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Abstract
In this paper, linear and nonlinear Fokker-Planck equations are solved by approximate method,
namely Optimal homotopy analysis method (OHAM). The Optimal homotopy analysis method is a
combination of the homotopy analysis method and optimizing the convergence control parameter
by minimizing the square residual error. The mathematical calculation and graphics have been
obtained. The results have been obtained by OHAM are matches with the exact results and other
approximate method like, Adomian decomposition method (ADM), Variation iteration method (VIM)
and Homotopy perturbation method (HPM).

Keywords: Optimal homotopy analysis method, convergence control parameter, fokker-Planck equa-
tions.
2010 Mathematics Subject Classification:35L02; 35L60

1 Introduction
Nonlinear phenomena, that appear in many areas of scientific fields such as solid state physics,
plasma physics, fluid mechanics, population models and chemical kinetics, can be modelled by
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nonlinear differential equations. In many different fields of science and engineering, it is important
to obtain exact or numerical solution of the nonlinear partial differential equations, but it is still
quite problematic that’s need new methods for finding the approximate solutions. It is well-known
that nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) for
boundary-value problems are much more difficult to solve than linear ODEs and PDEs, especially
by means of analytic methods. Traditionally, perturbation and asymptotic techniques are widely
applied to obtain analytic approximations of nonlinear problems in science, finance and engineering.
Unfortunately, perturbation and asymptotic techniques are too strongly dependent upon small/large
physical parameters in general, and thus are often valid only for weakly nonlinear problems. Thus,
it is necessary to develop some analytic approximation methods, which are independent of any
small/large physical parameters at all and besides valid for strongly nonlinear problems. The homotopy
analysis method (HAM)[1, 2, 3, 4] is based on the concept of homotopy, a fundamental concept in
topology and differential geometry, which was first time introduced by Shijun Liao in his PhD thesis
(1992)is independent of any small/large physical parameters. The HAM is a general analytic approach
to get series solutions of various types of nonlinear equations, including algebraic equations, ordinary
differential equations, partial differential equations, differential-integral equations, differential-difference
equation, and coupled equations of them. Researches have introduce many other methods based
on HAM like, Homotopy perturbation method (HPM)[5, 6, 7], Optimal homotopy analysis method
(OHAM)[3, 8] Optimal homotopy asymptotic method [9, 10], Spectral homotopy analysis method and
Homotopy analysis transform method [11] to get the approximate solution of the nonlinear PDE.

Inspired and motivated by the ongoing research in this area, we apply approximate method,
namely Optimal Homotopy analysis method (OHAM) for solving the linear and nonlinear Fokker plank
equation arising in the fluid flow through porous media and is matches with the exact results and with
other approximate methods like, Adomian decomposition method [12, 13], Variation iteration method
(VIM)[14] and Homotopy perturbation method (HPM)[5].

2 Fokker-Planck Equation
Using a microscope, Robert Brown (1773-1858) observed and documented the motion of large
pollen grains suspended in water known as Brownian motion. The Fokker-Planck equation was first
introduced by Fokker and Planck to describe the Brownian motion of particles [15]. A general Fokker-
Planck equation can be derived from the Chapman-Kolmogorov equation. This equation has been
used in different fields in natural sciences such as quantum optics, solid state physics, chemical
physics, theoretical biology, circuit theory and fluid flow through porous media. The general form of
Fokker-Plank equation is

∂U

∂t
=

[
− ∂

∂x
A (x, t) +

∂2

∂x2
B (x, t)

]
U, (2.1)

with initial condition U (x, o) = f (x) ; x ∈ R. Equation (2.1) is also well known as a forward
Kolmogorov equation. There exists another type of this equation is called a backward one as

∂U

∂t
=

[
−A (x, t)

∂

∂x
+B (x, t)

∂2

∂x2

]
U. (2.2)

The nonlinear Fokker-Planck equation is a more general form of linear one which has also been
applied in plasma physics, surface physics, astrophysics, the physics of polymer fluids and particle
beams, nonlinear hydrodynamics, population dynamics, theory of electronic-circuitry and laser arrays,
engineering, biophysics, human movement sciences, psychology and marketing. The nonlinear form
of the Fokker-Planck equation can be expressed in the following way

