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Abstract
This paper proposes a variable gain controller for a linear system with structured uncertainties.
The proposed variable gain controller is based on LQ optimal control for the nominal system and
consists of the optimal feedback gain and a time-varying adjustable parameter which is designed
so as to reduce the effect of uncertainties. The proposed LQ optimal control-based variable gain
controller can achieve good transient performance which is close to LQ optimal control for the
nominal system and adjust the magnitude of the control input. In this paper, we show sufficient
conditions for the existence of the proposed variable gain robust controller for the uncertain linear
system. Finally, an illustrative example is included.
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1 Introduction

In general, there exists a gap between mathematical models and practical systems, i.e. the design
space and the real space. Therefore controller design methods dealing with the model uncertainties
have been required and for dynamical systems with unknown parameters, a large number of design
methods of robust state feedback controllers have been presented (e.g. [1, 2, 3] and references
therein). For a system with structured uncertainties, several quadratic stabilizing control laws have
also been suggested and a connection between quadratic stabilization and H∞ control has been
established[4]. It is well known that for robust control for linear dynamical systems with uncertainties,
the concept of quadratic stabilization via fixed quadratic Lyapunov functions plays an important role
in dealing with the controller design.

By the way in most practical situations, it is desirable to design robust control systems which
achieve not only robust stability but also an adequate level of performance. Therefore many robust
controllers achieving some robust performances such as guaranteed cost control, mixed H∞/H2

control, robust H2 control and so on have been suggested (e.g.[5, 6, 7]). Note that these controllers
have fixed structure and these design methods are worst case design. Additionally, synthesis problems
of robust controllers with variable gain have also been tackled (e.g. [8, 9]). Yamamoto and Yamauchi[8]
have proposed a design method of a robust controller with the ability to adjust control performance
adaptively. In [9], a robust controller with adaptation mechanizm has been presented and the robust
controller is tuned on-line based on the information about parameter uncertainties. Besides, Oya and
Hagino have proposed robust controllers with adaptive compensation inputs[10, 11]. Although the
robust controllers in [10, 11] can achieve not only asymptotical stability but also satisfactory transient
behavior, these robust controllers include the additional dynamics of the nominal system. Namely,
the structure of these robust controllers is more complex. In [12], we have suggested a variable
gain robust controller based on LQ optimal control for a linear system with parameter structured
uncertainties.

From these viewpoints, we propose a variable gain robust controller based on LQ optimal control
for a class of uncertain linear systems. The proposed variable gain controller consists of optimal
feedback gain designed by using the nominal system and an adjustable time-varying parameter. The
adjustable parameter is designed so as to reduce the effect of uncertainties. The proposed variable
gain controller can achieve good transient performance which is close to the desirable trajectory
generated by the nominal closed-loop system. This paper is organized as follows. In Section 2,
notation and useful lemmas which are used in this paper are shown, and in Section 3, we introduce
the class of uncertain linear systems under consideration. Section 4 contains the main results.
Sufficient conditions for the existence of the proposed variable gain robust controller are presented.
Finally, numerical examples are included to illustrate the results developed in this paper.

2 Preliminaries

In this section, we show notations and useful and well-known lemmas which are used in this paper.
In the sequel, we use the following notation. For a matrix A, the transpose and the inverse of the

matrix A are denoted by AT and A−1, respectively. Also, He{A} means A+AT and In represents
n-dimensional identity matrix and the notation diag (A1, · · · ,AN ) denotes a block diagonal matrix
composed of matrices Ai for i = 1, · · · , N . For real symmetric matrices A and B, A > B (resp. A ≥
B) means that A−B is positive (resp. nonnegative) definite matrix. For a vector α ∈ Rn, ||α|| denotes
standard Euclidian norm and for a matrix A, ||A|| represents its induced norm. For two sets S and

T , S ⊂ T means that the set S is a subset of T , and Sc is a complement of S. The the symbols “△=”
and “⋆” denote equality by definition and symmetric blocks in matrix inequalities, respectively.

