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ABSTRACT 
 

Sideslip angle is one of the state variables in the lateral state-space dynamics of an Unmanned 
Aerial Vehicle (UAV). Large asymmetric aerodynamic loads can be induced on a UAV’s fuselage, 
even at zero sideslip. For steady and level flight, this angle must be controlled. To control the 
sideslip angle, a mathematical model for the UAV is required using static and dynamic 
aerodynamic as well as cross-term coefficients. Aircraft Digital Datcom was used to estimate the 
UAV’s aerodynamic coefficients, aerodynamic stability and control derivatives from its physical 
geometry. The challenge for a control engineer is the choice of transfer function (plant) to be used 
for sideslip angle controller design in an autopilot system. Since both the lateral model and it 
reduced form; Dutch Roll (DR) approximated model have sideslip angle as a state variable. In this 
study, the pitch plane is ignored as well as cross-terms in the moments of inertia. Dutch Roll is 
focused upon firstly; we investigated the dynamics characteristics of both models. Secondly, 
sideslip angle transfer functions obtained from both the lateral and DR approximated models were 
compared. The eigenvalues, natural frequencies, damping ratio, period and number of cycle to 
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damp to half amplitude of the Dutch roll mode in the lateral dynamics are about the same with 
those of the Dutch roll approximated model. Steady state values and open-loop step responses 
computed in MATLAB & Maple differ in magnitude and direction on the Cartesian plane. Despite 
the limitations of this initial effort, Proportional-Integral-Derivative (PID) controllers were designed in 
MATLAB/Simulink for all transfer functions. Design results analysed gives intuitive and informed 
design choice for autopilot gains for the sideslip angle control. 
 

 
Keywords: UAV; PID control; DIGITAL DATCOM; MATLAB/Simulink; Maple®; lateral dynamics. 
 
1. INTRODUCTION 
 
Unmanned Aerial Vehicles (UAVs) have proven 
their usefulness in military reconnaissance in 
recent military conflicts [1]. Their practical 
applications have been expanding to more than 
military uses. Various sizes of UAVs are 
designed for different levels of performance 
depending on their application. UAVs can be 
categorized into four different groups: large, 
medium, small (mini), and micro. 
 
The military has shown the most recent interest 
in mini-UAVs for many reasons. The mini-UAV 
has a wing span of less than 2 m and a gross 
weight of less than 100 kg. It is much more 
portable than its large counterparts and requires 
only one operator. Mini-UAVs can assess ground 
targets at a closer range without being detected. 
Therefore, most mini-UAVs use electric motors 
as a propulsion system, which allows for a 
stealthier and more reliable flight with little engine 
failure. Also a mini-UAV is less expensive and 
can be considered a disposable asset. This 
factor allows pilots to navigate hostile areas and 
focus on their primary mission, rather than plane 
recovery. In addition to military applications, size 
and cost advantages are attracting civilian and 
private uses. Therefore, mini-UAVs are most 
suitable for use in non-military applications 
because they are less expensive and less 
dangerous [2]. 
 
It has long been recognized that asymmetric 
vortex shedding can occur on bodies of 
revolution at high angles of attack. The major 
problem is that at large angles of attack, a vortex 
is formed on one side or another in a random or 
unknown fashion especially with no sideslip.  
This analysis will not use large angles to simplify 
this phenomenon. 
 
Large asymmetric loads can be induced on the 
body itself, even at zero sideslip [3]. 
Experimental results have shown that the vortex-
induced side force can be as high as, or exceed, 
the normal force [4]. In the angle-of-attack range 

where vortex shedding is asymmetric the axial 
flow component is still sufficient to produce 
steady vortices. However, the vortex pattern is 
asymmetric, producing a side force and a yawing 
moment, even at zero sideslip. This side force is 
the result of surface pressure imbalances around 
the fore-body of the aircraft caused by an 
asymmetric fore-body boundary layer and vortex 
system [5]. As such, instability can be induced on 
the UAV and loss of control will be imminent.  
 
To autonomously control the UAV sideslip angles 
and we require firstly, a lateral dynamics 
mathematical model and secondly, a control 
algorithm. The ability to control the UAV’s 
sideslip angle response to match command 
parameters requires an autopilot. This ability is 
largely determined by the performance of                  
the control algorithm implemented by the 
autopilot software. All autopilots reviewed                   
for UAVs state that their control algorithm uses 
the well-established proportional, integral, 
derivative (PID) controller [6-9]. The Proportional-
Integral-Derivative (PID), controller dates back to 
1890s, with the first practical example from 1911 
[10]. 
 
In this study, we are careful enough to show that 
the transfer function for sideslip angle from the 
lateral dynamics model differs from those of a 
reduced Dutch Roll model. Hence, PID control 
gains will differ in the implemented autopilots 
system, which could mar the autopilot system 
capability to control sideslip angle during flight. 
 
