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Abstract 
 
The main objective of the present investigation is to study the vibration of visco-elastic parallelogram plate 
whose thickness varies parabolically. It is assumed that the plate is clamped on all the four edges and that the 
thickness varies parabolically in one direction i.e. along length of the plate. Rayleigh-Ritz technique has been 
used to determine the frequency equation. A two terms deflection function has been used as a solution. For 
visco-elastic, the basic elastic and viscous elements are combined. We have taken Kelvin model for 
visco-elasticity that is the combination of the elastic and viscous elements in parallel. Here the elastic ele-
ment means the spring and the viscous element means the dashpot. The assumption of small deflection and 
linear visco-elastic properties of “Kelvin” type are taken. We have calculated time period and deflection at 
various points for different values of skew angles, aspect ratio and taper constant, for the first two modes of 
vibration. Results are supported by tables. Alloy “Duralumin” is considered for all the material constants 
used in numerical calculations. 
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1. Introduction 
 
The materials are being developed, depending upon the 
requirement and durability, so that these can be used to 
give better strength, flexibility, weight effectiveness and 
efficiency. So some new materials and alloys are utilized 
in making structural parts of equipment used in modern 
technological industries like space craft, jet engine, earth 
quake resistance structures, telephone industry etc. Ap-
plications of such materials are due to reduction of 
weight and size, low expenses and enhancement in effec-
tiveness and strength. It is well known that first few fre-
quencies of structure should be known before finalizing 
the design of a structure. The study of vibration of skew 
plate structures is important in a wide variety of applica-
tions in engineering design. Parallelogram elastic plates 
are widely employed nowadays in civil, aeronautical and 
marine structures designs. Complex shapes with variety 
of thickness variation are sometimes incorporated to re-
duce costly material, lighten the loads, and provide ven-
tilation and to alter the resonant frequencies of the struc-
tures. Dynamic behavior of these structures is strongly 
dependent on boundary conditions, geometric shapes, 
material properties etc. 

Dhotarad and Ganesan [1] have considered vibration 
analysis of a rectangular plate subjected to a thermal 
gradient. Amabili and Garziera [2] have studied trans-
verse vibrations of circular, annular plates with several 
combinations of boundary conditions. Ceribasi and Altay 
[3] introduced the free vibration analysis of super ellip-
tical plates with constant and variable thickness by Ritz 
method. Gupta, Ansari and Sharma [4] have analyzed 
vibration analysis of non-homogenous circular plate of 
non linear thickness variation by differential quadrature 
method. Jain and Soni [5] discussed free vibrations of 
rectangular plates of parabolically varying thickness. 
Singh and Saxena [6] discussed the transverse vibration 
of rectangular plate with bi-directional thickness. Free 
vibrations of non-homogeneous circular plate of variable 
thickness resting on elastic foundation are discussed by 
Tomar, Gupta and Kumar [7]. Yang [8] has considered 
the vibration of a circular plate with varying thickness. 
Gupta, Ansari and Sharma [9] discussed the vibration of 
non-homogeneous circular Mindlin plates with variable 
thickness. Bambill, Rossit, Laura and Rossi [10] have 
analyzed transverse vibration of an orthotropic rectangu-
lar plate of linearly varying thickness with a free edge. 

Sufficient work [11,12] is available on the vibration of 
a rectangular plate of variable thickness in one direction, 
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but none of them done on parallelogram plate. Recently 
Gupta, Kumar and Gupta [13] studied the vibration of 
visco-elastic parallelogram plate of linearly varying thic- 
kness. A simple model presented here is to study the eff- 
ect of parabolic thickness variation on vibration of visco- 
elastic parallelogram plate having clamped boundary co- 
nditions on all the four edges. The hypothesis of small 
deflection and linear visco-elastic properties are made. 
Using the separation of variables method, the governing 
differential equation has been solved for vibration of vis- 
co-elastic parallelogram plate. An approximate but quite 
convenient frequency equation is derived by using Ray- 
leigh-Ritz technique with a two-term deflection function. 
It is assumed that the visco-elastic properties of the plate 
are of the “Kelvin Type”. Time period and deflection fu- 
nction at different point for the first two modes of vibra-
tion are calculated for various values of taper constant, 
aspect ratio and skew angle and results are presented in 
tabular form. 
 