Furthermore, the following well-known lemmas are used in this paper.
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Lemma 1. For arbitrary vectors λ and ξ and the matrices G and H which have appropriate dimensions,
the following relation holds.

He

{
λTG∆(t)Hξ

}
≤ 2

∥∥GTλ
∥∥ ∥∥Hξ

∥∥
where ∆(t) ∈ Rp×q is a time-varying unknown matrix satisfying

∥∥∆(t)
∥∥ ≤ 1.0.

Proof. The above relation is easily obtained by Schwartz’s inequality[13].

Lemma 2. (S-procedure) Let F(x) and G(x) be two arbitrary quadratic forms over Rn. Then F(x) < 0
for ∀x ∈ Rn satisfying G(x) ≤ 0 if and only if there exist a nonnegative scalar τ such that

F(x)− τG(x) ≤ 0 for ∀x ∈ Rn

Proof. See Boyd et al.[14]

Lemma 3. (Schur complement) For a given constant real symmetric matrix Ξ, the following arguments
are equivalent.

(i). Ξ =

(
Ξ11 Ξ12

ΞT
12 Ξ22

)
> 0

(ii). Ξ11 > 0 and Ξ22 −ΞT
12Ξ

−1
11 Ξ12 > 0

(iii). Ξ22 > 0 and Ξ11 −Ξ12Ξ
−1
22 ΞT

12 > 0

Proof. See Boyd et al.[14]

3 Problem Formulation
Consider the uncertain linear system described by the following state equation (see Remark 1).

d

dt
x(t) = (A+D∆(t)E)x(t) +Bu(t) (3.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of the state (assumed to be available for feedback)
and the control input, respectively. In (3.1), the matrices A and B denote the nominal values of the
uncertain system of (3.1). The matrices D and E which have appropriate dimensions represent the
structure of uncertainties and the time-varying parameter ∆(t) ∈ Rp×q shows unknown parameters
which satisfy

∥∥∆(t)
∥∥ ≤ 1.0. Beside the nominal system, ignoring the unknown parameters in (3.1), is

given by

d

dt
x(t) = Ax(t) +Bu(t). (3.2)

In this paper first of all, we consider the standard linear quadratic control problem for the nominal
system of (3.2) in order to generate the desired response for the uncertain system of (3.1) systematically.
Namely we define the following quadratic cost function for the nominal system of (3.2).

J =

∫ ∞

0

(
xT (t)Qx(t) + uTRu(t)

)
dt (3.3)

where the matrices Q ∈ Rn×n and R ∈ Rm×m are positive definite. It is well-known that the optimal
control input minimizing the quadratic cost function of (3.3) is given by u(t) = −Kx(t), where K ∈
Rm×n represent the optimal control gain matrix. Note that the closed-loop system matrix AK

△
=A −
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BK is stable and the optimal feedback gain matrix K ∈ Rm×n is derived as K = R−1BTP where
P ∈ Rn×n is unique solution of the algebraic Riccati equation

He

{
ATP

}
− PBR−1BTP +Q = 0. (3.4)

Now by using the optimal feedback gain matrix K ∈ Rm×n for the nominal system of (3.2), we
consider the following control input.

u(t)
△
= γ(x, t)Kx(t) (3.5)

where γ(x, t) ∈ R1 is a time-varying adjustable parameter so as to compensate the effect of unknown
parameters. One can see from (3.1) and (3.5) that the following closed-loop system is obtained.

d

dt
x(t) = Ax(t) +D∆(t)Ex(t) + γ(x, t)BKx(t). (3.6)

From the above discussion, our control objective in this paper is to design the robust stabilizing
controller which achieves good transient performance for the uncertain closed-loop system of (3.6).
That is to design the time-varying adjustable parameter γ(x, t) ∈ R1 such that the closed-loop system
of (3.6) is robustly stable and achieves satisfactory transient performance close to LQ optimal control
for the nominal system of (3.2).