∂U

∂t
=

[
− ∂

∂x
A (x, t, U) +

∂2

∂x2
B (x, t, U)

]
U. (2.3)
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3 Basic Idea of OHAM
Consider the following nonlinear partial differential equation in a general form

N [U (x, t)] = 0, (3.1)

where, N is a nonlinear operator, x and t denote the independent variables and U is an unknown
function. By means of the traditional HAM, we first construct the so-called zeroth order deformation
equation as

(1− q)L [φ (x, t; q)− U0 (x, t)] = c0qN [φ (x, t; q)] , (3.2)

where, q ∈ [0, 1] is the embedding parameter, c0 is an auxiliary parameter also know as convergence
control parameter, L is an auxiliary linear operator, φ (x, t; q) is an unknown function and U0(x, t)
is an initial guess of U(x, t). According to HAM we have great freedom to choose linear operator
and initial guess. Obviously, when the embedding parameter q = 0 and q = 1, it holds φ (x, t; 0) =
U0 (x, t) , φ (x, t; 1) = U (x, t) respectively. Thus, as q increases from 0 to 1, the solution φ(x, t; q)
varies from the initial guess U0(x, t) to the solution U(x, t). Expanding φ(x, t; q) in Maclaurin series
with respect to q, we have

φ (x, t; q) = U0 (x, t) +

∞∑
m=1

Um (x, t) qm, (3.3)

where

Um (x, t) =
1

m!

∂mφ (x, t; q)

∂qm

∣∣∣∣
q=0

.

Differentiating the equation (3.2) m-times with respect to q, dividing by m! and finally setting q = 0,
we get the following mth-order deformation equation

L [Um (x, t)− χmUm−1 (x, t)] = c0δm [Um−1 (x, t)] , (3.4)

where

δm [Um−1 (x, t)] =
1

(m− 1)!

∂m−1N [φ (x, t; q)]

∂qm−1

∣∣∣∣
q=0

and

χm =

{
0, m ≤ 1
1, m > 1

Applying inverse operator both side on equation (3.4)

Um (x, t) = χmUm−1 (x, t) + c0 L−1 [δm [Um−1 (x, t)]] (3.5)

If the auxiliary linear operator [16], the initial guess and the convergence control parameter c0 are
properly chosen, then the series (3.3) converges at q = 1, then we have

U (x, t) = U0 (x, t) +

∞∑
m=1

Um (x, t) , (3.6)

which must be one of the solution of original nonlinear equation (3.1), as proved by Liao [3]. The
Convergence control parameter c0 play an important role in the OHAM. One can gain convergent
series solution simply by choosing a proper auxiliary parameter c0. This is the reason why we
call c0 as the convergence-control parameter. In 2007, Yabushita et al. [17] applied the HAM to
solve two coupled nonlinear ODEs. They suggested the so-called “optimization method” to find out
the optimal convergence-control parameters by means of the minimum of the squared residual of
governing equation as follow

Em (c0) =

∫∫
Ω

[
N

{
m∑

n=0

Un (x, t)

}]2

dΩ. (3.7)
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In real world problem the double integration of sum of square residual is very difficult, so we use it’s
approximate sum form as

Em (c0) =
1

(M + 1) (N + 1)

M∑
i=0

N∑
j=0

{
N

[
m∑

n=0

Un

(
i

M
,
j

N

)]2}
. (3.8)

Equation (3.8) gives the square residual error at mth-order approximation. It is obvious that we can
find the optimal value of convergence-control parameter c0 at the any order of approximation. If there
exists convergence-control parameter, c0 for which we get the minimum of the squared residua Em,
is so called the optimal convergence-control parameter c0.

We can prove the analytical convergence of OHAM solutions. To do this, let us state the following
theorem which gives sufficient conditions for the convergence or divergence of the homotopy series.