The mini-UAV, Ultra Stick 25e chosen for this 
research is commercially available and serves as 
the primary flight test vehicle for the University of 
Minnesota UAV flight control research group. 
The UltraStick 25e is a fixed-wing, radio 
controlled aircraft. It is equipped with 
conventional elevator, aileron, and rudder control 
surfaces. The aircraft is powered by an electric 
motor that drives a propeller. These will be used 
for aerodynamic changes as well as altering 
thrust with altering the current on the electric 
motor employed within this simulation. 
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Fig. 1. 6DoF variables of the Ultrastick 25e mini-U AV 
 
The basic physical characteristics of the UAV are 
as outlined in Table 1. Also, presented in the 
table are the associated with calculated moments 
of inertia. 
 

Table 1. UAV parameters 
 
Parameter  Description  Value and 

units 
 

A 
 

Wing Reference 
Area 

 

0.31 m2 

b Wing Span 1.27 m 
c  Wing Chord 0.25 m 
m Gross weight 1.9 kg 
mc Mass of Payload 0.25 kg 
mT Take off mass 2.15 kg 
Ix Roll moment of 

inertia 

 

0.07151 kg.m2 

Iy Pitch moment of 
inertia 

 

0.08636 kg.m2 

Iz Yaw moment of  
 

0.15364 kg.m2 
Ixz Product of 

inertia 

 

0.014 kg.m2 

 
The UAV will be assumed to be symmetrical, 
which means cross-coupling inertial effects that 
may or may not influence yaw-roll and Dutch roll 
are assumed negligible. This assumption is felt 
valid during the preliminary design stages as in 
this study. We are yet to fly the UAV, and we 
expect it to exhibit these cross coupling effect 
because the body structure can never be 
perfectly symmetrical. 
 
This paper is organized as follows: A lateral 
fixed-wing aircraft flight dynamics model 

structure is presented from a six-degree-of-
freedom (6DoF) equation of motion (EoM) 
standpoint in 2.0. Hence, open loop system 
dynamic analysis is done. Also, actuator dynamic 
model for the aileron and rudder is presented. 
Section 3.0 introduces an Autopilot system and 
the PID control algorithm. Also, the designed 
sideslip angle controllers are presented. In 
section 4.0, all results were discussed. 
 
2. LATERAL FIXED-WING AIRCRAFT 

FLIGHT DYNAMICS 
 
The fundamental goal of flight dynamics 
modelling is to represent the flight motion 
numerically for a given input and output, as close 
to the flight motion in the real world as the 
application requires. All flight dynamics models 
are based on the mathematical model derived 
from Newtonian Physics. From Newton’s second 
law, an aircraft’s motion in its six-degrees-of-
freedom (DOF) can be described by a system of 
non-linear first order differential equations. 
 
These equations of motion served as the 
fundamental for almost all flight dynamics model.  
 
Twelve states are required to describe the 
aircraft rigid-body dynamics, these are: three 
inertial positions (X, Y, Z), three body-axis 
velocities (u, v, w), three attitude angles (θ, φ,Ψ), 
and three body-axis angular rates (p, q, r). The 
coupled (longitudinal and lateral dynamics) 6DoF 
equation of motion for a rigid aircraft is given as 
[11];

M,q, θ (Pitch)   

Left Aileron   

Right Aileron   

Right Elevator   

Left Elevator   

Rudder   

N,r,Ψ 
 (Yaw) 

  

L,p,� (roll), 

  

X, u   Z, w   

Y, v 
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o o o o o o o

u v w w p q re

o o o o

e

mu X u X v X X w X p X mW q X r

mg cos X X X Xξ η ζ τθ θ ξ η ζ τ

 − − − − − − − − + 
 

= + + +

&&

                                    (1) 

 

cos

sin

o o o o o o o

u v w w p q re e e

o o o o

e

Y u mv Y v Y w Y w Y mW p Y q Y mU r mg

mg Y Y Y Yξ ζ τη

φ θ

ψ θ ξ η ζ τ

   − + − − − − + − − − − −   
   

= + + +

&& &

    (2) 

 

sin

o o o o o o o

u v w w p p re

o o o o

e

Z u Z v m Z w Z w Z p Z mU q Z r

mg Z Z Z Zξ ζ τηθ θ ξ η ζ τ

   − + + − − − − + − −   
   

= + + +

& &

                               (3) 

 
o o o o o o o o o

u v w w rp q x xzL u L v L w L w L p L q L r I p I r L L L Lξ ζ τηξ η ζ τ− − − − − − − + − = + + +& & & &    (4) 

 
o o o o o o o o o o o

u v w w p q r yM u M v M w M w M p M q M r I q M M M Mξ ζ τηξ η ζ τ− − − − − − − + = + + +& & &       (5) 

 
o o o o o o o o o o o

u v w w p q r xz zN u N v N w N w N p N q N r I p I r N N N Nξ ζ τηξ η ζ τ− − − − − − − − + = + + +& & & &    (6) 

