physiological parametric configuration of patient #3 is shown in Table 3. It must be
noted that the AIDS in this patient is in the acute phase and as such the simulation results span a
time period lasting up to one year. The results of the simulation are in Figure 3. This is a non-
equilibrium AIDS configuration simulation as it is evident by the simulation time profile. The
simulation results show that at the end of the acute phase, the AIDS patient experiences
annihilation of uninfected CD4+ T cells. In addition, the HIV-1 specific CD8+ T cells eradicate
successfully the HIV-1 infected CD4+ T cells. Unfortunately the immune system paralysis, which
occurs as a consequence of the low CD4+ T cell number density, eventually leads to an
exponential increase of the blood plasma HIV-1 viremia. This simulation represents an
unfavorable AIDS outcome during the acute phase.

5.4 Simulation results for hypothetical AIDS patient #4

The simulation results for hypothetical patient #4 are exhibited in Fig. 4. These simulation results
are based on the patho-physiological parametric configuration P4. In this patient the AIDS disease
progresses from the acute phase into a 6 year clinically chronic phase before the development of
full-blown AIDS.

5.5 Simulation results for hypothetical AIDS patient #5

This scenario represents a relatively favorable progression of AIDS in hypothetical patient #5. The
data for the simulation results are given in Table 5 and the simulation results are displayed in Fig.



British Journal of Mathematics & Computer Science 4(11), 1450-1479, 2014

1470

5. The patho-physiological parametric configuration of this patient does not represent an
equilibrium configuration and as such the condition of theorems 4.1-4.4 are not applicable. It can
be observed from the simulation results that the patient would develop full-blown AIDS
approximately after 10 years. On the other hand, the patient experiences relatively good immune-
competency from the beginning of the initial infection up to approximately 10 years before the
onset of full-blown AIDS.

5.6 Simulation results for hypothetical AIDS patient #6

The patho-physiological configuration of hypothetical patient #6 is given in Table 6. The
simulation results depict an AIDS scenario which progresses from the acute phase through a
relatively short chronic phase and heading towards the development of full-blown AIDS, as
shown in Figure 6. It can be observed also that from the time period between 0 to 4 years the
patient has sufficient immuno-competency as it is evident in the relatively higher dynamic number
density of the CD4+ T cells and the HIV-1 specific CD8+ T cells as compared to the low dynamic
number density of the HIV-1 infected CD4+ T cells and the blood plasma HIV-1 virions. Beyond
the period of 6 years, then blood plasma HIV-1 virion and the HIV-1 infected CD4+ T cells
number densities begin to rise as the patient heads towards the development of full-blown AIDS.

Fig. 1. Simulation results using parametric configuration 1
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Fig. 2. Simulation results using parametric configuration 2

Fig. 3. Simulation results using parametric configuration 3
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Fig. 4. Simulation results using parametric configuration 4

Fig. 5. Simulation results using parametric configuration 5
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Table 1. Parametric Configuration 1 (Absence of Syncytia 2 = 0)

S1 = 1.5 /day/l S2 = 0.85 /day/l S3 = 0.0 /day/l S4 = 0.272 /day/l
a1 = 0.009 /day/cell/l a2 = 0.004 /day/cell/l 2 = 0 virons/CD4+/day/l a4 = 0.0075 /day/cell/l
b1 = 0.001 /cell/l b2 = 0.004/cell/l 3 = 50 virons/CD4+/day b4 = 0.001/cell/l
α1 = 0.05/day/virion/l α2= 0.1/day/virion/l α3 = 0.0027/day/virion/l K2 = 0.0024 /day/l
k1 = 0.005/day/l k2 = 0.05/day/l k3 = 0.0001/day k4 = 0.001/day/l
q1 = 0.0045/day/l/cell q2 = 0.0001/day/l/cell e30 = 0.0001 /day e40 = 7.75 cells/day/l
e10 = 8.8 cells/day/l 1 = 50 virons/CD4+/day x30 = 0.01 cells/l x40 = 800 cells/l
x10 = 703 cells/l K1 = 0.001/day/ l

