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A novel hybrid deep learning architecture for predicting 
acute kidney injury using patient record data and 
ultrasound kidney images
Sophia Shi

Department of Science, Dougherty Valley High School, San Ramon, CA, USA

ABSTRACT
Acute kidney injury (AKI) is a sudden onset of kidney damage. 
Currently, there is no hybrid model predicting AKI that takes 
advantage of two types of data. In this research, a novel hybrid 
deep learning architecture for AKI prediction was created using 
de-identified numeric patient data and ultrasound kidney 
images. Using data features including serum creatinine among 
others, two numeric models using MIMIC-III and paired hospital 
data were developed, and with the hospital ultrasounds, an 
image-only model was developed. Convolutional neural net
works (CNN) were used, including VGG and Resnet, and they 
were made into a hybrid model by concatenating feature maps 
of both types of models to create a new input. The hybrid model 
successfully predicted AKI and the highest AUROC of the model 
was 0.953, the first time an AKI machine learning model sur
passed an AUROC of 0.9. The model also achieved an accuracy 
of 90% and F1-score of 0.91. This model can be implemented 
into urgent clinical settings such as the ICU and aid doctors by 
assessing the risk of AKI shortly after the patient’s admission to 
the ICU. The implementation of this research has great potential 
to be applied to different medical predictive applications.

ARTICLE HISTORY 
Received 10 May 2021  
Revised 16 August 2021  
Accepted 27 August 2021  

Introduction

Acute kidney injury (AKI) is a sudden onset of kidney damage that happens 
within a few hours or days when damaged kidneys are unable to filter waste 
products from the blood (Makris and Spanou 2016). AKI is usually an 
unexpected episode that is hard for doctors to predict if no occurrences of it 
have happened before. Due to its unforeseeability and consequences, AKI is 
hard to prepare for and prevent. Once AKI begins, critical care is needed as the 
disease can be fatal and requires immediate attention, so diagnosis of the 
condition needs to be performed quickly and accurately. The majority of 
cases are emergencies that require hospitalization and intensive care unit 
(ICU) care (Chertow et al. 2005, November 1). In fact, in the ICU, AKI patient 
mortality rate often exceeds 60%. AKI alone in the United States costs more 
than $10 billion in annual health expenditures (Silver et al. 2017).
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Currently, there is no concrete way to predict future AKI; in clinical practice, 
doctors can only diagnose it when it has already occurred (18). Doctors perform 
diagnoses with a variety of data points, including both existing numeric labora
tory data and medical images. Generally, doctors use only numeric data for 
detecting AKI because ultrasound images are more expensive to obtain. Thus, 
ultrasound images are used for more severe cases and for finding the cause of the 
AKI. Some types of numeric laboratory measurements include serum creatinine 
(SCr), blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), 
ultrasound kidney images, and biopsies. As shown in Figure 1, (A) shows an 
ultrasound of a healthy kidney and (B) shows an ultrasound of the same kidney 
but with AKI, both ultrasounds with labeled kidney lengths and parenchymal 
thicknesses. (B) is 2.5 cm longer in kidney length compared to (A) and is 0.4 cm 
thicker than (A) in parenchymal thickness. Increased kidney length (red) is 
a sign of AKI, as it is an indicator of increased renal volume (Faubel et al. 2014, 
February 7). Greater parenchymal thickness (green) is also an indication of AKI. 
These two symptoms seen in ultrasounds are some of AKI’s indicators, but there 
are many more, such as the echogenicity of an ultrasound which is shown by 
lightness or darkness in the ultrasound.

Previous Related Research

Many recent studies have applied machine learning to medical issues, such as 
disease detection or prediction, due to the greater performance of machine 
learning models than humans (Litjens et al. 2017, July 26). A deep learning 
approach (LeCun, Bengio, and Hinton 2015, May 27) to predict acute kidney 
injury is efficient due to the deep learning model’s ability to learn from more 
patient cases than what an average nephrologist is able to encounter in 
a lifetime. After training, this hybrid deep learning model would have more 
experience than a doctor, and can be more accurate when making AKI 
predictions.