 

( )sin cos tanp q rϕ ϕ ϕ θ= + +&            (7) 

 

cos sinq rθ ϕ ϕ= −&                          (8) 

 
sin cos

cos

q rϕ ϕψ
θ

+=&                             (9) 

 
where, m is the mass of the UAV, u, v, w are the 
velocity components in x,y,z axis respectively. η, 
ξ ,ζ are notations for the control surfaces of 
elevator, aileron and rudder respectively.  X, Y, Z 
are forces in x,y,z direction and L,M,N are 
moments in the same axis coordinated . θ, φ, Ψ 
are the three Euler angles of pitch, roll and yaw 
respectively. While Ix, Iy and Iz are moment of 
inertia in roll, pitch and yaw respectively, while 
Ixy, Ixz and Iyz are the products of inertia in the 
appropriate axis. 
 
2.1 Aerodynamic Coefficient 
 
The software, Aircraft DIGITAL DATCOM [12] 
provided the parameters for the aerodynamic 
model [13] in (10). We recognize that some of 
these dynamic coefficients may have some 
limitations. Future work plans to examine the 

validity of this data. Moreover, for the low 
subsonic speed, it will be assumed that static 
aerodynamic coefficients will be assumed 
constant as a function of velocity, control 
deflection angles, angle of attack and yaw 
angles. Note that the rudder influence on roll and 
yaw motion are not provided by DATCOM. 
 

2

2 2

2 2

r

p r

p r

Y Y Y

L L L L L L

N N N N N N

rb
C C C

V
pb rb

C C C C C C
V V
pb rb

C C C C C C
V V

β

β δ δξ ζ

β δ δξ ζ

ξ ζ

ξ ζ

β

β δ δ

β δ δ

= +

= + + + +

= + + + +

 (10) 

 
2.2 Trimming and Linearization 
 
A nonlinear aircraft model built in Simulink was 
linearized at forward velocity, u=17m/s, pitch 
angle, θ= 0.0217rad, elevator deflection angle, η 
= 0.091rad, throttle angle, τ = 0.559rad, aileron 
and rudder deflections of ξ= 0rad, ζ= 0rad 
respectively, and altitude of 120m.The simplest 
form of the equations of motion is taken in the 
body axis reference frame of the aircraft and 
assumes an Earth coordinate system. MATLAB 
scripts for trim and linearization of the 6DoF EoM 
of the UAV modelled in Simulink, [14] was 
executed for this study.  
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To trim or find equilibrium values for a 6DOF 
equation of motion for a UAV requires a                    
good knowledge of advanced computational 
techniques. A trim point, also known as an 
equilibrium point, is a point in the parameter 
space of a dynamic system at which the system 
is in a steady state. The trim problem for a UAV 
can be described as finding a set of suitable 
input values to satisfy a set of conditions hence, 
a trim point involves setting of its controls that 
causes the UAV to fly straight and level in all 
planes.  The suitable input values are the control 
surface deflections, the thrust setting and the 
UAV’s attitude. The set of conditions are the 
UAV’s accelerations. The variables associated 
with the trim problems can be divided into three 
categories:  
 

• Objective variables 
• Control variables and  
• Flight condition variables. 

 
The objective variables need to be driven 
towards the specified values, often zero (i.e. 
steady flight with zero sideslip). The objective 
parameters are combined in the objective vector 
o, shown as;   
 

[ ]T
o u v w p q r β= & & & & & &            (11) 

 
The sideslip angle is also included, since for 
most cases, there are multiple solutions to the 
trim problem, each with a different sideslip angle. 
In the desired solution the sideslip angle should 
be zero. In that case, the drag is at a minimum. 
The control parameters are adjusted in order to 
drive the objective parameters to their specified 
values. Together, they form the control vector c, 
[15]. 
 

[ ]T

e a rc δ δ δ τ φ θ ψ=        (12) 

 
Finally, the 12 states of the 6DOF equation of 
motion must be initialized; with the initial state 
conditions. In MATLAB, the trim command is 
used to find equilibrium points. The object of 
trimming is to bring the forces and moments 
acting on the UAV into a state of equilibrium. 
That is the condition when the axial, normal and 
side forces, and the roll, pitch and yaw moments 
are all zero.  
 