2. Equation of Transverse Motion 
 
The parallelogram (skew) plate is assumed to be non- 
uniform, thin and isotropic and the plate R be defined by 
the three number a, b and θ as shown in Figure 1. 

The skew coordinates are related to rectangular coor-
dinates are 

 sec,tan yyx   

The boundaries of the plate in skew coordinates are 

ba   ,0,,0  

The governing differential equation of transverse mo-
tion of visco-elastic parallelogram plate of variable thi- 
ckness, ξ- and η- coordinates is given by [13]: 
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Figure 1. Geometry of parallelogram plate. 
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and 
2Ď 0,ttT p T                   (3) 

A comma followed by a suffix denotes partial differ-
ential with respect to that variable. Here p2 is a constant. 

Here solution w(ξ, η, t) can be taken in the form of 
products of two functions as for free transverse vibration 
of the parallelogram plate so that 

)(),(),,( tTWtw                (4) 

where T(t) is the time function and W is the maximum 
displacement with respect to time t. 

Assuming thickness variation of parallelogram plate 
parabolically in ξ-direction as 

})/(1{ 2
0 ahh               (5) 

where β is the taper constant in ξ-direction and 0h  

0h . 

The flexural rigidity D of the plate can now be written 
as 

)1(12))/(1( 2323
0 vaEhD   ,     (6) 

 
3. Solution and Frequency Equation 
 
In using the Rayleigh-Ritz technique, one requires max- 
imum strain energy be equal to the maximum kinetic 
energy. So it is necessary for the problem consider here 
that 

0)( max  TV                 (7) 

for arbitrary variations of W satisfying relevant geomet-
rical boundary conditions. 

For a parallelogram plate, clamped (c) along all the 
four edges, the boundary conditions are 

b   at  WW

and  a    at  WW

,00

,00

,

,












        (8) 

and the corresponding two-term deflection function is 
taken as 
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Using Equations (5) and (6) in Equations (1) and (2), 
one obtains 
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Using Equations (10) and (11) in Equation (7), one 
obtains 
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and 
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is a constant. 
But Equation (12) involves the unknown A1 and A2 

arising due to the substitution of W(ξ, η) from Equation 
(9). These two constants are to be determined from 
Equation (12), as follows: 

2,1,0/)( 1
22
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Equation (16) simplifies to the form 

21,01211 ,n     AbAb nn         (17) 

where bn1, bn2 (n =1,2) involve parametric constants and 
the frequency parameter. 

For a non-trivial solution, the determinant of the coef-
ficient of Equation (17) must be zero. So one gets the 
frequency equation as 
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skew angle and aspect ratio and given as 
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From Equation (18), one can obtains a quadratic equa-
tion in p2 from which the two values of p2 can found. 
After determining A1 & A2 from Equation (17), one can 
obtain deflection function W. Choosing A1 = 1, one ob-
tains A2 = (–b11/b12) and then W comes out as 
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4. Differential Equation of Time Function 

and its Solution 
 

Time functions of free vibrations of viscoelastic plates 
are defined by the general ordinary differential Equation 
(3). Their form depends on the viscoelastic operator Ď. 
For Kelvin’s model, one has 

 = 1+ ( )( )Ď ň G d dt            (20) 

where, ň is viscoelastic constant and G is shear modulus. 
The governing differential equation of time function of 

a parallelogram plate of variable thickness, by using Equ- 
ation (20) in Equation (3), one obtains as 

2 2( ) 0,tt ,tT p ň G T p T            (21) 

Equation (21) is a differential equation of order two 
for time function T. Solution of Equation (21) comes out as 

1 1 1 1( ) = ( cos sin )ktT t e C k t C k t        (22) 

where, 
2 2k p ň G                 (23) 

and 
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Let us take initial conditions as 

1 and 0 at 0T       dT / dt       t          (25) 

Using initial conditions from Equation (25) in Equa-
tion (22), one obtains 

 1 1 1( ) cos( ) ( / )sin( )ktT t e k t k k k t         (26) 

Thus, deflection w may be expressed, by using Equa-
tions (26) and (19) in Equation (4), to give 
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Time period of vibration of the plate is given by 

pK /2 ,               (28) 

where p is frequency given by Equation (18). 
 