Figure 1. Ultrasound images of a healthy kidney (A) and a kidney with AKI (B). Kidney length (red) 
and parenchymal thickness (green) are shown and are some AKI indicators.
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For example, Mohamadlou et al. predicted AKI using the machine learning 
method of boosted ensembles of decision trees and electronic health record 
numerical data from the MIMIC-III dataset of Stanford Medical Center and 
Beth Israel Deaconess Medical Center data (Mohamadlou et al. 2018). They 
concluded that a machine learning AKI prediction tool can determine which 
patients are likely to suffer from AKI and can allow doctors to start prevention 
of kidney damage before it is too late. Their machine learning algorithm 
outperformed the commonly used SOFA score’s specificity and accuracy 
with only the use of 6 common patient measurements. Another research 
paper by Tomašev et al. from DeepMind featured a recurrent neural network 
(RNN) model that could continuously predict AKI up to 48 hours in advance 
using electronic health record data (Tomašev, Glorot, and Rae et al. 2019). 
They had a special curated dataset consisting of 315 base features of demo
graphics, admission information, vitals, certain lab test results, and chronic 
conditions associated with higher risk of AKI. Their model had confidence 
assessments and provided the clinical features that contributed most to each 
prediction. Also using neural networks in their research, Kuo et al. reported 
a convolutional neural network (CNN) model that used ultrasound kidney 
images to predict chronic kidney disease (CKD) (Kuo et al. 2019). They 
predicted creatinine-based eGFR using CNNs and classified ultrasound 
images for CKD using extreme gradient-boosting trees. The model had classi
fication accuracy of 85.6%, higher than that of experienced nephrologists 
(60.3–80.1%).

Clearly, significant progress in AKI machine learning has been made by the 
different research groups mentioned above. However, all of the previous 
papers are based on one type of kidney data to predict kidney disease. For 
AKI, there is not yet an ultrasound image data model made yet, most likely due 
to limited datasets. Previously published research papers that predict AKI with 
machine or deep learning all employ a single data type model, either one that 
only inputs health record data or only kidney images, so a hybrid model using 
both data types has not been proposed before. The reason could again be due 
to the lack of paired datasets available.

In summary, all previous reports of machine learning models for pre
dicting AKI so far are based on only numeric data, not image data. 
However, in this research, not only is numeric data used, but the research 
also explores using image data to predict AKI. Noting the success of Kuo’s 
CNN image classifier model for CKD, a CNN image classification model 
was chosen. So far, there is no CNN model for predicting AKI, though there 
is an RNN using numeric data by Tomašev et al. In addition, this research 
combines both numeric data and image data in a hybrid prediction model 
that should be more accurate than any one type of model individually and 
reflects the situation of a real diagnosis performed by doctors, which brings 
the accuracy of this predictor higher due to its simulation of a real 
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procedure. The hybrid model uses CNN for each individual model, which 
are combined into a hybrid model by concatenating feature maps of each 
model to create a new input. This enters another CNN block and then two 
fully connected layers, ending in a binary output after running through 
a Softmax function.