In MATLAB, the linmod [16] command was used 
to invoke linearization after trimming. The 
assumption made for decoupling the linear model 
that will ignore pitch axis effects such as 
porpoiseing motion but will include the cross 
coupling effects between the two modes is 
negligible. These assumptions are;  
 

1. The UAV is designed with conventional 
control surfaces that do not give significant 
cross-coupling control between the lateral 
and longitudinal modes; 

2. The UAV is symmetrical about the xz plane 
in which the inertia cross coupling in xy 
(lateral) and xz (longitudinal) planes results 
in minimal cross-coupling between the 
lateral and longitudinal modes. 

 
Decoupled lateral–directional motion involves 
roll, yaw and sideslip only. The motion is 
therefore described by the side force Y, the 
rolling moment L and the yawing moment N 
equations only. As no longitudinal motion is 
involved the longitudinal motion variables u, w 
and q and their derivatives are all zero. Also, 
decoupled longitudinal–lateral motion means that 
the longitudinal aerodynamic coupling derivatives 
are negligibly small and may be taken as zero 
whence; 

 

0.
o o o o o o o o o o o o

u w w q u w w q u w w qY Y Y Y L L L L N N N N= = = = = = = = = = = =& & &                           (13)                         
 
Similarly, since the airframe is symmetric, elevator deflection and thrust variation do not usually cause 
lateral–directional motion and the coupling aerodynamic control derivatives may also be taken as zero 
thus; 
 

0.
o o o o o o

Y Y L L N Nη τ η τ η τ= = = = = =                                                                                    (14) 
 
The equations of lateral asymmetric motion are therefore obtained by extracting (2), (4),(6),(7) and (9) 
from the 6DoF equation of motion. This gives; 
 



 
 
 
 

Aliyu et al.; AIR, 6(3): 1-14, 2016; Article no.AIR.22738 
 
 

 
6 
 

cos

sin

o o o o o o o

u v w w p q re e e

o o

e

Y u mv Y v Y w Y w Y mW p Y q Y mU r mg

mg Y Yξ ζ

φ θ

ψ θ ξ ζ

   − + − − − − + − − − − −   
   

= +

&& &

     (15) 

 
0 0 0 0 0 0 0 0 0

u v w w p q r x xzL u L v L w L w L p L q L r I p I r L Lξ ζξ ζ− − − − − − − + − = +& & & &

                  

(16) 

 
o o o o o o o o o

u v w w p q r xz zN u N v N w N w N p N q N r I p I r N Nξ ζξ ζ− − − − − − − − + = +& & & &           (17) 

 

( )sin cos tanp q rϕ ϕ ϕ θ= + +&                                                                                          (18) 

 

sin cos

cos

q rϕ ϕψ
θ

+=&                                                                                                           (19) 

 

 
                               

Fig. 2. Perturbed lateral dynamics UAV 
 
In state-space, (15)-(19) can be represented as given with (20) where aileron and rudder serves as 
the inputs to the system. 
 

,

0 1 0 0 0 0 0

0 0 1 0 0 0 0

v p r

v p r

v p r

v y y y y y v y y

p l l l l l p l l

r n n n n n r n n

φ ψ ξ ζ

φ ψ ξ ζ

φ ψ ξ ζ

ξ
ζ

φ φ
ψ ψ

       
       
         
       = +  
         
       
              

&

&

&

&

&                                                    

(20) 

 
The lateral–directional state equation (20) is reduced from fifth order to fourth order as given in (22). 
In this case the derivatives are referred to aeroplane wind axes rather than body axes and will 
generally have slightly different values from the former. It can be shown that in a lateral perturbation 
the sideslip angle β is given by 
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1

0 0

tan ,
v v

u u
β −  

≈ = 
 

                                                                                                          (21) 

 
and the lateral small perturbation equations can be modified to incorporate sideslip angle β in the 
output equation or alternatively, it may replace lateral velocity v in the state equation. When the output 
equation is augmented, the lateral state equations may be written as: 
 

0 0 0 0 0

0

0

,

0 1 0 0 0 0

v p r

v p r

v p r

y y V y V y V y V y V

l V l l l p l lp

n V n n n r n nr

φ ξ ζ

φ ξ ζ

φ ξ ζ

ββ
ξ
ζ

φφ

       
       

        = +           
       
        

&

&

&

&

                            (22) 

 
where, yv, yp, yr,  and yØ  are the dimensionless stability aerodynamic derivatives with respect to the 
state variables, while yζ, and yξ are the dimensionless control aerodynamic derivatives. ξ and ζ are the 
aileron and rudder  input control signal. For this study, our lateral model is;   
 

0.86 0.93 16.76 9.69 0.05 5.12

2.76 15.83 3.31 0 154 4.93

1.67 0.51 2.73 0 11.30 80.70

0 1 0.07 0 0 0

x x
ξ
ζ

− −   
   − − − −     = +     − −  
   
   

&                                    (23) 

 

[ ]0.59 0 0 0
p

y
r

β

φ

 
 
 =
 
 
 

                                                                                                  (24) 

 
The steady state values (DC gains) to a unit step aileron and rudder input are computed as;  
 

[ ]1 87.0 85.6Lk CA B
ξ
ζ

−  = − = − −  
 

                                                                                 (25) 

 
Transfer functions were extracted from the state-space model using the MATLAB command ss2tf, 
Maple was then used to factor the numerator and denominator. These transfer functions are as given 
in (26) and (27), while their numerical open-loop responses to a step signal are depicted in Fig. 3. 
 

