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ABSTRACT

In this paper, a two-point boundary value problem arising from a class of surface-tension driven
flows is considered. The existence properties of solutions are established, and all possible solutions
are classified using mathematical analysis. The problem possesses unique or multiple solutions
depending on parameter values. Bifurcation diagrams are computed to verify the results obtained
by mathematical analysis.
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1 INTRODUCTION

The Navier-Stokes equations are the basic
equations governing the motion of viscous fluid.
Since these equations are necessarily nonlinear

and complicated when applied to realistic
problems, analytical results are often restricted
to particular models with special properties.
However, in some certain flows, the Navier-
Stokes equations are reduced to nonlinear
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ordinary differential equations through a similarity
transform for studying the solution properties [1,
2, 3, 4, 5]. In this paper, a two point boundary
value problem(TPBVP)

f ′′′ +Q(Aff ′′ − f ′2) = β, Q, β ∈ ℜ;A ≥ 1,
(1.1)

subject to the boundary conditions

f(0) = f(1) = f ′′(0) + 1 = f ′(1) = 0 (1.2)

is studied. The given problem arises from
a similarity reduction of boundary layer
approximation of Navier-Stokes system in a
microgravity environment [6]. The Navier-Stokes
system was applied to describe the steady state
for the distributions of velocity in a low Prandtl(Pr)
number fluid in a slot with an insulated bottom.
Here Q is related to the Prandtl number, β is an
integrable constant, f(y) is related to the stream
function, and y = 1 denotes the insulated bottom
of the slot. For the derivation of equation (1.1)
and (1.2) we refer to [7, 8]. Numerical solutions
of the TPBVP for A = 1 and A = 2 were studied
by Hwang et al. [8] using a multiple shooting
code BVPSOL. Hwang et al. also proved the
existence properties for a portion of the solutions
for A = 1 and A = 2 using mathematical
analysis. The rest of the existence properties
of the solutions for A = 1 and A = 2 were
proved by Hwang and Wang [9]. It is our purpose
to study the TPBVP for A ≥ 1. To provide
details, mathematical analysis of the existence
properties of the solutions for A ≥ 1 is given in
Sec. 2. Numerical computation of bifurcation
diagrams and discussion is given in Sec. 3. Sec.
4 provides a brief conclusion.

2 MATHEMATICAL
ANALYSIS OF
EXISTENCE PROPERTIES
OF SOLUTIONS

Note that for each A, if Q = 0, the TPBVP has a
unique solution f(η) = η(1 − η)2/4 for β = 3/2.
Therefore, Q ̸= 0 is assumed in our study. Let
y = b(1 − η) and g(y) = Qf(η)/b for Q ̸= 0 and
b > 0. The TPBVP is equivalent to

g′′′ + g′2 −Agg′′ = −Qβ/b4, (2.1)

subject to the conditions

g(0) = g(b) = g′(0) = g′′(b)+ (Q/b3) = 0. (2.2)

Denote g′′(0) and −Qβ/b4 by α and B,
respectively. By assuming values α and B, Eqs.
(2.1) and (2.2) become the initial value problem:

g′′′ + g′2 −Agg′′ = B, (2.3)

g(0) = g′(0) = g′′(0)− α = 0. (2.4)

Suppose that the solution g(y;α,B,A) to Eqs.
(2.3) and (2.4) meets the y − axis at a positive
value y∗. By setting b = y∗, the initial value
problem in Eqs. (2.3) and (2.4) has a solution
when Q = −(y∗)3g′′(y∗) and β = −B(y∗)4/Q.
Given A ≥ 0, we denote g(y;α,B) =
g(y;α,B,A). g(y;α,B) can be extended to the
maximal interval [0,M), where M = M(α,B) ≤
∞. In fact, g tends to ∞ or −∞ as y approaches
M if M < ∞. Therefore, the classification of
positive zeros of g is given by (α,B) chosen from
the following quadrants:

D1 = {(α,B) | α ≥ 0, B > 0},

D2 = {(α,B) | α < 0, B > 0},
D3 = {(α,B) | α ≤ 0, B < 0},

and
D4 = {(α,B) | α > 0, B < 0}.