Theorem 3.1. Suppose that A ⊂ R be a Banach space donated with the L2 norm, over which the

sequence Uk (x, t) of the homotopy series U (x, t; q) =
∞∑

k=1

Uk (x, t) qk is defined for a prescribed

value of c0. Assume also that the initial approximation U0 (x, t) remains inside the disc of the solution
U (x, t) . Taking r ∈ R be a constant, the following statements hold true:

1. If ‖Uk+1 (x, t)‖ ≤ r ‖Uk (x, t)‖ for all k, given some 0 < r < 1, then the series solution
converges absolutely at q = 1 over the domain of definition of (x, t) .

2. If ‖Uk+1 (x, t)‖ ≥ r ‖Uk (x, t)‖ for all k, given some r > 1, then the series solution diverges at
q = 1 over the domain of definition of (x, t) .

Proof
(1) Let Sn (x, t) denote the sequence of partial sum of the homotopy series, we need to show that
Sn (x, t) is a Cauchy sequence in A. Also we have

‖Sn+1 (x, t)− Sn (x, t)‖ = ‖Un+1 (x, t)‖ ≤ r ‖Un (x, t)‖ ≤ r2 ‖Un−1 (x, t)‖ ≤ ... ≤ rn+1 ‖U0 (x, t)‖ .
(3.9)

It should be remarked that owing to (3.9), all the approximations produced by the homotopy method
will lie within the disk of Sn (x, t) . For every m,n ∈ N;n ≥ m, also using equation (3.9) and the
triangle inequality, we have

‖Sn − Sm‖ = ‖(Sn − Sn−1) + (Sn−1 − Sn−2) + ...+ (Sm+1 − Sm)‖ ≤ 1− rn−r

1− r rm+1 ‖U0‖ .
(3.10)

Since 0 < r < 1 we get from equation (3.10)

lim
n,m→∞

‖Sn (x, t)− Sm (x, t)‖ = 0. (3.11)

Therefore, Sn (x, t) is a Cauchy sequence in the Banach space A, and we know that all Cauchy
sequence in Banach space are convergent, that is the series solution is convergent.

The proof of (2) follows from the fact that under the hypothesis supplied in (2), suppose if possible
there exist a number l such that, l > r > 1, so that the interval of convergence of the power series is
| q |< 1/l < 1, which obviously contradiction with q = 1. �
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4 Applications
We consider linear and nonlinear Fokker-Plank equations, which arias in many problem of fluid flow
through porous media such as, Pressure head in unsaturated soil during infiltration phenomenon,
Boussinesq’s equation for infiltration phenomenon in unsaturated porous media and Advection-diffusion
equation for concentration distribution in fluid flow through porous media.

4.1 Example of Linear Fokker-Planck equation
Consider the following linear Fokker-Planck equation

Ut = Ux + Uxx, (4.1)

subject to the initial condition
U (x, 0) = x. (4.2)

According to the OHAM, we choose the initial guess as, U0 (x, t) = x, and the auxiliary linear operator

L [U (x, t; q)] =
∂U (x, t; q)

∂t
− ∂U (x, t; q)

∂x
, (4.3)

The zeroth order deformation equation is

(1− q)L [φ (x, t; q)− U0 (x, t)] = c0qN [φ (x, t; q)] , (4.4)

where the nonlinear operator can be define as

N [φ (x, t; q)] =
∂φ (x, t; q)

∂t
− ∂φ (x, t; q)

∂x
− ∂2φ (x, t; q)

∂x2
.

The corresponding mth-order deformation equation is given by

L [Um (x, t)− χmUm−1 (x, t)] = c0δm [Um−1 (x, t)] , (4.5)

where
δm (Um−1) = (Um−1)t − (Um−1)x − (Um−1)xx .

Applying the inverse operator on equation (4.5), we have

Um (x, t) = χmUm−1 (x, t) + c0L−1 [δm [Um−1 (x, t)]] (4.6)

Solving equation (4.6), for m = 1, 2, 3... We obtain

U1 (x, t) = −c0t,
U2 (x, t) = −c0 (1 + c0) t,

U3 (x, t) = −c0 (1 + c0)2 t,
...