( ) ( )
( )

( )( )( )
( ) ( )( )2

0.00295 9.45 1.16 6644.5
,

15.78 0.00512 3.64 30.56
L

s s s s
G s

s s s s sξβ

β
ξ

+ + −
= =

+ + + +
                               (26) 

 

( ) ( )
( )

( ) ( )( )
( )( )( )2

0.3021 266.19 15.80 0.17
,

15.78 0.00512 3.64 30.56
L

s s s s
G s

s s s s sζβ

β
ζ

+ + −
= =

+ + + +
                               (27) 

 
In Maple, the analytical open-loop step response [17] for the sideslip angle with aileron and rudder 
inputs are given in (28) and (29) respectively. 
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( )15.57 ( 1.82 5.22 )

( 1.82 5.22 ) 0.0051

( ) 86.97 0.03 0.19 0.06

          (0.19 0.059 ) 86.62

t i t

i t t

t e i e

i e e

ξβ − − −

− + −

= − − + + +

− +
                                             (28) 

 

( )15.57 ( 1.82 5.22 )

( 1.82 5.22 ) 0.0051

( ) 85.6 0.0007 1.34 0.4

           ( 1.34 0.4 ) 88.29

t i t

i t t

t e i e

i e e

ζβ − − −

− + −

= − − + − − +

− − +
                                           (29) 
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Fig. 3. Open loop response for sideslip angle and r oll rate 
 
Open-loop bode plot for the transfer function in (26) and (27) are shoe in Fig. 4 
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Fig. 4. Bode plots for sideslip angle transfer func tions with (a) aileron (b) rudder inputs 
 
The lateral–directional characteristic polynomial 
for a classical aeroplane is fourth order; when 
equated to zero, defines the characteristic 
equation [18] which may be written as 
 

4 3 2 0.As Bs Cs Ds E+ + + + =               (30) 
 
The expression (30) most commonly factorises 
into two real roots and a pair of complex roots 
which are most conveniently written as 
 

( )( ) ( )( ) ( )2 21 1 1 1 2 0.s r L L Ls T T s sζ ω ω+ + + + = (31) 

 
Here, Maple was used to obtain the 
characteristics equation in (32) from the state 

space model in (23) and using the factor 
command in Maple, we obtained the expression 
in (33). 
 

4 3 219.42 88.05 482.67 2.47.λ λ λ λ+ + + + (32) 
 

( ) ( ) ( )215.78 0.00512 3.64 30.56s s s s+ + + +   (33) 

 

The distinctive roots of the lateral model are 
deduced to be 
 

15.78

1.82 5.22 ,

0.0051
L iλ

− 
 = − ± 
 − 

                               (34) 
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The eigenvalues and corresponding eigenvector 
magnitude of the lateral model are described in 
Table 2. Also, associated with the eigenvalues 
and the eigenvector magnitudes are the 3 distinct 
modes of the lateral dynamics.  
 
Table 2. Mode, eigenvalues and eigenvector 

magnitude 
 
Variable  Dutch roll  

(-1.82± 5.22i) 
Roll  
(-15.78) 

Spiral  
(-0.0051) 

β 0.9434 0.0567 0.6131 
p 0.1745 0.9959 0.0295 
r 0.1245 0.0317 0.3702 
φ 0.0992 0.0630 0.6973 
 
The eigenvector magnitudes, show that the roll 
mode is dominate in roll rate p. Spiral mode 
dominates in roll attitude response φ. And Dutch 
Roll mode dominates changes in sideslip angle. 
 
