
Polar Circumtriple Planets and Disks Can Only Form Close to a Triple Star

Stephen Lepp1,2 , Rebecca G. Martin1,2 , and Stephen H. Lubow3

1 Nevada Center for Astrophysics, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
2 Department of Physics and Astronomy, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA

3 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Received 2022 November 1; revised 2022 December 28; accepted 2023 January 2; published 2023 January 23

Abstract

Observations of protoplanetary disks around binary and triple star systems suggest that misalignments between the
orbital plane of the stars and the disks are common. Motivated by recent observations of polar circumbinary disks,
we explore the possibility of polar circumtriple disks and therefore polar circumtriple planets that could form in
such a disk. With n-body simulations and analytic methods, we find that the inclusion of a third star, and the
associated apsidal precession, significantly reduces the radial range of polar orbits so that circumtriple polar disks
and planets can only be found close to the stellar system. Outside of a critical radius that is typically in the range of
3–10 times the outer binary separation, depending upon the binary parameters, the orbits behave the same as they
do around a circular orbit binary. For some observed systems that have shorter-period inner binaries, the critical
radius is considerably larger. If polar circumtriple planets can form, we suggest that it is likely that they form in a
disk that was subject to breaking.

Unified Astronomy Thesaurus concepts: Exoplanet dynamics (490); Celestial mechanics (211); Trinary stars
(1714); Protoplanetary disks (1300)

1. Introduction

Multiple stellar systems are common in star-forming regions
(Duchêne & Kraus 2013). Disks around triple star systems are
also expected to be common (Tobin et al. 2016; Bate 2018),
and there are several well-known examples including GG Tauri
A (Di Folco et al. 2014; Keppler et al. 2020; Phuong et al.
2020a) and GW Ori (Bi et al. 2020; Kraus et al. 2020;
Smallwood et al. 2021). A common feature of these disks is
that they are tilted with respect to the orbital plane of the stars.
Disk misalignment may initially occur, for example, because of
turbulence in the molecular gas cloud (Offner et al. 2010;
Bate 2012; Tokuda et al. 2014) or later accretion of material by
the young binary (Bate et al. 2010; Bate 2018). Misalignment
may be increased later by stellar flybys (Nealon et al. 2020) or
bound stellar companions (e.g., Martin & Lubow 2017; Martin
et al. 2022).

Around an eccentric binary star system, test particle orbits
have two stable stationary states: coplanar alignment to the
binary orbit and polar alignment, in which the angular
momentum of the particle orbit is aligned to the binary
eccentricity vector and 90° to the binary orbital plane (Verrier
& Evans 2009; Farago & Laskar 2010; Doolin & Blundell
2011; Chen et al. 2019). A particle that is misaligned from one
of these two stationary states undergoes nodal precession. Low
initial inclination orbits precess about the binary angular
momentum vector, while high initial inclination orbits precess
about the binary eccentricity vector. Since the test particle does
not affect the dynamics of the binary, the qualitative behavior
does not depend on the orbital radius of the particle around the
binary unless general relativity or tides become important
(Lepp et al. 2022).

A circumbinary disk with a low mass can undergo similar
dynamical behavior to a test particle (e.g., Aly et al. 2015;
Martin & Lubow 2018). If the disk is in good radial
communication, it can undergo solid body precession at an
angular momentum weighted average rate (Papaloizou &
Terquem 1995; Larwood et al. 1996). For protoplanetary
disks, the radial communication is wavelike (Papaloizou &
Pringle 1983; Lubow & Ogilvie 2001). Dissipation in the disk
leads to alignment either toward coplanar (Facchini et al. 2013;
Nixon et al. 2013) or polar, depending on the initial tilt (Martin
& Lubow 2017; Lubow & Martin 2018; Zanazzi & Lai 2018;
Cuello & Giuppone 2019). Several polar circumbinary disks
around eccentric binaries have been observed (Kennedy et al.
2012, 2019; Kenworthy et al. 2022) although none have yet
been observed around a triple star. While polar circumbinary
planets have not yet been observed, their formation may be as
efficient as in a coplanar configuration (Childs &
Martin 2021a, 2021b).
While the evolution of circumbinary particles and disks is