(4.7)

By using Yabushita’s approach we can find the optimal value of convergence control parameter by

Em (c0) =
1

(M + 1) (N + 1)

M∑
i=0

N∑
j=0

{
N

[
m∑

n=0

Un

(
i

M
,
j

N

)]2}
. (4.8)

We calculate equation (4.8) for M = 20 & N = 20 numbers of points and we get the optimal value
of convergence control parameter c0 = −1.0000249174897184 at minimum square residual error
E5 = 6.51E − 35 (Figure 1).
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-1.005 -1.000 -0.995 -0.990
c0

5.´ 10-26

1.´ 10-25

1.5´ 10-25

2.´ 10-25

E5Hc0L

Figure 1: Square residual E5 at 5th-order approximation

By using this optimal value of c0 we got the solution of (4.1) as

U (x, t) =

5∑
m=1

Um (x, t) = x+ t,

which is the exact solution and is same as obtained by ADM [13], VIM [14] and HPM [5].

4.2 Example of nonlinear Fokker-Planck equation

Consider the following nonlinear Fokker-Planck equation

∂U

∂t
=

∂

∂x

(
xU

3
− 4

x
U2

)
+

∂2

∂x2

(
U2) , (4.9)

with the initial condition
U (x, 0) = x2. (4.10)

According to the OHAM, we choose the initial guess as U0 (x, t) = x2, and the auxiliary linear operator

L [U (x, t; q)] =
∂U (x, t; q)

∂t
, (4.11)

The zeroth order deformation equation is

(1− q)L [φ (x, t; q)− U0 (x, t)] = c0qN [φ (x, t; q)] , (4.12)

where the nonlinear operator can be define as

N [φ (x, t; q)] =
∂φ (x, t; q)

∂t
− ∂

∂x

(
xφ (x, t; q)

3
− 4

x
φ2 (x, t; q)

)
−
∂2
(
φ2 (x, t; q)

)
∂x2

.

The corresponding mth-order deformation equation is given by

L [Um (x, t)− χmUm−1 (x, t)] = c0δm [Um−1 (x, t)] , (4.13)
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-1.12 -1.10 -1.08 -1.06 -1.04
c0

5.´ 10-9

1.´ 10-8

1.5´ 10-8

2.´ 10-8

E5Hc0L

Figure 2: Square residual E5 at 5th-order approximation

where

δm (Um−1) = (Um−1)t −

(
x

3
Um−1 −

4

x

m−1∑
r=0

UrUm−1−r

)
x

−

(
m−1∑
r=0

UrUm−1−r

)
xx

.

Applying the inverse operator on equation (4.13), we have

Um (x, t) = χmUm−1 (x, t) + c0 L−1 [δm [Um−1 (x, t)]] (4.14)

Solving equation (4.14), for m = 1, 2, 3..., we get

U1 (x, t) = −c0x2t,

U2 (x, t) = −c0 (1 + c0)x2t+
c20x

2t2

2
,

U3 (x, t) = −c0 (1 + c0)2 x2t+
c20(1+c0)x2t2

2
− c30x

2t3

6
,

...

(4.15)

By using Yabushita’s approach we can find the optimal value of convergence control parameter by

Em (c0) =
1

(M + 1) (N + 1)

M∑
i=0

N∑
j=0

{
N

[
m∑

n=0

Un

(
i

M
,
j

N

)]2}
. (4.16)

We calculate equation (4.16) for M = 20 & N = 20 numbers of points and we get the optimal
value of convergence control parameter c0 = −1.0779113454061617 at minimum square residual
error E5 = 4.73E − 10. By using this optimal value of c0 we got the solution of (4.9) as

U (x, t) =
5∑

m=1

Um (x, t) = (1 + t(1.0000028708038506 + t(0.4999021407477205 + t(0.16754988130644843

+ (0.03871980496628806 + 0.012126458064182619t)t))))x2,

which is approximate solution of the exact solution x2et, and is match with the solution obtained by
ADM [13], VIM [14] and HPM [5].

5 Conclusion
The results have been obtained by using the OHAM which are presented here agree well with the
results obtained by ADM, VIM and HPM. The advantage of OHAM is that we can rapidly converges
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the series solution by taking optimal value of c0, which is not possible in other analytic methods like
ADM and VIM. Finally, we have concluded that the OHAM is very powerful and efficient analytical
approximation method to solve such types of linear and nonlinear partial differential equations arise
in many problems of fluid flow through porous media and oil recovery processes.
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