We shall classify all possible solutions of Eqs.
(1.1) and (1.2) by assuming values of α,B,A in
Eqs. (2.1) and (2.3). It is clear that g(y; 0, 0, A) =
0 for all A > 0, g(y; 0, B, 3/2) = B

6
η3 for

all B ∈ ℜ, and g(y;α, 0, 2) = 1
2
αη2 for all

α ∈ ℜ. Thus, (α,B) ̸= (0, 0), (α,A) ̸=
(0, 3

2
), and (B,A) ̸= (0, 2) are assumed in the

following discussions. Moreover, let (0,M) be the
corresponding maximal interval of g(y;α,B,A),
where M = M(α,B,A). Note that g can
only blow up to ∞ or −∞ if M < ∞. The
following expressions are used frequently in the
mathematical analysis:
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g′′′ = B − (g′)2 +Agg′′, (2.5)

g(iv) = (A− 2)g′g′′ +Agg′′′, (2.6)

g(v) = (A− 2)(g′′)2 + (2A− 2)g′g′′′ +Agg(iv). (2.7)

2.1 A ≥ 1 and B ≤ 0

Lemma 2.1. For A ≥ 0 and B ≤ 0, g′′(y;α,B,A)
has at most one zero for all α ∈ ℜ.

Proof. Assume that y1 and y2 are the first
and second zero of g′′, respectively. By (2.3),
g′′′(yi) = B− g′(yi)

2 ≤ 0 for i=1,2. If the equality
holds for i = 1 or 2, then B = 0, g′(yi) = 0, and
g′′(yi) = 0. Consider Eq. (2.3) together with the
initial condition g(yi), g′(yi) = 0, and g′′(yi) = 0.
Then g(y) ≡ g(yi), y ∈ [yi,M) is the solution. In
fact, the solution g(y) ≡ g(yi) can be extended to
the maximal interval [0,M). Therefore g(y) ≡ 0.
This contradicts the assumption that (α,B) ̸=
(0, 0). Therefore g′′′(yi) = B − g′(yi)

2
< 0 for

i=1,2. This implies that g′′ has a zero in (y1, y2),
which is a contradiction.

Theorem 2.2. For A > 0, B ≤ 0, and α ≤ 0,
g(y;α,B,A) < 0 on (0,M).

Proof. Since g′′′(0) = B ≤ 0, g′′(0) = α ≤ 0, and
(α,B) ̸= (0, 0), g′′ is negative initially. Assume
that g′′ has a zero on (0,M) and let ȳ be the first
positive zero. This implies that g′′′(ȳ) ≥ 0 and g′

is negative on (0, ȳ), but g′′′(ȳ) = B − g′(ȳ)
2
< 0

is a contradiction. Therefore, g′′ < 0 on (0,M).
This, together with the initial conditions g′(0) = 0
and g(0) = 0, gives the result g(y;α,B,A) < 0
on (0,M).

Lemma 2.3. For A ∈ [0, 2), B ≤ 0, and α > 0,
g′′(y;α,B,A) has exactly one zero.

Proof. Assume g′′ > 0 on (0,M) and then
g > 0 and g′ > 0 on (0,M). Let µ(y) =
exp(−A

∫ y

0
g). We have (µg′′′)′ = (A−2)µg′g′′ <

0 and thus g′′′ ≤ B exp(A
∫ y

0
g) ≤ 0. Thus,

g(iv) < 0 implying that g′′ is concave downward
on (0,M) which contradicts to g′′ > 0 on (0,M).
Hence, g′′(y;α,B,A) has at least one zero. From
Lemma 2.1, g′′(y;α,B,A) has exactly one zero.

Theorem 2.4. For A ∈ [0, 2), α > 0, and B ≤ 0,
g(y;α,B,A) has exactly one zero.