5. Results and Discussion 
 
Time period and deflection are computed for visco-elas- 
tic parallelogram plate, whose thickness varies paraboli-
cally, for different value of skew angle (θ), taper constant 
(β), and aspect ratio (a/b) at different points for first two 
mode of vibration. The material parameters have been taken 
as [14]: E = 7.08 × 1010 n/m2, G = 2.682 × 1010 n/m2, ň = 
1.4612 × 106 n.s/m2, ρ = 2.80 × 103 kg/m3, ν = 0.345 and 
h0 = 0.01 meter. 

All the results are presented in the Tables 1-11. 
The value of  time period (K) for β = 0.6, θ = 45˚ 

have been found to decrease 35.89% for first mode and 
34.74% for second mode in comparison to rectangular 
plate at fixed aspect ratio (a/b = 1.5). 

The value of time period (K) for β = 0.6, θ = 45˚ have 
been found to decrease 20.54% for first mode and 21.23% 
for second mode in comparison to parallelogram plate of 
uniform thickness at fixed aspect ratio (a/b = 1.5) . 

Table 1 shows the results of time period (K) for dif-
ferent values of taper constant (β) and fixed aspect ratio 
(a/b = 1.5) for two values of skew angle (θ) i.e. θ = 0˚ 
and θ = 45˚ for first two mode of vibration. It can be seen 
that the time period (K) decrease when taper constant (β) 
increase for first two mode of vibration. 

Table 2 shows the results of time period (K) for dif-
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ferent values of skew angle (θ) and fixed aspect ratio 
(a/b = 1.5) for  two values of taper constant (β) i.e. β = 
0.0, β = 0.2 for first two mode of vibration. It can be seen 
that   the time period (K) decrease when skew angle (θ) 
increase for first two mode of vibration. . 

Table 3 shows the results of time period (K) for dif-
ferent values of aspect ratio (a/b) and fixed taper con-
stant (β = 0.0 and β = 0.6) for two values of skew angle 
(θ) i.e. θ = 0˚ and θ = 45˚ for first two mode of vibration. 
It can be seen that the time period (K) decrease when 
aspect ratio (a/b) increase for first two mode of vibration. 

The value of deflection (w) for β = 0.6 and θ = 45˚ 
have been found to increase 14.19% for first mode and 
1.07% for second mode in comparison to parallelogram 
plate of uniform thickness for initial time 0.K at X = 0.2, 
Y = 0.4 and a/b = 1.5. 

The value of deflection (w) for β = 0.6 and θ = 45˚ 
have been found to decrease 4.76% for first mode and 
0.53% for second mode in comparison to rectangular 
plate for initial time 0.K at X = 0.2, Y = 0.4 and a/b = 
1.5. 

The value of deflection (w) for β = 0.6 and θ = 45˚ 
have been found to increase 11.91% for first mode and 
decrease 6.03% for second mode in comparison to paral- 
lelogram plate of uniform thickness for time 5.K at X = 

0.2, Y = 0.4 and a/b = 1.5. 
The value of deflection (w) for β = 0.6 and θ = 45˚ 

have been found to decrease 7.91% for first mode and 
11.96% for second mode in comparison to rectangular 
plate for time 5.K at X = 0.2, Y = 0.4 and a/b = 1.5. 

Tables 4-11 show the results of deflection (w) for dif-
ferent values of X, Y and fixed taper constant (β = 0.0 
and β = 0.6), and aspect ratio (a/b = 1.5) for two values 
of skew angle (θ) i.e. θ = 0˚ and θ = 45˚ for first two 
mode of vibration with time 0.K and 5.K. It can be seen 
that deflection (w) start from zero to increase then de-
crease to zero for first two mode of vibration (except 
second mode at Y = 0.2 and 0.4) and second mode of 
vibration deflection (w) at (Y = 0.2 and Y = 0.4) start zero 
to increase, decrease, increase, decrease and finally be-
come to zero for different value of X. 
 