Remark 1. In this paper, we consider the uncertain dynamical system of (3.1) which has uncertainties
in the state matrix only. The proposed design scheme of the variable gain controller derived in next
section can also be applied to the case that the uncertainties are included in both the system matrix
and the input matrix. By introducing additional actuator dynamics and constituting an augmented
system, uncertainties in the input matrix are embedded in the system matrix of the augmented
system[15]. Therefore the same design procedure can be applied.

4 Main Results
In this section, we show a design method of the proposed variable gain controller such that the
uncertain system of (3.1) is asymptotically stable.

The following theorem gives sufficient conditions for the existence of the proposed controller.

Theorem 1. Consider the uncertain linear system of (3.1) and the control input of (3.5).
For a given positive scalar δ which is a design parameter, if there exist the positive scalars τ1 and

τ2 satisfying the LMI(
−Q− (1 + τ1)PBR−1BTP + δτ1In + τ2ET E PD

⋆ −τ2Ip

)
< 0 (4.1)

then the adjustable time-varying parameter γ(t) ∈ R1 is determined as

γ(x, t) =


−

(
1 +

∥∥DTPx(t)
∥∥∥∥Ex(t)∥∥∥∥R−1/2BTPx(t)

∥∥2
)

if xT (t)PBR−1BTPx(t) ≥ δxT (t)x(t)

−

(
1 +

∥∥DTPx(t)
∥∥∥∥Ex(t)∥∥

δxT (t)x(t)

)
if xT (t)PBR−1BTPx(t) ≤ δxT (t)x(t).

(4.2)

Then the uncertain closed-loop system of (3.6) is robustly stable.

Proof. By using the unique solution P ∈ Rn×n of the algebraic Riccati equation of (3.4), we consider
the following quadratic function.

V(x, t)△
=xT (t)Px(t). (4.3)
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The time derivative of the quadratic function V(x, t) of (4.3) can be written as

d

dt
V(x, t) = xT (t)

[
He

{
ATP

}]
x(t) + 2xT (t)PD∆(t)Ex(t) + 2γ(t)xT (t)PBKx(t). (4.4)

Since the matrix P ∈ Rn×n is the unique solution of the algebraic Riccati equation of (3.4), The time
derivative of the quadratic function V(x, t) can be rewritten as

d

dt
V(x, t) = −xT (t)

(
Q−PBR−1BTP

)
x(t) + 2xT (t)PD∆(t)Ex(t) + 2γ(t)xT (t)PBKx(t). (4.5)

Now, we consider the case of xT (t)PBR−1BTPx(t) ≥ δxT (t)x(t). We see from Lemma 1 and
the relation K = R−1BTP that the inequality for the time derivative of the quadratic function V(x, t)
of (4.3)

d

dt
V(x, t) ≤ −xT (t)

(
Q−PBR−1BTP

)
x(t) + 2

∥∥DTPx(t)
∥∥∥∥∆(t)Ex(t)

∥∥+ 2γ(t)xT (t)PBKx(t)

≤ −xT (t)
(
Q−PBR−1BTP

)
x(t) + 2

∥∥DTPx(t)
∥∥ ∥∥Ex(t)∥∥

+ 2γ(t)xT (t)PBR−1BTPx(t). (4.6)

is satisfied. Besides, by using the adjustable time-varying parameter γ(t) of (4.2), we find that the
following relation holds.

d

dt
V(x, t) ≤− xT (t)

(
Q+ PBR−1BTP

)
x(t)

< 0 for ∀x(t) ̸= 0. (4.7)

Next, we consider the case of xT (t)PBR−1BTPx(t) < δxT (t)x(t) and then the time derivative
of the quadratic function V(x, t) of (4.5) can also be described as

d

dt
V(x, t) =

(
x(t)
ξ(t)

)T ( −Q+ PBR−1BTP PD
⋆ 0

)(
x(t)
ξ(t)

)
+ 2γ(t)xT (t)PBR−1BTPx(t).