Materials and Methods

Databases

This work involves a hybrid model that requires two types of clinical patient 
data, numeric and image data. However, there were no such paired datasets of 
AKI patients available in existing databases, so paired data was obtained 
directly from hospitals. To increase the sample size of the data, more numer
ical data from the MIMIC-III (Medical Information Mart for Intensive Care 
III) Database were used. MIMIC is a de-identified, comprehensive database of 
Beth Israel Deaconess Medical Center (Boston, MA) patient data from 
PhysioNet, a repository managed by the MIT Laboratory for Computational 
Physiology (Johnson et al. 2016). Access to the database was obtained after 
completing a required CITI data ethics course and requesting access to 
Physionet. From this database, Google BigQuery and SQL scripts were used 
to query from data tables within the MIMIC dataset because the database was 
made available for use in BigQuery by the creators. The 16 specific blood 
biomarkers, vital signs, and demographic data elements extracted for the data 
features input vector (baseline characteristics) were age, height, weight, BMI 
group, systolic and diastolic blood pressure, heart rate, respiratory rate, tem
perature, Glasgow Coma Scale (GCS), serum creatinine (SCr), blood SO2, 
hemoglobin, blood urea nitrogen (BUN), blood bicarbonate, magnesium, and 
sodium. Only data from patients’ initial admission into the ICU were used, 
since the goal was to predict AKI from the start of the ICU stay, before the 
onset of AKI so that doctors can take preventative measures. Subject_id and 
icustay_id were used to organize together different data points of the same 
patient’s ICU admission. The resulting patient cohort that fit all the require
ments included 2,532 patients. From the Beijing Hospital of the Ministry of 
Health in China (BJHMOH), access to data was requested and a paired dataset 
of 612 de-identified ultrasound kidney images and corresponding numeric 
patient laboratory measurements were obtained (Jiang et al. 2019). The images 
included 306 positive AKI images and 306 negative AKI images collected in 
2016–2020. The ultrasounds of kidneys were cropped so that any unnecessary 
elements were omitted (some had extra labels and names of the machine e.g. 
Toshiba). All images were resized to the same resolution of 224 × 224 pixels 
and made grayscale. In this research, the dataset division was 80% for training 
and 20% for testing.
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In order to further externally validate the model performance in a real 
clinical environment, clinical data was used to test the hybrid model. This 
raw clinical data was obtained from a different hospital clinic than the data 
used to train and test the model. Two hundred paired patient data cases were 
received from the Third People’s Hospital of Shenzhen (PHSZ) in China after 
approval (Tan et al. 2020, October 15). Although more data are preferred, due 
to hospital limitations, only 200 paired datasets were available at this time. 
Table 1 shows some characteristics of the three datasets used.

For the gold standard of AKI, serum creatinine was used to determine AKI- 
positive patients. The change of a patient’s serum creatinine levels were 
measured, using the initial ICU admission serum creatinine as the baseline. 
According to Kidney Disease: Improving Global Outcomes (KDIGO) guide
lines, AKI is defined as an increase in serum creatinine by 0.3 mg/dl within 
48 hours, or an increase in serum creatinine to 1.5 times the baseline amount 
within 7 days (Khwaja 2012).

Deep Learning Model Development

As shown in Figure 2, the research procedure involved obtaining data, pre
processing data, building, training, validating, and testing both numeric and 
image data models and finally the hybrid model, as well as clinically verifying 
and testing the hybrid model with different data from the model training data.

Table 1. Summary of dataset characteristics of the three datasets used in this 
research.

Dataset Characteristics MIMIC BJHMOH PHSZ (Validation)

Total Sample Size 2532 612 200
Training Size 80% 80% – –
Testing Size 20% 20% 100%
AKI Negative 917 306 81
AKI Positive 1615 306 119

Figure 2. Procedure of the proposed research flow including five major steps: 1. dataset selection 
and access; 2. data preprocessing of two data formats; 3. single data type model development; 4. 
hybrid model development; and 5. clinical verification.
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In this research, three types of models were created: a numeric data model 
based on numeric data, image data model, and a hybrid model. Four modules 
were tested to be able to compare the hybrid model results to single-data-type 
modules and determine if the hybrid model is more effective than a single-data 
-type module. Module 1 tested only numeric data only from MIMIC. Module 
2 tested only numeric data only from the Beijing Hospital. Module 3 tested 
only image data from the Beijing Hospital. Module 4 tested both numeric and 
image data with paired datasets from the Beijing Hospital.

Numeric Data Model

The numeric data model was designed by trying both the open-source Visual 
Geometry Group Network (VGG) and Residual Network (ResNet) neural 
networks (He et al. 2015, December 10; Simonyan and Zisserman 2015, 
April 10). Based on previous research, ResNet-34 was used for its high 
accuracy and its shorter training time. VGG-16 was used for high accuracy 
compared to other networks such as GoogLeNet and was easy to find open- 
source code and implement. The dataset was trained on both ResNet and VGG 
individually, and ResNet ended up performing much better than VGG. Thus, 
ResNet was the only neural network used for the final numeric data model.