Comparing terms between (30) and (32), 
approximate values for the roll mode and spiral 
mode time constants are given by  
 

1
0.05s

19.42r

A
T

B
≅ = =                         (35) 

 

482.67
195.4s

2.47s

D
T

E
≅ = =                    (36) 

 
The natural frequency and damping ratio of the 
Dutch Roll mode in the lateral dynamics are 
obtaining by comparing terms also in (31) and 
(33), this gives the following; 

130.5628 5.53secLω −= =                   (37) 

 
3.64

0.33
2L

L

ζ
ω

= =                                    (38) 

 
The period of the Dutch Roll mode in the lateral 
dynamics model is given in (39) and the number 
of cycles to damp to half amplitude in (40) 
 

2 2

2 2
1.2sec

1 5.53 1 0.3316
L

L

T
π π

ω ζ
= = =

− −
    (39) 

 
2 2

1 2

1ln 2 ln 2 1 0.3316
0.296

2 2 0.3316L
N

ζ
π ζ π

− −= = =  (40) 

 
2.3 Approximation to Dutch Roll Mode 
 
Assuming that Dutch rolling motion involves no 
rolling motion at all, and is based on the fact that 
the mode is primarily a yawing oscillation and 
aerodynamic coupling causes rolling motion as a 
secondary effect. Hence, this Thus, this 
assumption holds; 
 

0.p p φ φ= = = =&&                                   (41) 

 
Considering that the Dutch roll mode consists 
primarily of sideslip angle and yaw motion, then 
we can neglect the rolling moment equation. With 
this assumption, (23) reduces to;  

 

0.86 16.76 0.05 5.12

1.67 2.73 11.3 80.7
v r

v r

y yy y
x

n nn n rr

ξ ζ

ξ ζ

β ξ ξβ
ζ ζ

− −              
= + = +              − −             

&

&
     (42) 

 
The roots of the approximated Dutch roll model are given in (43) and steady state values for sideslip 
angle are expressed in (44) 
 

[ ]1.795 5.21 ,DR iλ = − ±                                                                                                      (43) 

 

[ ]1 6.24 45.04DRk CA B
ξ
ζ

−  = − = −  
 

                                                                               (44) 

 
The characteristic equation for the DR approximation is given in (45) and its general for is given in 
(46). 
 

2 3.59 30.3370 0λ λ+ + =                                                                                                    (45) 
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2 22 0DR DR DRs sζ ω ω+ + =                        (46) 
 
Hence we can go ahead to compute the DR 
approximation model’s natural frequency and 
damping ratio as follows: 
 

130.337 5.51secDRω −= =                   (47) 
 

2 3.59
0.33

2 11.02
DR DR

DR
DR

ζ ωζ
ω

= = =             (48) 

 
The period of the Dutch Roll mode from the DR 
approximated model is given in (49) and the 
number of cycles to damp to half amplitude in 
(50) 
 

2 2

2 2
1.2sec

1 5.51 1 0.33
DR

DR DR

T
π π

ω ζ
= = =

− −
                                                           

(49) 

2 2

1 2

1ln 2 ln 2 1 0.33
0.32

2 2 0.33L

DR

DR

N
ζ

π ζ π
− −= = =                                                            

(50) 
 
For aileron and rudder inputs to sideslip angle, 
the transfer functions for the Dutch roll 
approximations are given as; 
 

( ) ( )
( ) 2

0.05 189.3
,

3.59 30.34DR

s s
G s

s s sξβ

β
ξ

−= =
+ +

  (51) 

 

( ) ( )
( ) 2

5.12 1367
,

3.59 30.34DR

s s
G s

s s sζβ

β
ζ

+= =
+ +

  (52) 

 
The analytical forms of the sideslip angle step 
response to aileron and rudder inputs in the DR 
approximation are given in (53) and (54),while 
the numerical responses is depicted in Fig. 5. 

 

( )9 1.795 8 9( ) 6.24 3.04 10 7.11 10 sin(5.21 ) 2.05 10 cos(5.21 )tt e t tξβ − −= − + × + × + ×         (53) 

 

( )9 1.795 9 10( ) 45.06 3.64 10 3.98 10 sin(5.21 ) 1.24 10 cos(5.21 )tt e t tζβ − −= − × + × + ×        (54) 

 

0 0.5 1 1.5 2 2.5 3
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20

40

60

Time(s)

β(
ra

d)

 

 

ξDR

ζDR

 
                            

Fig. 5. DR sideslip angle response to a step signal  
 
Open-loop bode plot for the sideslip angles transfer functions given in (45), (46) are given in Fig. 6. 
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 Table 3 captures the numerical values of all poles and zeros of the transfer functions in the study. 
 

Table 3. Poles and zeros of transfer functions 
 

S/N Plant  Poles  Zeros  
1. ( )LG s

ξβ  
-15.78,-1.82±5.22i, 
-0.0051 

6644.5,-9.4,-1.2 

2. ( )LG s
ζβ  

-15.78,-1.82±5.22i, 
-0.0051 

-266.2,-15.8, 0.17 

3. ( )D RG s
ξβ  

-1.82±5.22i 3786 

4. ( )D RG s
ζβ  

-1.82±5.22i -266.9 

 
2.4 Actuator Dynamics 
 
For simplicity, a linear second order model of an 
actuator is employed with the following dynamic 
characteristics; natural frequency of 150rad /s, 
damping ratio of 0.7, and an initial condition of 
zero. Its transfer function is given as; 
 

( )
2

2 22
n

n n

H s
s

ω
ξω ω

=
+ +

                        (55) 

 
3. AUTOPILOT DESIGN WITH 

PROPORTIONAL-INTEGRAL-
DERIVATIVE (PID) CONTROL 

 
In this section, the autopilot system in a typical 
UAV is described together with the PID control 
algorithm intended for the system control loop.  
 