(4.8)

In (4.8), ξ(t) is a n×N -dimentional vector given by

ξ(t)
△
=∆(t)Ex(t). (4.9)

Note that from the relation
∥∥∆(t)

∥∥ ≤ 1.0 for the unknown parameter ∆(t) ∈ Rp×q, the following
inequality for the vector ξ(t) ∈ Rn×N is satisfied.

ξT (t)ξ(t) ≤ xT (t)ET Ex(t) (4.10)

Therefore one can see that if the inequality condition(
x(t)
ξ(t)

)T ( −Q+ PBR−1BTP PD
⋆ 0

)(
x(t)
ξ(t)

)
+ 2γ(t)xT (t)PBR−1BTPx(t) < 0

s.t. xT (t)PBR−1BTPx(t) < δxT (t)x(t) and ξT (t)ξ(t) ≤ xT (t)ET Ex(t) (4.11)

holds, then the following inequality is also satisfied.

d

dt
V(x, t) < 0 for ∀x(t) ̸= 0. (4.12)
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Thus we consider the condition of (4.11). Since the adjustable time-varying parameter γ(t) of (4.2)
takes nagative value and the matrix PBR−1BTP is positive definite, we have(

x(t)
ξ(t)

)(
−Q−PBR−1BTP PD

⋆ 0

)(
x(t)
ξ(t)

)
< 0

s.t. xT (t)PBR−1BTPx(t) < δxT (t)x(t) and ξT (t)ξ(t) ≤ xT (t)ET Ex(t). (4.13)

The inequality of (4.13) is a sufficient condition for the inequality of (4.11). Namely, if the condition
of (4.13) holds, then the inequality of (4.12) is also satisfied. Applying Lemma 2 (S-procedure) to
the condition of (4.13) and some trivial manipulations give the LMI of (4.1). Therefore for the case
of xT (t)PBR−1BTPx(t) < δxT (t)x(t), if the LMI of (4.1) is feasible then the relation of (4.12) is
satisfied.

From the above discussion, the quadratic function V(x, t) becomes a Lyapunov function and the
uncertain linear system of (3.1) is ensured to be stable. It follows that the result of the theorem is
true. The proof of Theorem 1 is completed.

Figure 1: An example for the quadratic functions xT (t)PBR−1BTPx(t) and
δxT (t)x(t) (2-dimentional case)

Remark 2. The adjutable parameter γ(x, t) ∈ R1 in the proposed controller can be obtained as
(4.2) provided that there exists the positive constants τ1 and τ2 in the LMI of (4.1). Note that
these constants τ1 and τ2 does not utilized in the proposed controller. Additionally, in this paper,
we introduce the design parameter δ > 0 in (4.2) and this parameter δ plays important roles in the
proposed control. One can easily find that for two positive constants δ+ and δ− which satisfy δ+ > δ−,
the relation X+ ⊂ X− holds where X+ and X− denote subspaces defined as

X+
△
=
{
x ∈ Rn | xT (t)PBR−1BTPx(t) > δ+xT (t)x(t)

}
,

X−
△
=
{
x ∈ Rn | xT (t)PBR−1BTPx(t) > δ−xT (t)x(t)

}
.

(4.14)

This fact means that if the parameter δ− > 0 is selected then the magnitude of the control input
is large comparing with one for δ+, and the decent for the quadratic function V(x, t) is close to
−xT (t)

(
Q+ PBR−1BTP

)
x(t) because X c

+ ⊃ X c
−, i.e. the selection of the paramerer δ > 0 can

be regarded as determining the switching region in the state space (see Figure 1). Besides the
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quadratic function V(x, t) of (4.3) becomes a Lyapunov function for the uncertain system of (3.1) and
the quadratic function V(x, t) is also a Lyapnov function for the nominal closed-loop system. Note that
the descent of the quadratic function V(x, t) is described as −xT (t)

(
Q+ PBR−1BTP

)
x(t). Thus

in the case that δ− > 0 is chosen, good transient performance can be achieved and conversely, if
the parameter δ+ > 0 is selected then the magnitude of the control input is suppressed, because the
Lyapunov function for the uncertain system of (3.1) and one of the nominal system of (3.3) have same
level set. Therefore, although there is a trade off between achieving good transient performance and
avoiding excessive control input, by selecting the design parameter δ > 0, the control performance
can be adjusted, i.e. one can see that the proposed variable gain robust controller is useful.