Image Data Model

For the image data model, only ResNet-50 was selected due to its known high 
accuracy and performance with image data. In this work, it was not necessary 
to add in another neural network for ensemble learning because ResNet has 
a very high performance ability when the input features are images, so much 
that adding another neural network would improve the performance trivially 
at best. In each of the three models created, 5-fold cross-validation was used, 
which is a resampling technique that splits up the data to verify the models’ 
generalization abilities and avoid overfitting. Additionally, batch normaliza
tion in each layer was performed prior to a 2D CNN block to stabilize the 
input distribution of each layer by decreasing covariate shift, which makes 
cross-validation less biased.

Through Resnet-50 CNN visualization by optimizing pixel values, it is 
valuable to be able to understand the process of CNN recognizing specific 
patterns in images and how the CNN understands image features. Shown in 
Figure 3, the response of each ResNet network layer to ultrasound images 
show that the low-level response feature map focuses on different details in the 
image, while high-dimensional features are local and sparse, which can elim
inate irrelevant content and extract important features of the target. As the 
colors become more saturated, the features become more and more obvious, 
showing that as the number of network filter layers deepens, the learned 
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features become more and more representative of specific details of the image, 
highlighting the feature activation locations. Knowing the internal workings of 
CNN also helped debug the failures and errors of the image model. Visualizing 
the process of CNN learning is helpful in clarifying deep learning as a “black 
box,” especially for important medical disease prediction that can affect 
patient outcomes and impact patient mortality.

Hybrid Model

The proposed hybrid model used 18 input data features including ultrasound 
kidney images, age, height, weight, BMI group, systolic and diastolic blood 
pressure, heart rate, respiratory rate, temperature, GCS, SCr, blood SO2, BUN, 
hemoglobin, blood bicarbonate, magnesium, and sodium. To make the hybrid 
model, two types of data models were fully integrated to achieve good perfor
mance and simulate a doctor diagnosing AKI. This hybrid model is flexible and 
can predict AKI based on data availability, such as only using numeric or only 
image data. As shown in Figure 4, each individual data type model was combined 
into a hybrid model by concatenating feature maps of each model to create a new 
input. This enters another CNN block and then two fully connected layers, 
ending in a binary output after running through Softmax. The fully connected 
layers compute class scores and compile results from the CNN block to form the 
final output, which enters Softmax, a function that turns the fully connected 
layers’ logits output into decimal probabilities. Since Softmax outputs decimal 
probabilities that add up to 1, in this case there are two classes: positive AKI and 
negative AKI. To make the result more definite and easier to assess the model’s 
performance, additional code for post-processing results determined that if the 
probability is less than 0.50, then the patient will not suffer from AKI in the ICU. 
If the probability is greater or equal to 0.50, then the patient will suffer from AKI 
in the ICU. Thus, the final output is a binary classification of whether or not the 

Figure 3. Computer-generated images of ultrasound kidney images using different convolutional 
filters. (A), (B), and (C) are the images after convolutional filters 12, 30, and 48, respectively. The 
deeper the number of network filter layers, the more saturated the colors and the more obvious 
the features.
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patient will suffer from AKI after ICU admission. In a clinical setting, the model 
can still output a percentage probability of a patient getting AKI in the future 
without the additional post-processing code, which can be more useful for 
doctors than a strictly positive or negative result.

One major challenge was deciding the number of and the most sensitive and 
specific data features to include. This was resolved by consulting with 
a nephrologist to determine 17 features that are the most manifested in AKI to 
extract the most useful features from the numeric data. Another major challenge 
was trying to improve the accuracy of the image recognition model. To do that, 
the image data was enhanced by making the ultrasound images uniform in format. 
The images were flipped into the same orientation, unnecessary words cropped 
out, and brightened. The model was also improved with dropout to prevent 
overfitting and increase its generalization ability. ResNet-50 was used for the 
image model instead of VGG, because it has more network layers and is more 
accurate than VGG. The greater number of hidden layers solves the problem of 
gradient attenuation. The last major challenge during research was the difficulty in 
implementing different data types in a single hybrid model. Our approach was to 
input both data types into separate models, building models using different 
algorithms, and then merging the output from each algorithm. Weights were fine- 
tuned in both the layers before fusion and after fusion. After fusion, CNN 
continued to be used to find joint features of the individual outputs to output 
a final result.