now fairly well understood, the inclusion of an inner
hierarchical triple star system has not been explored in detail.
In this work, for the first time, we examine the effect of an inner
triple star system on the existence of polar orbits. In Section 2
we use n-body simulations, and in Section 3 we compare them
to analytic models. The inner and outer binaries that compose
the triple star undergo apsidal precession. We show that this
can remove the possibility of polar orbits outside of a critical
radius from the triple star. This is similar to the effects of
general relativity that also causes apsidal precession of the
binary (Lepp et al. 2022) but with much higher precession
rates. In Section 4 we draw our conclusions and discuss
implications both for observations of circumtriple disks and for
the properties of planets that may form in such disks.

2. Circumtriple Particle Orbits

In this section we first consider the dynamics of a particle
orbiting a triple star with our standard parameters, and then we
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consider the effect of varying different triple star parameters.
We use the REBOUND N-body code (Rein & Liu 2012). The
simulations were integrated using a combination of IAS15, a
15th order Gauss–Radau integrator (Rein & Spiegel 2015)
and the WHFast, a symplectic Wisdom–Holman integrator
(Wisdom & Holman 1991; Rein & Tamayo 2015).

2.1. Triple Star Parameters

Triple star systems are found to occur with a large range of
properties. Figure 3 of Tokovinin (2021) plots the outer binary
period as a function of the inner binary period for a sample of
1820 systems that lie within a distance of 200 pc. The sample is
subject to strong selection effects that favor the detection of
close spectroscopic binaries and resolved wide binaries.
Nonetheless, the plot suggests that for longer-period inner
binaries (>1y), the outer to inner semimajor axis ratios
typically range from 3 to 50. For shorter-period inner binaries
(<1y), the ratio range is typically from 20 to 100, and ratios of
greater than 1000 also occur.

Triple star systems may be unstable for a wide range of
parameter space (Mardling & Aarseth 2001; Valtonen &
Karttunen 2006; Vynatheya et al. 2022). We consider
hierarchical triple systems composed of an inner binary with
an outer binary companion. The inclination of the inner binary
to the inclination of the binary companion must be small
enough to avoid von Zeipel–Kozai–Lidov (ZKL) oscillations
(von Zeipel 1910; Kozai 1962; Lidov 1962; Naoz 2016;
Hamers 2021). Figure 3 of Tokovinin (2021) shows evidence
of the stability limit at a period ratio of about 4.7 predicted by
Mardling & Aarseth (2001). For the range of parameters
studied, the eccentricity of all the particle orbits are relatively
constant.

The orbits are scale free in mass and length, and we adopt as
our mass unit the total mass of the triple star system, mAB, and
for our length unit, the semimajor axis of the outer companion,
aAB. For our standard parameters, the inner binary has a total
mass mA and is composed of an equal mass binary with
mAa=mAb= 0.25mAB, semimajor axis aA= aAB/20, eccentri-
city eA= 0, and an inclination of iA= 0 (coplanar) relative to
outer companions orbit. The outer companion to the binary has
mass mB=mA= 0.5mAB and is in an orbit with an eccentricity
of eAB= 0.5.

More generally, we define the relative mass of the inner
binary as fA

m

m m
Ab

Aa Ab
=

+
, where mAb is the smaller of the two

masses, and so this parameter ranges from 0 to 0.5. The relative
mass of the companion is fB

m

m
B

AB
= . Since the companion may

be smaller or larger in mass than the inner binary, this
parameter ranges from 0 to 1. Our standard parameters have
fA= 0.5 and fB= 0.5. These parameters are in the stable region
for circumtriple systems. The system becomes unstable with
larger aA and eAB. Adopting the multilayer perceptron (MLP)
model from Vynatheya et al. (2022) and varying eAB, we find it
is stable for eAB 0.8 and aA/aAB 0.13. We check our ranges
of parameters with the MLP model (Vynatheya et al. 2022) to
avoid unstable regions. However, the transition between stable
and unstable is gradual rather than abrupt (Hayashi et al. 2022),
and so we have chosen our standard parameters to be well clear
of unstable regions.