e20 = 0.005 cells/day/l
x20 = 100 cells/l

Table 2. Parametric Configuration 2

S1 = 1.5 /day/l S2 = 0.85 /day/l S3 = 10.5 /day/l S4 = 0.272 /day/l
a1 = 0.009 /day/cell/l a2 = 0.004 /day/cell/l 2 = 0.025   virons/CD4+/day/l a4 = 0.0075 /day/cell/l
b1 = 0.001 /cell/l b2 = 0.004/cell/l 3 = 51 virons/CD4+/day b4 = 0.001/cell/l
α1 = 0.05/day/virion/l α2= 0.1/day/virion/l α3 = 0.027/day/virion/l K2 = 0.0024 /day/l
k1 = 0.005/day/l k2 = 0.05/day/l k3 = 0.0001/day k4 = 0.08/day/l
q1 = 0.0045/day/l/cell q2 = 0.0001/day/l/cell e30 = 0.0001 /day e40 = 10.75 cells/day/
e10 = 8.8 cells/day/ l 1 = 51 virons/CD4+/day x30 = 5.5 cells/l x40 = 800 cells/l
x10 = 703 cells/l K1 = 0.001/day/l

e20 = 0.005 cells/day/l
x20 = 200 cells/l
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Table 3. Parametric Configuration 3

S1 = 1.5 /day/l S2 = 0.0 /day/l S3 = 0.0 /day/l S4 = 0.272 /day/l
a1 = 0.009 /day/cell/l a2 = 0.004 /day/cell/l 2 = 0.0 virons/CD4+/day/l a4 = 0.0075 /day/cell/l
b1 = 0.001 /cell/l b2 = 0.004/cell/l 3 = 10 virons/CD4+/day b4 = 0.001/cell/l
α1 = 0.05/day/virion/l α2= 0.1/day/virion/l α3 = 0 /day/virion/l K2 = 0.0024 /day/l
k1=0.005/day/l k2=0.05/day/l k3=0.0001/day k4=0.001/day/l
q1 = 0.0045/day/l/cell q2 = 0.0001/day/l/cell e30 = 0.0001 /day e40 = 7.75 cells/day/l
e10 = 8.8 cells/day/l 1 = 10 virons/CD4+/day x30 = 0.01 cells/l x40 = 800 cells/l
x10 = 703 cells/l K1 = 0.001/day/l

e20 = 0.005 cells/day/l
x20 = 100 cells/l

Table 4. Parametric Configuration 4

S1 = 1.5 /day/l S2 = 0.0 /day/l S3 = 0.0 /day/l S4 = 0.272 /day/l
a1 = 0..5 /day/cell/l a2 = 0.05 /day/cell/l 2 = 0.0001  virons/CD4+/day/l a4 = 0.0075 /day/cell/l
b1 = 0.001 /cell/l b2 = 0.004/cell/l 3 = 2 virons/CD4+/day b4 = 0.001/cell/l
α1 = 0.05/day/virion/l α2= 0.5/day/virion/l α3 = 0.0001/day/virion/l K2 = 0.0024 /day/l
k1 = 0.005/day/l k2 = 0.05/day/l k3 = 0.0001/day k4 = 0.08/day/l
q1 = 0.0045/day/l/cell q2 = 0.0001/day/l/cell e30 = 0.0001 /day e40 = 7.75 cells/day/l
e10 = 8.8 cells/day/l 1 = 2 virons/CD4+/day x30 = 0.01 cells/l x40 = 800 cells/l
x10 = 703 cells/l K1 = 0.001/day/l