Figure 4. Proposed hybrid deep learning model architecture using both numeric data and image 
data.
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Results and Discussion

As mentioned earlier, three types of deep learning models were created in 
order to evaluate different types of data’s effects on model performance. First, 
ResNet models were developed by using numeric-formatted data for Model 1. 
Secondly, a ResNet model was developed using image data, Model 2. Finally, 
a hybrid model was proposed and developed using paired numeric and image 
data, Model 3. In this research, three models (numeric, image, and hybrid) 
were designed and four modules (MIMIC numeric data, BJHMOH numeric 
data, BJHMOH image data, and BJHMOH paired numeric and image data
sets) were tested in order to compare the hybrid model results to single-data- 
type modules and determine if the hybrid model is more effective than 
a single-data-type module. Table 2 shows the summary of the four modules 
and compares the results of all four modules that used different data sources. 
Different performance metrics were used, including area under receiver oper
ating characteristic (AUROC), precision, recall, and F1-score. As seen in Table 
2, the AUROC of the hybrid model was 0.953. This is the highest AUROC of 
all the modules, since the AUROCs of Modules 1, 2, 3, and 4 were 0.917, 0.910, 
0.931, and 0.953 respectively, indicating that compared to numeric and image 
data models, the hybrid model (Module 4) is the best-performing. This also 
goes for the other evaluation metrics, recall and F1-score, because Module 4 
has a recall of 0.956, greater than the other three recall values of Modules 1, 2, 
and 3, which were 0.882, 0.894, and 0.907 respectively. The hybrid model’s F1- 
score was also highest at 0.961, greater than the other modules’ F1-scores of 
0.869, 0.916, and 0.926 respective to module number. The results of the tests of 
the different module types indicate that the hybrid model compared to sin
gular data type models (Modules 1, 2, 3) has higher recall and has higher 
performance. Though the hybrid model (Module 4) has higher recall, F1- 
score, and AUROC, it has a lower precision of 0.928 compared to the Module 3 
precision of 0.936. This does not have a great impact on the effectiveness of the 
hybrid model though. The high recall indicates that the hybrid model is 
capable of mostly correctly identifying true positives and avoiding false nega
tives, which matters more than the precision because the cost of a false 
negative far outweighs that of a false positive in a medical predictive situation. 
Thus, the hybrid model is better than any one of the single-data-type models.

Table 2. Summary of comparison of test set performance metrics of the four modules.
Module Type Model Type Data Type AUROC Precision Recall F1-Score

Module 1 Numeric Data Model Numeric from MIMIC 0.917 0.904 0.882 0.869
Module 2 Numeric Data Model Numeric from BJHMOH 0.910 0.903 0.894 0.916
Module 3 Image Data Model Image from BJHMOH 0.931 0.936 0.907 0.925
Module 4 Hybrid Model Numeric and Image 0.953 0.928 0.956 0.961
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After comparing the hybrid model to other types of data type models, the 
hybrid model’s specific individual performance results in Table 3 can be 
discussed alone. The hybrid model (Module 4)’s test set results have high 
AUROC meaning it has high performance and is effective in predicting AKI 
with two types of data. It also has high accuracy, 0.90 as shown in Table 3, 
indicating the model can also correctly predict AKI. Figure 5 shows the hybrid 
model’s sensitivity vs. specificity and the high AUROC of 0.953. As specificity 
increases, sensitivity of the model also increases. In Figure 6, the hybrid 
model’s precision vs. recall indicates that the model has both less false nega
tives and false positives due to its high recall and precision. It is a graphical 
representation of the higher recall and lower precision as mentioned pre
viously. Next, Figure 7 shows that the model is not overfitted and is appro
priately fitted to the training data. Proper fitting of the model to the training 
data ensures that the model can run other datasets just as well as the original 

Table 3. Summary of breakdown of performance metrics of Module 4 in 
Table 2.