2.2. Test Particle Orbits around Our Standard Triple Star

We run test particle orbits at radius r around the triple
star. The test particles can have unstable orbits if they are
too close to the AB binary (Holman & Wiegert 1999; Chen
et al. 2020; Quarles et al. 2020). We only consider orbits at
radii large enough to be stable. We analyze the test particle
orbits in the frame of the AB binary made up of the
companion star orbiting the inner binary. We characterize
the test particle orbit by its inclination and nodal phase
angle relative to this binary. The inclination of the orbit is
given by

l li cos , 11
AB p(ˆ · ˆ ) ( )= -

where lAB
ˆ is a unit vector in the direction of the AB binary

angular momentum and lp̂ is a unit vector in the direction of the
particle’s angular momentum. The nodal phase angle is the
angle measured relative to the eccentricity vector of the outer
binary and is given by

⎛

⎝
⎜

⎞

⎠
⎟

l l e

l e
tan 90 , 2

AB1 p AB

p AB

ˆ · (ˆ ˆ )
ˆ · ˆ

( )f =
´

+ -

(Chen et al. 2019, 2020) where f is the phase angle and eABˆ is
the eccentricity vector of the outer binary.
We run test particle orbits around our standard triple star that

begin in circular orbits at radii of r= 3.5, 4.5, 5.5, and 6 aAB.
We start with initial inclinations in 10° increments from 10° to
170° and with an initial longitude of the ascending node of 90°.
The resulting orbits are plotted in the i icos , sin( )f f phase
plane in the left panel of Figure 1. The right panel shows the
same information but displays the paths of the particle’s orbital
angular momentum vector on the unit sphere.
For low initial inclinations, there is a circulating region

shown in green, in which the particle angular momentum
vector precesses around the binary angular momentum
vector. The retrograde circulation region is shown in blue
where the particle’s angular momentum vector is orbiting
about the negative of the binary’s angular momentum vector.
There is a librating region, shown in red, where the particle
angular momentum vector precesses around a stationary
inclination. This stationary inclination for close-in particles
is at i= 90° and aligned with the binary eccentricity vector.
As the particle moves to larger orbital radii, the stationary
inclination moves to higher inclinations. Once the stationary
inclination is >180°, there are no more librating orbits, and
the particle has similar dynamics to one around a circular
orbit binary since it nodally precesses about the binary
angular momentum vector for all inclinations. This is very
similar to the behavior seen in Lepp et al. (2022) where we
considered test particle orbits about a binary that was
precessing due to the effects of general relativity. Here the
behavior of the triple star system is causing a similar
precession but at a timescale over an order of magnitude
higher.
All the simulations in this paper were run with zero-mass test

particles, but to see the effects of a massive particle, we ran
select simulations with various mass particles. The simulations
are essentially unchanged by introducing a particle up to
mAB/1000 (about a Jupiter mass if mAB≈ 1Me). A Jupiter
mass particle follows the test particle evolution. Masses
significantly above this mass can change the evolution. In

2
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particular, large masses in polar orbits induce a precession in
the outer binary in the opposite direction of that caused by the
inner binary and cause the total precession of the outer binary
to be slower.

2.3. Critical Radius for Librating Orbits

In Figure 2 we show the smallest initial inclination for a
librating orbit, imin; the largest initial inclination for a librating
orbit, imax; and the stationary inclination, is, where the orbit

Figure 1. Test particle orbits around our standard triple star at orbital radii of r = 3.5, 4.5, 5.5, and 6 aAB. Left: the i icos , sin( )f f phase plane. Right: precession
paths for the angular momentum vector of the test particles plotted on surface of sphere. The angular momentum and eccentricity unit vectors of binary are shown in
green and red, respectively. The circulating orbits are shown in green, librating orbits are red, and retrograde circulating orbits are blue.

Figure 2. The minimum initial inclination (imin, magenta), maximum initial inclination (imax, blue) for librating orbits, and the stationary polar inclination (green) for
varying eA, eAB, aAB, or iA (in degrees) from our standard model. The analytic curve for the stationary state is from Equation (8), with α = 2. The key in upper left
panel applies to all nine panels.