e20 = 0.005 cells/day/l
x20 = 100 cells/l



British Journal of Mathematics & Computer Science 4(11), 1450-1479, 2014

1475

Table 5. Parametric Configuration 5

S1 = 1.5 /day/l S2 = 0.0 /day/l S3 = 0.0 /day/l S4 = 0.272 /day/l
a1 = 2.5 /day/cell/l a2 = 0.05 /day/cell/l 2 = 0.0001   virons/CD4+/day/l a4 = 4.0 /day/cell/l
b1 = 0.001 /cell/l b2 = 0.004/cell/l 3 = 2 virons/CD4+/day b4 = 0.001/cell/l
α1 = 0.05/day/virion/l α2= 0.5/day/virion/l α3 = 0.0001/day/virion/l K2 = 0.0024 /day/l
k1 = 0.005/day/l k2 = 0.05/day/l k3 = 0.0001/day k4 = 0.001/day/l
q1 = 0.0045/day/l/cell q2 = 0.0001/day/l/cell e30 = 0.0001 /day e40 = 7.75 cells/day/l
e10 = 8.8 cells/day/l 1 = 2 virons/CD4+/day x30 = 0.01 cells/l x40 = 800 cells/l
x10 = 703 cells/l K1 = 0.001/day/l

e20 = 0.005 cells/day/l
x20 = 100 cells/l

Table 6. Parametric Configuration 6

S1 = 1.5 /day/l S2 = 0.0 /day/l S3 = 0.0 /day/l S4 = 0.272 /day/l
a1 = 1.5 /day/cell/l a2 = 0.05 /day/cell/l 2 = 0.0001    virons/CD4+/day/l a4 = 3.0 /day/cell/l
b1 = 0.001 /cell/l b2 = 0.004/cell/l 3 = 2 virons/CD4+/day b4 = 0.001/cell/l
α1 = 0.05/day/virion/l α2= 0.5/day/virion/l α3 = 0.0001/day/virion/l K2 = 0.0024 /day/l
k1 = 0.005/day/l k2 = 0.05/day/l k3 = 0.0001/day k4 = 0.001/day/l
q1 = 0.0045/day/l/cell q2 = 0.0001/day/l/cell e30 = 0.0001 /day e40 = 7.75 cells/day/l
e10 = 8.8 cells/day/l 1 = 2 virons/CD4+/day x30 = 0.01 cells/l x40 = 800 cells/l
x10 = 703 cells/l K1 = 0.001/day/l

e20 = 0.005 cells/day/l
x20 = 100 cells/l
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Fig. 6. Simulation results using parametric configuration 6

6 Summarizing Remarks

In this paper, we have constructed a generalized and plausible mathematical model of HIV-1
dynamics during the acute and chronic phases. The special contribution of this model is the
inclusion of explicit role of source terms S1, S2, S3, S4, which depict recruitment from the thymus
gland and the HIV-1 viral reservoirs. Also, clinically relevant activation functions describing the
action of IL-2 on the T cells are also included in the model equations. The activation functions are
mathematical analogues of biological processes of autocrine and paracrine activations. It has been
demonstrated that the activation function is comparable to the Michaelis-Menten kinetic function
after the parameter re-calibration. The conditions for existence of the clinical outcomes are clearly
exhibited in terms of biologically quantifiable and clinically measurable parameters. In particular,
the simulation results depict the scenario of chronic asymptomatic HIV-1 infection during chronic
latency phase in which the infected CD4+ T cells and the plasma, viremia are annihilated. The
results elucidate and exhibit additional details of HIV-1 dynamics compared to the cited literature.
The criteria under which HIV-1 sero-positive person will remain indefinitely in the chronic phase
are stated and proved in Theorems 4.1-4.4 and 4.6. In addition, it has been shown in Theorem 4.5
that HIV-1 virions can under certain necessary and sufficient conditions can annihilate CD4+ T
cells, leading to manifestation of full-blown AIDS. In a future publication, additional computer
simulations will be presented elucidating Theorems 4.1-4.6.
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