Evaluation Metric Training Set Validation Set Test Set

AUROC N/A N/A 0.953
Loss 0.10 0.24 0.18
Accuracy 0.94 0.90 0.90
Precision 0.95 0.90 0.92
Recall 0.93 0.90 0.90
F1-Score 0.96 0.91 0.91

Figure 5. Graph of sensitivity vs. specificity for Module 4.
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Figure 6. Graph of precision vs. recall for Module 4 showing the high precision and recall.

Figure 7. Graph of loss vs. epoch for Module 4 showing the training and validation losses and no 
overfitting.
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training data, and is not molded too closely with the training data. This way, it 
can accommodate other data from different clinics and still have a generally 
high performance.

This proposed research has also been compared with previous research 
models, specifically Li et al., Pan et al., and Mohamadlou et al. in Table 4, 
who all have created high-performing and accurate models with competitive 
test results. As seen in Table 4, the proposed hybrid method has 
a comparatively high AUROC of 0.953, while the best AUROC out of the 
other 3 models from the previous research in Table 4 is 0.893. The difference in 
AUROC is 0.060, which is significant. The difference in performance is due to 
the use of two types of data to predict AKI, rather than only using one type of 
data, such as numeric. Additionally, the reason why the single data type 
models in this research also have higher AUROC than the models from 
previous research studies is most likely due to the use of better-performing 
CNN instead of logistic regression, decision trees, or RNN.

In previous research, Li et al. used patient age, gender, race, ethnicity, 
clinical notes during the first 24 hours of ICU admission (processed with 
word embedding), and 72-hour SCr after admission as data features for its 
input (Li et al. 9). They ended with an AUROC of 0.783 using a logistic 
regression model. Another research study, by Mohamadlou et al., used heart 
rate, respiratory rate, temperature, SCr, GCS, and age in a decision trees 
machine learning model and had an AUROC of 0.878. In this way, 
Mohamadlou et al. achieved high AUROC with only 6 numeric data features, 

Table 4. Summary of comparison of proposed test set results with previously reported model 
results.

References

Number of 
Data Input 

Features Data Features of Input Vector Model Type AUROC

Mohamadlou 
et al.9

6 (MIMIC data) Heart rate, respiratory rate, temperature, SCr, 
GCS, age

Decision Trees 0.878

Li et al.6 Not Specified Patient age, gender, race/ethnicity, clinical 
notes during the first 24 hours of ICU 
admission (processed with word 
embedding), 72-hour SCr after admission

Gradient boosting 
decision trees

0.779

Pan et al.10 51 Age, gender, 24 comorbidities, 4 vital signs, 
16 lab measurements, urine output, fluid 
balance and 4 interventions

Recurrent Neural 
Networks

0.893

Proposed 
Numeric 
Data Model 
(MIMIC)

17 Age, height, weight, BMI group, systolic, 
diastolic blood pressure, heart rate, 
respiratory rate, temperature, GCS, SCr, 
blood SO2, BUN, hemoglobin, blood 
bicarbonate, magnesium, sodium

Convolutional Neural 
Networks

0.917

Proposed 
Image Data 
Model 
(BJHMOH)

1 Ultrasound kidney images Convolutional Neural 
Networks

0.931

Proposed 
Novel Hybrid 
Method

18 Ultrasound kidney images and those of the 
numeric data model in the previous row

Convolutional Neural 
Networks using 
numeric and image 
data

0.953
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and their success may be due to the greater number of patient cases in the 
MIMIC database with these 6 features, allowing the model to learn from more 
data. Upgrading the method of the model, another work of research by Pan 
et al. used a lot of numeric data input features (51) and RNN instead of older 
machine learning methods, which most likely caused their model to have the 
highest performance out of these three previous models (Pan et al. 2019). 
Compared to those results mentioned above, the hybrid model in this research 
is more precise and has higher AUROC and can be more realistically imple
mented into clinical settings because it considers both numeric data types 
including blood biomarkers, vital signs, and demographics as well as ultra
sound kidney images. To the best of our knowledge, so far there have been no 
research reports of an AUROC for an AKI predictor model that has surpassed 
0.90. A reason that the hybrid model is better than the single-data-type 
modules could be due to the image data providing more features than the 
numeric data alone. Usually, larger quantities of data are better for deep 
learning algorithms. And though imaging may be expensive, the image data 
could also help pinpoint some potential causes of a patient’s AKI. This 
research shows that the proposed hybrid model has the potential to be 
employed in a hospital urgent care or ICU setting due to its advantages of 
fully utilizing two forms of clinical data to predict AKI.