6. Conclusions 
 
The Rayleigh-Ritz technique has been applied to study 
the effect of the taper constants on the vibration of clam- 
ped visco-elastic isotropic parallelogram plate with para- 
bolically varying thickness on the basis of classical plate 
theory. 

 
Table 1. Time period K (in second) for different taper con-
stant (β) and a constant aspect ratio (a/b = 1.5). 

θ = 0˚ θ = 45˚ 

β 
First 
Mode 

Second 
Mode 

First 
Mode 

Second 
Mode 

0.0 0.142648 0.036357 0.090306 0.023976 

0.2 0.131780 0.033664 0.084639 0.022199 

0.4 0.121820 0.030664 0.078029 0.020376 

0.6 0.112958 0.028060 0.072148 0.018465 

0.8 0.104063 0.025895 0.067140 0.017093 
 

Table 2. Time period K (in second) for different skew angle 
(θ) and a constant aspect ratio (a/b = 1.5). 

β = 0.0 β = 0.2 

θ 
First 
Mode 

Second 
Mode 

First 
Mode 

Second 
Mode 

0˚ 0.142648 0.036357 0.131780 0.033664 

15˚ 0.137773 0.035762 0.127248 0.032985 

30˚ 0.121041 0.031427 0.112004 0.029016 

45˚ 0.090306 0.023976 0.084639 0.022199 

60˚ 0.051089 0.013211 0.047425 0.012143 

75˚ 0.014111 0.003431 0.013235 0.003491 

 
Table 3. Time period K (in second) for different aspect ratio (a/b). 

β = 0.0, θ = 0˚ β = 0.0, θ = 45˚ β = 0.6, θ = 0˚ β = 0.6, θ = 45˚ 

a/b 
First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode

0.5 0.172515 0.042510 0.1189167 0.029103 0.133024 0.032025 0.091918 0.022024 

1.0 0.159377 0.040155 0.106213 0.027055 0.124312 0.030879 0.083221 0.020997 

1.5 0.142648 0.036357 0.090306 0.023976 0.112958 0.028060 0.072148 0.018465 

2.0 0.125147 0.033092 0.075399 0.020193 0.100177 0.026135 0.061061 0.016145 

2.5 0.108096 0.028951 0.061982 0.016358 0.087268 0.023080 0.050393 0.013274 
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Table 4. Deflection w for different X, Y and β = 0.0, θ = 0˚ and a/b = 1.5 at initial time 0.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001085 0.000390 0.001411 0.000371 0.000201 0.000145 0.001533 0.002571 

0.4 0.002398 0.000055 0.003102 –0.000385 0.000452 0.000268 0.003522 0.007022 

0.6 0.002398 0.000055 0.003102 –0.000385 0.000452 0.000268 0.003522 0.007022 

0.8 0.001085 0.000390 0.001411 0.000371 0.000201 0.000145 0.001533 0.002571 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 5. Deflection w for different X, Y and β = 0.0, θ = 45˚ and a/b = 1.5 at initial time 0.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001055 0.000390 0.001365 0.000372 0.000201 0.000146 0.001580 0.002571 

0.4 0.002296 0.000051 0.002953 –0.000392 0.000444 0.000270 0.003679 0.007028 

0.6 0.002296 0.000051 0.002953 –0.000392 0.000444 0.000270 0.003679 0.007028 

0.8 0.001055 0.000390 0.001365 0.000372 0.000201 0.000146 0.001580 0.002571 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 6. Deflection w for different X, Y and β = 0.6, θ = 0˚ and a/b = 1.5 at initial time 0.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001233 0.000392 0.001634 0.000380 0.000212 0.000150 0.001310 0.002565 

0.4 0.002910 0.000063 0.003870 –0.000371 0.000493 0.000271 0.002760 0.007007 

0.6 0.002910 0.000063 0.003870 –0.000371 0.000493 0.000271 0.002760 0.007007 

0.8 0.001233 0.000392 0.001634 0.000380 0.000212 0.000150 0.001310 0.002565 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 7. Deflection w for different X, Y and β = 0.6, θ = 45˚ and a/b = 1.5 at initial time 0.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001182 0.000391 0.001560 0.000376 0.000210 0.000150 0.001386 0.002570 