3.1 Autopilot 
 
An autopilot is a MEMs system used to guide the 
UAV without assistance from human operators, 
which consists of both hardware and its 
supporting software. A UAV autopilot has a 
close-loop control system, which comprises of 
two parts: the state observer and the controller. It 
has two fundamental functions: state estimation 
and control inputs generation based on the 
reference paths and the current states. The 
primary objective of UAV autopilot systems is to 
consistently guide UAVs to follow reference 
paths, or navigate through some waypoints [19]. 
Here we chose to control the sideslip angles of 
the UAV for future implementation of the 
obtained PID control gains in an autopilot 
system. 
 

3.2 PID Control 
 
Proportional-Integral-Derivative (PID) control is a 
classical single-input-single-output control 

algorithm. They have proven to be robust in the 
control of many important applications. The 
simplicity of these controllers is also their 
weakness, since it limits the range of plants that 
they can control satisfactorily. Indeed, there 
exists a set of unstable plants which cannot even 
be stabilized with any member of the PID family 
[20]. In other to design a PID controller, the 
mathematical model of the system to be 
controlled must be in transfer function. The aim 
of a PID controller is to make the error signal, i. 
e., the difference between the reference signal 
and the measured signal, as small as possible 
(go to zero with time) [21,22]. This is expressed 
mathematically as 
 

lim lim 0
t t

e r y
→∞ →∞

= − →
      

                        (56) 

 
Where, r is the reference signal and y is the 
measured signal from the sensor and for this 
study, sensor gain is taken as unity. 
 
Mathematically, the PID controller designed in 
this study is described as: 
 

[ ] ( ) ( ) ( )
0

,
t

T

p i d

d
K e t K e d K e t

dt
ξ ζ τ τ= + +∫ (57) 

 
where Kp, Ki and Kd represent proportional, 
integral and derivative gains respectively, and ξ, 
ζ are the aileron and rudder input signals.  
 
The PID control design objective in this study is 
to control the sideslip angle to meet the following 
design specifications; 
 

• Settling time less than 3 seconds; 
• Rise time less than 0.1 seconds; 
• Percentage overshoot less than  

10 per cent 
• Gain margin, at least 3db  
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• Phase margin at least 30° 
• Bandwidth of about 150 rads/s 

 
Hence, with the transfer functions of interest at 
hand, a set-point tracking PID control scheme 
was modelled in MATLAB/Simulink as shown in 
Fig. 7, [23]. Simulation results are shown in               
Fig. 8.  
 
The pre-modelled PID block that comes with 
MATLAB/Simulink 2014a, was used to tune the 
PID gains. When implemented in a design as 
shown in Fig. 8, it linearizes the system and 
comes up with optimum values for kd, kp, and ki. 
A window is immediately launched after the 
tuning and system characteristics (Table 4) are 
displayed. If further tuning is required, this is 
done directly on the pop-up window; either to 
make the tuned response faster or slower. While 

this is done, controller characteristics are also 
automatically modified. 
 
4. DISCUSSION OF RESULTS 
 
The Dutch Roll (DR) mode in (42) is a reduced 
form of the full lateral model of the UAV in (23). 
The eigenvalues identified as those of the DR 
mode in the full lateral model in (34), are the 
same with those in the reduced model in (43). 
Both systems DC gains (steady-state values) 
vary as presented in (25), and (44). Hence, the 
open-loop step responses of the two systems are 
also different.  These were numerically computed 
in MATLAB 2014a and depicted in Figs.3 and 5. 
It is pertinent to note that steady-state values 
with respect to aileron and rudder in the lateral 
dynamics have close magnitude values                    
and on the same side of the Cartesian 

 

 
 

Fig. 7. PID controller design for lateral dynamics sideslip angle in MATLAB/Simulink 
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Fig. 8. Closed-loop  step  responses of PID controlled sideslip angles 

 
Table 4. Roll and sideslip angle designed PID contr oller characteristics 

 
S/N Plant  Controllers  Transient response  Stability  

P I D N t r(s) ts(s)  PO(%) GM(db)  PM(deg)                         
1 ( )LG s

ξβ  
-0.01 -0.00 0.43 0.03 153 576 7.40 82.60, 

@5.41rads/s 
64.70 

@0.009rads/s 
2 ( )D RG s

ξβ  
-1.21 -2.11 -0.17 359 0.03 1.13 7.13 12.3 

@115rads/s 
60.00 

@34.2rads/s 
3 ( )LG s

ζβ  
-0.01 -0.00 1.30 0.01 159 486 9.30 34.10 

@1.04rads/s 
60.00 

@0.009rads/s 
4 ( )D RG s

ζβ  
0.22 0.29 0.03 260 0.02 1.25 8.57 12.6 

@147rads/s 
60.00 

@47.8rads/s 
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coordinate (positive or negative). For the DR 
model, these values are widely apart and on 
opposite side of the Cartesian coordinate.  
 