3

The Astrophysical Journal Letters, 943:L4 (7pp), 2023 January 20 Lepp, Martin, & Lubow



stays at a fixed inclination with no nodal precession. The upper
left panel in Figure 2 represents our standard triple star
parameters. There are circulating orbits at low inclinations
i imin< and retrograde circulating orbits for i imax> . If
i 180 ,max >  then there is no retrograde circulating region
and since the librating orbits occur around is, there are no
librating orbits when is> 180°. The precession of the triple star
system causes the stationary inclination to move to higher
inclinations with increasing test particle radius, until it becomes
greater than 180°, and then there are no librating orbits. We call
this radius the critical radius, rc, and it represents the maximum
radius at which test particles can orbit the outer binary in a
polar orbit. For our standard triple star parameters, rc= 5.7 aAB.

We now consider the effect of varying the triple star orbital
parameters on the test particle orbits. The other panels in
Figure 2 take our standard model and vary one of the
parameters. In the next two panels across the top, we vary the
eccentricity of the inner binary from eA= 0 to eA= 0.4 and
eA= 0.6. The change in eA increases the apsidal precession rate
of the AB binary by about 30% for eA= 0.4 and about 70% for
0.6. The radius rc then occurs at smaller orbital radii of 5.28
and 4.87 aAB for eA= 0.4 and eA= 0.6, respectively.

Next, we vary from our standard case the eccentricity of the
companion from its value of eAB= 0.5 to eAB= 0.2 and
eAB= 0.6. In both cases, rc is reduced though the effect is much
weaker than that seen for varying eA. This is because eAB affects
both the precession rate of the ascending node of the test

particle and the apsidal precession rate of the AB binary (see
Section 3).
We then vary the ratio of the semimajor axis of the inner

binary to the companion from its standard value of
aA/aAB= 1/20. For aA/aAB= 1/16 we find rc≈ 5 aAB, and for
aA/aAB= 1/30, we find rc= 7.25 aAB, which is off the range of
the plot. This again reflects the change in the apsidal precession
rate of the binary with changing geometry. Finally, we consider
the effect of the inclination of the inner binary relative to the
triple star companion. We have restricted our simulations to
small angle inclinations to avoid ZKL oscillations that would
introduce additional time variations. We change our standard
model to have the inner binary’s orbit inclined to the orbital
plane of the companion, and this increases rc. The critical
radius gets larger as the apsidal precession rate gets smaller.
However, we note that the inclination has a weak effect on the
critical radius.
Figure 3 shows the critical radius rc as a function of some of

the triple star parameters. The crosses show the numerical
determination of the radius. We vary eA, eAB, aA, iA, fA, and fB.
The critical radius depends on the rate of the apsidal precession
of the AB binary as well as on the nodal precession rate of the
test particle orbit (see the next section). The faster the apsidal
precession, the smaller the critical radius. For typical triple star
parameters (Tokovinin 2008, 2021), the critical radius is in the
approximate range 3− 10 aAB, unless one of the stars has a
much smaller mass than the others. The innermost stable orbit
for a polar circumbinary test particle is typically around

Figure 3. The critical radius, rc, inside of which there are polar orbits for varying eA, eAB, aA, iA, fA, and fB from our standard model parameters. The purple crosses
show numerical simulations, and the green curves show the analytical estimate. The analytic lines only depend on α in the top left panel (since eA = 0 everywhere
else), and there we take α = 2.
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2− 2.5 aAB (Chen et al. 2020), and so the radial range of stable
polar circumtriple orbits may be quite small. However, as
discussed in Section 2.1, some observed triple star systems
found with short-period inner binaries have more extreme outer
to inner semimajor axis ratios that allow the critical radius to
extend to more than 80 aAB.

The libration timescale increases with the semimajor axis of
the test particle. For our standard model, the critical radius
outside of which there are no polar orbits is rc= 5.73 aAB. In
this case, for a test particle at r= 5.5 aAB, orbits near the
stationary inclination librate about it with a period of about
4000PAB, where PAB is the orbital period of the outer binary. At
an orbital radius of r= 4.5 aAB, orbits near the stationary
inclination librate with a period of about 800 PAB.