Remark 3. In order to design the proposed control system, designers have to solve the LMI of (4.1).
If the LMI of (4.1) is feasible for ∃δ > 0 then one can easily see that the LMI of (4.1) is always
satisfied for the positive scalar ∀δ⋆ < δ. Namely, the transient performance and the magnitude of the
control input can be improved by on-line adjustment for the design parameter δ. However, the on-line
adjustment strategy for the design parameter δ has not been established and this problem is one of
our future reseach subjects.

Remark 4. The proposed variable gain robust controller based on LQ optimal control for the nominal
system has some advantages as follows. The proposed controller design approach is very simple,
and by selecting the design parameter, the proposed variable gain robust controller can achieve good
transient performance or the excessive control input can be avoided (see Remark 1, Remark 2 and
Section 5). Besides, the structure of the proposed control system is also simple comparing with the
existing results for variable gain robust controllers (i.g. [10, 11]).

In [12], the linear system with parameter structured uncertainties is considered. If the number
of the unknown parameters equals to N , then the size of the LMI to be solved in [12] is (N + 1)n ×
(N + 1)n. On the other hand in this paper, the size of LMIs of (4.1) equals to 2n × 2n. Namely, the
proposed approach is rather suitable for the structured uncertainties than the parameter structured
uncertainties.

5 Illustrative Examples
In order to demonstrate the efficiency of the proposed control scheme, we have run a simple example.
The control problem considered here are not necessary practical. However, the simulation results
stated below illustrate the distinct feature of the proposed variable gain controller.

Consider the uncertain linear system described as

d

dt
x(t) =

(
−2.0 1.0
0.0 1.0

)
x(t) +

(
1.0 3.0
0.0 1.0

)
∆(t)

(
0.0 0.0
0.0 2.0

)
x(t) +

(
0.0
1.0

)
u(t). (5.1)

Firstly we select the weighting matrices Q and R such as Q = diag (1.0, 9.0) and R = 1.0 for the
quadratic cost function for the standard linear quadratic control problem, respectively. Then solving
the algebraic Riccati equation of (3.4), we obtain

K =
(
4.81740× 10−2 4.17748

)
P =

(
2.49420× 10−1 4.81740× 10−2

⋆ 4.17748

)
.

(5.2)

In this example, we consider the following two kinds of the parameters for the design parameter
δ ∈ R1 in (4.2).

• Σ∗
1 : δ = 1.0× 102,

• Σ∗
2 : δ = 5.0× 104.

(5.3)
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Figure 2: Time histories of the state x1(t) : Σ∗
1 (Left) and the state x2(t) : Σ∗

1 (Right)

Figure 3: Time histories of the control input u(t) : Σ∗
1 (Left) and time histories of the

Lyapunov function V(x, t) : Σ∗
1 (Right)

For the these two design parameters, solving the LMI condition of (4.1), we have

• Σ∗
1 : τ1 = 1.0× 10−7, τ2 = 1.51028,

• Σ∗
2 : τ1 = 1.0× 10−7, τ2 = 1.51418.

(5.4)

Now in this example, we consider the following two cases for the unknown parameters.