Finally, external validation of the model performance was done using the 
clinical data from the Third People’s Hospital of Shenzhen (PHSZ). Then, the 
200 cases of raw data were formatted and processed in the same way as the 
original data for training the model as shown in Figure 8. This data was 
imported to the model and tested, and the results of the test were collected 
and then evaluated with the same metrics used for the original data for 
training the model. Results of the test set for clinical verification are summar
ized in Table 5. The clinical verification test shows that the hybrid model can 
successfully predict AKI using paired datasets from a different hospital than 
the data used to train the model, as shown by the AUROC of 0.933 in Figure 9, 
although most of the metrics, such as accuracy and F1-Score, indicate rela
tively weaker performance than the test from the original data used for 
training the data. Compared to the original data used to train the model, the 
test results of this verification data is slightly lower, with an AUROC of 0.933 
instead of 0.953. This testing dataset uses the model built previously, so the 
results of this testing dataset should be and was approximately close to the 
original data test results.

The model developed in this research can accurately predict risk of AKI in 
an urgent care setting, such as the ICU, where it is busy and stressful, so 
doctors can use this model as a supplement to prognosis. Since it is 
a prediction tool, doctors would know the severity of AKI risk and whether 
they should be especially aware of signs of AKI developing so as to prevent it 
from causing too much severe kidney damage. This would extend a patient’s 
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life expectancy relative to a patient who has had AKI discovered when the 
disease already started. Since the AKI patient mortality rate in the ICU is very 
high, 60%, using this predictive model to save the life of a patient who might 
have gotten AKI is beneficial. This hybrid model uses initial data collected at 
the time of a patient’s admission to the ICU, meaning that the model is able to 
output a prediction as soon as the patient enters the ICU, instead of having to 
wait 48 or 72 hours after admission to the ICU. Past research papers featured 
models that only used data collected 48 or 72 hours (2–3 days) after a patient is 
admitted to the ICU because their data included tracking the changing levels 
of serum creatinine. By this time, it is already too late to predict AKI because 
it’s possible the model is just diagnosing AKI since the disease and symptoms 
may have already started. It is difficult for doctors to foresee when or if patients 
will have acute kidney injury because it is always sudden and often unex
pected. Thus, this noninvasive hybrid approach to predicting AKI can be 
applied in urgent clinical practice. Though at this point, we are aware that 
the data we used is the only available data we have access to. In the future, we 
will try to continuously further validate our model using more data.

Figure 8. Sample of 128 ultrasound kidney images used for clinical verification of the proposed 
hybrid model.

Table 5. Summary of hybrid model 
test results using clinical data from 
PHSZ.

Evaluation Metric Test Results

AUROC 0.933
Loss 0.19
Acuracy 0.89
Precision 0.91
Recall 0.90
F1-Score 0.88
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Conclusions

The proposed hybrid CNN model can accurately predict AKI in adult patients 
from both databases and in clinical trials, although clinical datasets are limited 
at the moment. The hybrid model performance results clearly indicate that the 
hybrid model is more effective than an individual numeric or image CNN 
model. This is because the hybrid model integrates image classification 
together with a traditional numeric model to output a more reliable result 
based on multiple types of data, instead of just numeric values seen in previous 
papers. The resulting AUROC of the hybrid model reached 0.953, indicating 
that the hybrid model is effective and has a significant advantage over tradi
tional numeric models. For further development of this research, the hybrid 
model will be continuously optimized using a larger clinical database with 
paired datasets. The implementation of this research has great potential to be 
applied to different medical predictive applications.
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