Proof. Let y2 be the zero of g′′ and assume that
g′ > 0 on (0,M) which leads to g > 0 on (0,M).
By the proof of Lemma 2.3, g′′′(y) ≤ B ≤ 0 on
(0, y2). Thus, g′′′ = B − g′

2
+ Agg′′ < 0 on

(y2,M), and g′ is concave downward on (0,M).
This contradicts to g′ > 0 on (0,M), and g′ has
exactly one positive zero. Similarly, g has exactly
one zero.

Theorem 2.5. For A > 2, α > 0, and B ≤ 0,
g(y;α,B,A) has either one or no zero.

Proof. It is easy to prove that if g′′ > 0 on (0,M),
then g has no zero, and if g′′ has exactly one zero
on (0,M), then g has exactly one zero on (0,M).
By Theorem 2.2, g(y; 0, B,A) < 0 on (0,M) for
all B < 0. By continuous dependence on the
initial data, if α is sufficiently small, then g has
exactly one zero.

2.2 A ≥ 1 and B > 0

Lemma 2.6. For A > 2 and α ≥ 0,
g(iv)(y;α,B,A) > 0 on (0,M).

Proof. Assume that B > 0. From Eq. (2.4), we
have g′′′(0) = B > 0. Therefore, all of g, g′,
and g′′ are increasing and positive initially. When
g(k)(t) > 0 for all 0 ≤ k ≤ 3 and A ≥ 2, we have
g(iv)(t) > 0. So, g(k)(t) > 0 is increasing at t for
all 0 ≤ k ≤ 3. Therefore, g(k)(t) > 0 on (0,M) for
all 0 ≤ k ≤ 4 if B > 0 and A ≥ 2. Now if B = 0,
we may assume α > 0. Since g(iv)(0) = 0 and
g(v)(0) > 0 for A > 2, g(iv) is increasing and
positive initially. Therefore, g(k)(t) > 0 on (0,M)
for all 0 ≤ k ≤ 4 by similar arguments as stated
above.

Theorem 2.7. For A > 2, α ≥ 0, g(y;α,B,A) >
0 on (0,M).

Proof. Note that g(t) = α
2
t2 is the solution for

A = 2 and B = 0. This fact, together with Lemma
2.6, completes the proof of this theorem.

Lemma 2.8. For A > 2, α ≤ 0, and B > 0,
g′′(y;α,B,A) has at most one zero.
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Proof. If g′′′ > 0 on (0,M), the Lemma is clear. Suppose that g′′′ has a positive zero and let y0 be
the first zero of g′′′. It follows that g(iv)(y0) ≤ 0 from Eq. (2.6). Hence, g′(y0)g′′(y0) ≤ 0 if A > 2.
Because g′′′ > 0 on (0, y0), g′′(y0) > 0 and g′(y0) ≤ 0. Now, we divide the proof into two cases. Case
(i): g′(y0) = 0. In this case, g′′′(y0) = g(iv)(y0) = 0 and g(v)(y0) > 0. Thus, g′′′ > 0 on (y0, y0 + δ)
for some δ > 0. Suppose that g′′′ > 0 on (y0, y1) and g′′′(y1) = 0. This implies that both g′′ and g′

are positive and increasing on (y0, y1). So g(iv)(y0) > 0. This is a contradiction. Therefore, y0 is the
unique zero of g′′′, and g′′ has exactly one zero. Case (ii): g′(y0) < 0. This leads that g′(y0)2 < B.
Let y∗ ∈ (0, y0) be the first zero of g′′. Thus, g and g′ are negative on [y∗, y0]. This implies g(iv) ≤ 0
on (y∗, y0). Now, we claim that g′′ > 0 for all y > y0. Assume that y∗ is the second zero of g′′. Since
g′′ and g′′′ cannot both be zero at y∗, we have g′′′(y∗) < 0. In fact, g′′′ ≤ 0 on [y0, y

∗]. Otherwise,
there exists y2 in (y0, y

∗) such that g′′′(y2) = 0 and g(iv)(y2) > 0. This implies g′(y2) > 0. By similar
arguments as in Case (i), g′′ > 0 for y > y0. This contradicts the assumption that g′′ has a second
zero at y∗. Let y3 > y0 be a zero of g satisfying g < 0 on [y0, y3). Furthermore, let ȳ = min{y3, y∗}.
Thus g′′′(ȳ) ≤ 0 and g(iv) > [A− 2]g′g′′ on [y0, ȳ]. Then,

∫ ȳ

y0

g(iv)(y)dy >

∫ ȳ

y0

[A− 2]g′(y)g′′(y)dy,

g′′′(ȳ) >
A− 2

2
(g′(ȳ))2 − A− 2

2
(g′(y0))

2.