• Case 1) : ∆(t) =

(
4.67360 −5.96857
1.41379 4.81654

)
× 10−1

• Case 2) : ∆(t) = diag ( sin(5πt) , − cos(5πt) )
(5.24)

Furthermore, the initial values for the uncertain system of (5.1) and its nominal system are
selected as x(0) = x(0) =

(
1.0 −2.0

)T .
The results of the simulation of this example are depicted in Figures 2 - 5. In these figures,

“Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and x2(t), the control
input u(t) and the Lyapunov function V(x, t). Besides, “Desired” represents the desirable transient
behavior, the control input and the time-histories of the Lyapunov function V(x, t) generated by the
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Figure 4: Time histories of the state x1(t) : Σ∗
2 (Left) and the state x2(t) : Σ∗

2 (Right)

Figure 5: Time histories of the control input u(t) : Σ∗
2 (Left) and the Lyapunov

function V(x, t) : Σ∗
2 (Right)

nominal system. Besides, in order to compare the proposed LQ optimal control-based variable gain
controller with the LQ optimal control for the nominal system, we consider the following performance
indeces Jx and Ju.

Jx
△
=

∫ ∞

0

xT (t)Qx(t)dt,

Ju
△
=

∫ ∞

0

uT (t)Ru(t)dt.
(5.25)

The optimal value Jopt of the quadratic cost function J of (3.3) can be computed as Jopt =
16.76662 and the performance indeces corresponding to Jx and Ju are given by

Jx
△
=

∫ ∞

0

xT (t)Qx(t)dt = 5.81942,

Ju
△
=

∫ ∞

0

uT (t)Ru(t)dt = 1.09472× 101.
(5.26)
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Table 1: The performance indeces Jx and Ju and the optimal value for the nominal
system : Σ∗

1
Jx Ju

Case 1) 1.66825 4.57275× 101

Case 2) 1.59153 4.06920× 101

Table 2: The performance indeces Jx and Ju and the optimal value for the nominal
system : Σ∗

2
Jx Ju

Case 1) 8.48345 1.57691× 101

Case 2) 5.55297 1.09498× 101

From Figures 2 and 3, we see that the proposed variable gain controller (Σ∗
1 ) for Case 1) achieves

good transient performance comparing with the controller (Σ∗
2 ) for Case 1). However, the proposed

control input is excessive comparing with the nominal system. Additionally, for the proposed controller
(Σ∗

1 ) one can see from Table 1 that the performance index Jx (resp. Ju) is smaller (resp. larger) than
the optimal value for the nominal system. On the other hand, one can see from Figures 4 and
5 that although the error between the transient response for the proposed variable gain controller
(Σ∗

2 ) and the one of the nominal system is large for Case 1), the control input in Σ∗
2 is close to the

desired one. For Case 2) the proposed variable gain controller (Σ∗
2 ) achieves good transient response

and the satisfactory control input as closely as possible to the optimal trajectory generated by the
nominal system. We see from Table 2 that the performance indeces for Case 2) for the proposed
robust controller (Σ∗

2 ) are good values. Namely, the proposed variable gain controller can adjust the
transient performance and the control input by means of selecting the design parameter δ ∈ R1 in
(4.2). Therefore the effectiveness of the proposed variable gain controller is shown.

6 Conclusions
In this paper on the basis of our previous work[12] we have proposed an LQ optimal control-based
variable gain robust controller for a linear system with structured uncertainties. Besides, by numerical
simulations, the effectiveness of the proposed controller has been presented.

The proposed LQ optimal control-based variable gain controller has some advantages. One
can see that the crucial difference between the existing results[10, 11] and our new one is that
the structure of proposed controller is simple and the proposed variable gain controller can adjust
the transient performance. Namely although there is a trade off between achieving good transient
performance and avoiding excessive control input, by selecting the design parameter δ > 0, the
control performance can be adjusted. Additionally, we have discussed the performance for the
proposed variable gain robust controller.

The future research subjects are an extension of the proposed controller to such a broad class of
systems as uncertain large-scale systems, uncertain discrete-time systems, uncertain time-delay
systems and so on. In addition, the on-line adjustment strategy of the design parameter δ for
achieving good transient performance is also our future research subject.
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