Analytical open-loop step response was 
computed using Maple 18, for all transfer 
functions as shown in (28), (29), (53) and (54). 
This was necessary to verify results of 
eigenvalues and DC gains obtained in MATLAB. 
Also, Maple’s symbolic forms of the step 
response give a single expression depicting 
system eigenvalues, decaying terms, and steady 
state values for each input signals.  
 
The natural frequencies, damping ratio, period 
and number of cycle to damp to half amplitude of 
the Dutch roll mode in the lateral dynamics  i.e., 
(37), (38), (39), (40) are about the same with 
those of the reduced lateral model in the Dutch 
roll approximation, i.e., (47), (48), (49), (50). 
 
The stability of any systems depends only on the 
poles of the system. All poles of the transfer 
functions are stable. Poles must be in the left half 
plane (negative) for the system to be stable.  
This fact is evident from (34) and (43) and also, 
depicted in the analytical expressions, (28), (29), 
(53) and (54). 
 
Open-loop bode plot of GL(s)βξ  ,GL(s)βζ  (Fig. 4) 
and  GDR(s)βξ  (Fig. 6a), suggest unstable system 
dynamics hence, the need to design controllers 
is inevitable. But for GL(s)βζ  , its open-loop bode 
plot suggest a stable system. Stability of a 
system in open-loop does not guarantee closed-
loop system stability especially in an autopilot 
system where a reference signal needs to be 
tracked.  
 
The transient response characteristics of a 
closed-loop dynamic system (plant with 
controller) described by transfer functions 
depends on the poles and zeros of the plant.  In 
this study, GDR(s)βζ  is the only  minimum phased 
plant, as shown in Table 3. Hence, its phase 
response is restricted within 0 degrees to -90 
degrees and the amplitude (GM) response is 
12.6db or unique for a frequency of 146rads/s 
(Table 4). The rest are Non minimum phase 
systems. The range of phase angle of these 
systems phase transfer function is greater than 
90 degrees. Also, the non-minimum phase 
systems are slow in response because of their 
faulty behaviour at the start of the response. This 
is shown in their rise time, for the minimum 
phase plant GDR(s)βξ  it has a rise time, tr= 0.02 
which is the lowest compared to the others in 
Table 4.  

The basic essence of a control algorithm like the 
PID is to make an unstable plant stable by 
moving its poles to the left hand plane and 
ensure that those with stable poles have 
acceptable closed-loop stability margins and 
appreciable time response characteristics. In this 
study, all PID controlled plants have appreciable 
transient characteristics and stability margins 
except GL(s)βξ  and GL(s)βζ  ; plagued with a rise 
time  greater than 100s and settling time above 
400s (Table 4).  
 

5. CONCLUSION 
 

To control the sideslip angles of a UAV, we 
obtained a lateral dynamics mathematical model 
for a mini-UAV flying at a fairly constant velocity 
at Mach 0.3. Transfer function describing sideslip 
angle were obtained after converting the UAV 
linearized state-space model to transfer function 
in MATLAB/Simulink. The lateral model was 
compared with it reduced form of DR 
approximation in all dynamic characteristics and 
disparity were found only in steady state values 
and open-loop step responses of both models. 
Non- minimum phased plants were observed to 
lag the minimum phased plants in rise time after 
PID controllers were designed. From the 
standpoint of our control design objective, the 
sideslip angle controllers from the DR model met 
all design objectives. Those from the lateral 
dynamics model failed to meet the time response 
characteristic design objectives of rise time and 
settling time. 
 

To an extent, this shows the limitation of SISO 
control algorithms over Multiple-Input-Multiple-
Output (MIMO) control algorithms. In the former 
cross-coupling system dynamics effect are 
neglected and might have marred the control 
effort of the PID control algorithm in the plant 
dynamics of GL(s)βξ  and GL(s)βζ . Hence, control 
gains from such plants implemented in an 
autopilot system will jeopardize the mission of 
our UAV. It is pertinent to note that UAV or 
aircraft flying at supersonic speed with velocity 
that are not constant are bound to have different 
behaviors and may obviously require additional 
analysis and study. 
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