Next,

g′′′(ȳ)− A− 2

2
[B +Ag(ȳ)g′′(ȳ)− g′′′(ȳ)] = g′′′(ȳ)− A− 2

2
(g′(ȳ))2

≥ −A− 2

2
g′2(y0)

> −A− 2

2
B.

Thus, g′′′−(A−2)gg′′ > 0 at y = ȳ. It contradicts
the sign of g′′′(ȳ). Thus, g′′ > 0 for all y > y0 and
therefore, the proof is complete.

The following theorem is obtained immediately.

Theorem 2.9. For A > 2, α < 0, and B > 0,
g(y;α,B,A) has at most one zero.

For the mathematical analysis of the rest of
the cases, a notation containing the sign
of g(k), where k = 0, 1, · · · , 5, is defined
with (sign g, sign g′, · · · , sign g(v)). We use
“+”“-”,“0”,“+0”,“-0”, and “*” to indicate positive,
negative, zero, positive or zero, negative or zero,
and indeterminate or unimportant, respectively.
For example, (+,−, 0,+0,−0, ∗) at y means that
g(y) > 0, g′(y) < 0, g′′(y) = 0, g′′′(y) ≥
0, g(iv)(y) ≤ 0, and the sign of g(v)(y) is
indeterminate or it does not affect the result of
the analysis.

Lemma 2.10. For A ∈ (1, 2), α ≥ 0, and B > 0,
g′′(y;α,B,A) has at most one zero.

Proof. From the initial condition Eq. (2.4), we
have (+,+,+,+, ∗, ∗) on (0, δ) for some δ >
0. Let y∗ be the first zero of g′′, then we
have (+,+, 0,−,−,−) at y∗ because g′′ and g′′′

cannot be zero simultaneously. Consequently, we
have (+,+,−,−,−,−) on (y∗, y∗ + δ1) for some
δ1 > 0. Suppose that g(iv)(y1) = 0 for some y1 >
y∗ and g(iv)(y) < 0 for y ∈ (y∗, y1). Because
g′′(y) < 0 and g′′′(y) < 0 for y ∈ (y∗, y1], there
are three possible cases of g and g′ values at y1:
(i) (−0,−,−,−, 0,+0), (ii) (+,−,−,−, 0,+0), or
(iii) (+,+0,−,−, 0,+0).

For case (i), if g′′′(y2) = 0 for some y2 > y1
and g′′′(y) < 0 for y ∈ (y1, y2), then g(iv)(y2) ≥
0. Now, g′′′(y2) = 0 and g(iv)(y2) = 0 imply
g′(y2) = 0 or g′′(y2) = 0, which cannot hold
in this case. Therefore, g(iv)(y2) > 0. Thus,
we have (−,−,−, 0,+, ∗) at y2. However, this
contradicts the sign of g(iv)(y2) determined by
Eq. (2.6).

For, case (ii), g(iv)(y1) < 0 from Eq. (2.6). This
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contradicts with the assumption g(iv)(y1) = 0.
For case (iii), g(v)(y1) < 0 from Eq. (2.7). This
contradicts with the sign of g(v)(y1) in this case.

The above three cases give the conclusion that
g′′′ < 0 for y ∈ (y∗,M). Therefore, g′′ < 0 for
y ∈ (y∗,M). Lemma 2.10 proves the following
theorem.

Theorem 2.11. For A ∈ (1, 2), α ≥ 0 and B > 0,
g(y;α,B,A) has at most one zero.