0.4 0.002731 0.000061 0.003610 –0.00036 0.000481 0.000271 0.003022 0.007014 

0.6 0.002731 0.000061 0.003610 –0.00036 0.000481 0.000271 0.003022 0.007014 

0.8 0.001182 0.000391 0.001560 0.000376 0.000210 0.000150 0.001386 0.002570 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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Table 8. Deflection w for different X, Y and β = 0.0, θ = 0˚ and a/b = 1.5 at time 5.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001035 0.000325 0.001344 0.000313 0.000193 0.000123 0.001462 0.002141 

0.4 0.002287 0.000044 0.002962 –0.000322 0.000431 0.000225 0.003361 0.005850 

0.6 0.002287 0.000044 0.002962 –0.000322 0.000431 0.000225 0.003361 0.005850 

0.8 0.001035 0.000325 0.001344 0.000313 0.000193 0.000123 0.001462 0.002141 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 9. Deflection w for different X, Y and β = 0.0, θ = 45˚ and a/b = 1.5 at time 5.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.000980 0.000292 0.001267 0.000280 0.000185 0.000111 0.001465 0.001940 

0.4 0.002131 0.000040 0.002741 –0.000294 0.000412 0.000202 0.003414 0.005295 

0.6 0.002131 0.000040 0.002741 –0.000294 0.000412 0.000202 0.003414 0.005295 

0.8 0.000980 0.000292 0.001267 0.000280 0.000185 0.000111 0.001465 0.001940 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 10. Deflection w for different X, Y and β = 0.6, θ = 0˚ and a/b = 1.5 at time 5.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode 

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001162 0.000311 0.001541 0.000301 0.000201 0.000115 0.001231 0.002030 

0.4 0.002740 0.000051 0.003645 –0.000294 0.000465 0.000213 0.002600 0.005541 

0.6 0.002740 0.000051 0.003645 –0.000294 0.000465 0.000213 0.002600 0.005541 

0.8 0.001162 0.000311 0.001541 0.000301 0.000201 0.000115 0.001231 0.002030 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 
Table 11. Deflection w for different X, Y and β = 0.6, θ = 45˚ and a/b = 1.5 at time 5.K. 

Y = 0.2 Y = 0.4 Y = 0.6 Y = 0.8 
X 

First Mode Second Mode First Mode Second Mode First Mode Second Mode First Mode Second Mode

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.2 0.001080 0.000274 0.001420 0.000263 0.000191 0.000102 0.001261 0.001792 

0.4 0.002490 0.000042 0.003283 –0.000263 0.000436 0.000190 0.002752 0.004896 

0.6 0.002490 0.000042 0.003283 –0.000263 0.000436 0.000190 0.002752 0.004896 

0.8 0.001080 0.000274 0.001420 0.000263 0.000191 0.000102 0.001261 0.001792 

1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
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On comparison with [13], it is concluded that: 
Time period K is more for non-uniform thickness in 

case of parabolic variation as comparison to linear varia-
tion. 

Deflection w is less for non-uniform thickness in case 
of parabolic variation as comparison to linear variation. 

In this way, authors concluded that parabolic variation 
is more useful than linear variation. 
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Appendix: List of Symbols

a length of the plate,  ň Visco-elastic constants, 
b width of the plate,  w(ξ, η ,t) deflection of the plate i.e. amplitude, 
ξ and η co-ordinates in the plane of the plate,  W(ξ,η) deflection function, 
h thickness of the plate at the point (ξ, η),  T(t) time function, 
E young’s modulus,  β taper constant, 
G shear modulus,  K time period, 
ν Poisson’s ratio,  h0 h at ξ = 0, 
D
~

 visco-elastic operator,  a/b aspect ratio, 
D Eh3/12(1-ν2), flexural rigidity,  θ skew angle, 

 Tmax Kinetic energy, 
ρ 

mass density per unit volume of the 
plate material,  V Strain energy, 

t time,  λ2 12ρ (1-ν2)a4/Eh0
2, a frequency parameter

 
 