Theorem 2.12. For A ∈ (1, 2), α < 0 and B > 0,
g(y;α,B,A) has at most two zeros.

Proof. From the initial condition in Eq. (2.4), we
have (−,−,−,+,−,−) on (0, δ) for some δ > 0.
We let y1 > 0 such that there are two possible
cases: (i) y1 is the first zero of g′′′, and g, g′, and
g′′ do not change their sign in (0, y1]. (ii) y1 is the
first zero of g′′, and g, g′, and g′′′ do not change
their sign in (0, y1].

For case (i), g(iv)(y1) < 0 from Eq. (2.6). From
case (i) in the proof of Lemma 2.10, g′′′(y) < 0
for y ∈ (y1,M) and g(y;α,B,A) has no zero on
(0,M) .

For case (ii), g(iv)(y1) < 0 and we have
(−,−,+,+,−, ∗) on (y1, y1+δ1) for some δ1 > 0.
We let y2 > y1 such that there are two possible
cases: (a) g′′′(y2) = 0, g′′′(y) > 0 for y ∈ (y1, y2),
and we have (−,−,+,+0, ∗, ∗) on (y1, y2]. (b)
g′(y2) = 0, g′(y) < 0 for y ∈ (y1, y2), and we
have (−,−0,+,+, ∗, ∗) on (y1, y2].

Case (a) is impossible because g(iv)(y2) > 0
from Eq. (2.6).

For case (b), we have (−,+,+,+,−, ∗) on
(y2, y2 + δ2) for some δ2 > 0. We let y3 >
y2 such that there are two possible cases: (1)
g(y3) = 0, g(y) < 0 for y ∈ (y2, y3), and we
have (−0,+,+,+, ∗, ∗) on (y2, y3]. (2) g′′′(y3) =
0, g′′′(y) > 0 for y ∈ (y2, y3), and we have
(−,+,+,+0, ∗, ∗) on (y2, y3].

For case (1), y(iv)(y3) < 0 from Eq. (2.6), and we
have (+,+,+,+,−, ∗) on (y3, y3 + δ3) for some
δ3 > 0. From the proof of Lemma 2.10, g has at

most one zero in (y3,M), and thus, g has at most
two zeros in (0,M).

For case (2), y(iv)(y3) < 0, and we have
(−,+,+,−,−, ∗) on (y3, y3 + δ4) for some δ4 >
0. We let y4 > y3 such that there are three
possible cases: (A) g′′′(y4) = 0, g′′′(y) < 0 for
y ∈ (y3, y4), and we have (−,+,+,−0, ∗, ∗) on
(y3, y4]. (B) g(y4) = 0, g(y) < 0 for y ∈ (y3, y4),
and we have (−0,+,+,−, ∗, ∗) on (y3, y4]. (C)
g′′(y4) = 0, g′′(y) > 0 for y ∈ (y3, y4), and we
have (−,+,+0,−, ∗, ∗) on (y3, y4].

Case (A) is impossible because g(iv)(y4) < 0
from Eq. (2.6).

For case (B), we have (+,+,+,−,−, ∗) on
(y4, y4 + δ5) for some δ5 > 0.

We may apply the proof of Lemma 2.3 and
Theorem 2.4, and g has exactly one zero in
(y4,M). Therefore, g has exactly two zeros in
(0,M).

For case (C), y(iv)(y4) > 0, from Eq. (2.6),
implies that there is ȳ, where y3 < ȳ < y4, such
that y(iv)(ȳ) = 0 and y(iv)(y) > 0 for y ∈ (ȳ, y4].
However, g(v)(ȳ) < 0 from Eq. (2.7). Therefore,
case (C) is impossible.

From all the cases discussed above, we have
concluded that g(y;α,B,A) has at most two
zeros.

From the above lemmas and theorems and the
cases studied by Hwang et al. [8] for A = 1 and
A = 2, the existence properties of solutions for
A ≥ 1 are summarized as follows:

(i) For B ≤ 0, α ≤ 0, and A ≥ 1, g has no zero.

(ii) For B ≤ 0 and α > 0, g has one zero if
A ∈ [1, 2), and g has at most one zero if
A ≥ 2.

(iii) For B > 0 and α < 0, g has at most two
zeros if A ∈ [1, 2), and g has at most one
zero if A ≥ 2.

(iv) For B > 0 and α ≥ 0, g has at most one zero
if A ∈ [1, 2), and g has no zero if A ≥ 2.
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3 NUMERICAL SIMULATIONS AND DISCUSSION
When the solutions to a differential equation satisfy a homogeneity property, an efficient numerical
approach can be constructed to reduce the computational effort [7, 10, 11]. In this section, a
homogeneity property of the solutions to Eqs. (2.1) and (2.2) will be established, and a numerical
approach will be developed for computing the bifurcation diagrams using Q and β as the bifurcation
parameters.

3.1 Preliminaries
The solution g(y;α,B,A) satisfies the following property.

Proposition 3.1. g(y;α,B) = λg(λy;α/λ3, B/λ4), for λ > 0.

Proof. Define h(t) = g(t/λ;α,B)/λ. Let y = t/λ. Then, λh(λy) = g(y;α,B), and λi+1h(i)(t) =
g(i)(y;α,B), where i = 1, 2, 3. We also have h(0) = 0, h′(0) = 0, h′′(0) = α/λ3. Therefore, h(t)
satisfies the following problem:

h′′′ + h′2 −Ahh′′ = B/λ4

h(0) = h′(0) = h′′(0)− α/λ3 = 0.

Thus, h(t) = g(t;α/λ3, B/λ4) =
g(λy;α/λ3, B/λ4). So, g(y;α,B) =
λg(λy;α/λ3, B/λ4).

Now, let y(α,B) be the positive zero, if there is any, of g(y;α,B). Then y(α,B), Q and β satisfy the
following homogeneity property.

Proposition 3.2. For λ > 0,
y(α,B) = y(α/λ3, B/λ4)/λ,

Q(α,B) = Q(α/λ3, B/λ4),

and
β(α,B) = β(α/λ3, B/λ4).

Proof. From Proposition 3.1, g(y;α,B) = 0 implies g(λy;α/λ3, B/λ4) = 0. So, y(α/λ3, B/λ4) =
λy(α,B). For the second equation,

Q(α,B) =
−By4(α,B)

β
=

−By4(α/λ3, B/λ4)

βλ4
= Q(α/λ3, B/λ4).

For the third equation,

β(α,B) =
−By(α,B)

Q(α,B)
=

−By(α/λ3, B/λ4)

λQ(α/λ3, B/λ4)
= β(α/λ3, B/λ4).

From the homogeneity property in Proposition
3.2, we have Q(α,B) = Q(α/λ3, B/λ4) =
Q(1, B/α4/3), β(α,B) = β(1, B/α4/3), and
y(α,B) = y(1, B/α4/3)/λ, if we take λ = α1/3.
This implies that every point (α,B) on the
curve B = kα4/3, where k is a constant,
corresponds to the same point on the Q − β
plane. Also, g(y;α,B,A) has the same number
of positive zeros on the curve B = kα4/3. This
property allows us to design a one-dimensional

computational domain for the computation of
solutions on the α−B plane.

To locate the possible zeros of g(η;α,B,A),
an initial value problem code, SDRIV2 [12], is
employed with (α,B) chosen along a simple
closed curve around the origin in the α−B plane
for every A. That is, we may pick the parameter
(α,B) along the curve |α|+ |B| = 1.

6



Chen et al.; AIR, 6(3), 1-8, 2016; Article no.AIR.22415

0 10,000 20,000 30,000

0

1

2

3

Q

β

 

 

B∈ [0,0.714]⊂ D
1
, α+B=1

B∈ (−1,0]⊂ D
4
, α−B=1

B∈ [0.417,1)⊂ D
2
, −α+B=1

2−cell

3−cell
−6,000 0 6,000 10,000

0

40

80

120

160

Q

β

 

 

−200 0
0

10

20

B∈ [0.379,1)⊂ D
2
, −α+B=1

B∈ (−1,−0.3487]⊂ D
4
, α−B=1

Fig. 1. Bifurcation diagram for (a) A = 1.5 and (b) A = 4.

When g has multiple zeros, Eqs. (1.1) and
(1.2) have multiple solutions corresponding to
different (Q, β) values. For example, let y1 and
y2, where 0 < y1 < y2, be two zeros of g.
Under the transformation given in Sec. 2, f(η) =
yig(y)/Qi, is a solution to Eqs. (1.1) and (1.2)
with parameter values Qi = −y3

i g
′′(yi) and βi =

−B(yi)
4/Qi, i = 1, 2.

A solution f of Eqs. (1.1) and (1.2) is called
a two-cell solution if f ′ has exactly one zero in
(0, 1), and it is called a three-cell solution if f ′ has
exactly two zeros in (0, 1) [7, 8, 6]. Recall that the
TPBVP, Eqs. (1.1) and (1.2), arises from surface-
tension flows in a slot with an insulated bottom.
A two-cell or three-cell solution corresponds to
a two-cell or three-cell flow. Because g(y) =
Qf(η)/b for Q ̸= 0 and b > 0, where y =
b(1−η), f ′ and g′ have the same number of zeros.
Therefore, the number of zeros of g′ can be used
to determine if a solution is a two-cell or three-cell
solution.

3.2 Numerical Simulations
In our first numerical example, we let A = 1.5,
and Fig. 1(a) shows the bifurcation diagram for
(Q, β) ∈ [−1000, 30000]× [0.5, 3.5]. Theorem 2.2
shows that g has no zero when (α,B) ∈ D3.
Along the curve |α| + |B| = 1, the zeros of g
are computed for (α,B) ∈ D1, D2, and D4.
When (α,B) ∈ D1, Lemma 2.10 and Theorem
2.11 show that each of g′ and g has at most
one positive zero. When (α,B) ∈ D4, Theorem
2.4 shows that each of g and g′ has exactly one
positive zero. The numerical computation shows
that the corresponding TPBVP possesses 2-cell
solutions when (α,B) ∈ D1, D4. When (α,B) ∈
D2, Theorem 2.12 shows that g has at most two
positive zeros. The numerical computation shows
that g has two zeros for B ∈ (0.381, 1). Let y1
and y2 be the zeros. The function g(y), where
y ∈ [0, y1], corresponds to a two-cell solution, and
g(y), where y ∈ [0, y2], corresponds to a three-
cell solution.

Next, we let A = 4, and Fig. 1(b) shows the
bifurcation diagram for (Q, β) ∈ [−6000, 10000]×
[0, 180]. From Theorems 2.2 and 2.7, g has
no zero when (α,B) ∈ D1 and D3. Lemma
2.8 and Theorems 2.5 and 2.9 show that both
g and g′ have at most one zero when (α,B) in
D2 and D4. The zeros of g are computed for
(α,B) ∈ D2 and D4. The function g has one
zero for B ∈ (−1,−0.348) and B ∈ (0.348, 1),
and the corresponding TPBVP possesses 2-cell
solutions.

4 CONCLUSION

In this paper, the existence of solutions for the
TPBVP, given by Eqs. (1.1) and (1.2), is studied.
The TPBVP is first transformed into an IVP which
is presented by Eqs. (2.3) and (2.4). Solving
the zeros of the solution g to Eqs. (2.3) and
(2.4) is equivalent to solving the TPBVP. In this
paper, the existence properties of the zeros
of g have been proven for A ≥ 1. From the
mathematical analysis, we conclude that the
TPBVP possesses only 2-cell solutions when
A ≥ 2, and it may possess 2-cell and 3-cell
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solutions when 1 ≤ A < 2. A homogeneity
property of parameters is proven so that the
numerical computation on the parameter α − B
plane is reduced to the perimeter of the square
|α| + |B| = 1. This greatly improves the
computational efficiency. Numerical simulation
is then conducted to verify the existence property
of solutions for the TPBVP.
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