3. Analytical Estimation

The stationary inclination occurs where the apsidal preces-
sion rate of the binary is equal to the nodal precession rate of
the test particle. We follow Zanardi et al. (2018) to analytically
find the stationary inclination based on the quadrupole order
expansion of the Hamiltonian. They derived it for the case
where general relativity drives the apsidal precession. The
precession of the ascending node of the test particle is given by
Equation (4) in Zanardi et al. (2018). For a circular (e= 0)
polar stationary orbit (Ω= 90°), the nodal precession rate is

⎛
⎝

⎞
⎠

m m k

m r

a

r

i e3 cos 1 4

4
, 3A B

AB

AB AB
s 3 2 3 2

2 2( ) ( )W = -
+

where k2 is the gravitational constant. We equate this to the rate
of change of the longitude of the periapsis for the binary,

AB AB AB  v w= + W , to find the stationary inclination for the test
particle:

⎜ ⎟
⎛
⎝

⎞
⎠

i
k

m

m m

r

a e
cos

4

3

1

1 4
. 4s AB

AB

A B AB AB

1
3 2 7 2

2 2

( )
( )

( )v= -
+

-

This formula is general, and the apsidal precession rate for the
binary could come from general relativity (e.g., Zanardi et al.
2018), tidal interactions (e.g., Sterne 1939), or interactions with
a companion star (e.g., Morais & Correia 2012).

The precession rate of the longitude of the periapsis of the
companion in a triple in the quadrupole approximation is given
by

⎜ ⎟⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
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1 cos cos 2 6

A A A
A
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2
2
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( ) ( ) ( )

( ( ) ) ( ) ( )

a

w

= +
-

+ -

(see Equations (25) and (26) in Morais & Correia 2012),
where iA is the inclination of the inner binary relative to the
outer binary, and ωA is the argument of the periapsis of the
inner binary measured relative to the outer binary. The
same rate may also be found for the coplanar case by
adding all the quadrupole terms for w and W for the outer
binary (Equations (74) and (76) in Naoz 2016); the
inclination dependence is slightly different as Morais &
Correia (2012) approximate the outer binary as the fixed
plane. In all our configurations, the outer binary carries
most of the angular momentum, and so this is a good
approximation, as seen in Figures 2–4. The first term in
Equation (6) sets the average rate of apsidal precession, and
the second term causes an oscillation about this average
precession rate. If ωA is an odd multiple of 45°, then the
second term is zero. In practice, one can ignore the second
term if one wants the average precession over long times or
in a time that is centered around an odd multiple of 45°. The
expression is valid so long as aA = aAB and mB is not much
less than mA, meaning that the AB binary has most of the
angular momentum, and thus the AB binary plane is very
nearly a fixed plane in the system.

Figure 4. Left: apsidal precession rate ( v) variation with eA around our standard triple star, one with eAB = 0.4, and one with an inclination iA = 30°. The analytical
fits are shown with coefficients of both α = 1.5 and α = 2.0. Right: the coefficient α in front of eA

2 in the precession formula averaged over the values of eA from 0.1
to 0.9.

5

The Astrophysical Journal Letters, 943:L4 (7pp), 2023 January 20 Lepp, Martin, & Lubow



For an inclination of zero, the function in Equation (6)
simplifies to

F e e, 0 1 . 7AB A
2( ) ( ) ( )a= +

Here, the 3

2
a = factor given in Morais & Correia (2012) works

well in the limit of aAB? aA, and we find it works well for
ratios of aA/aAB 0.005. However, our standard triple star has
aA/aAB= 0.05, and so higher order terms have changed this
parameter. In Naoz (2016) it is clear that the octupole terms
vanish for our standard case of an equal mass inner binary, and
so it must be due to even higher order terms (e.g., Yokoyama
et al. 2003; Vinson & Chiang 2018; de Elía et al. 2019). We
now consider numerical fits for this parameter.

The left panel of Figure 4 shows the numerically determined
particle precession rates around the triple star as a function of
eA. We consider the standard model with eAB= 0.4 and the
standard model with iA= 30°. To get an accurate precession
rate, we average the precession rate over 40 periods of the AB
binary and over a time with the relative angle of the precession
of 45°; this assures that the second term in Equation (6)
averages to zero.

In the right-hand panel, we show a numerical determination
of α as a function of aA/aAB. We take eAB= 0.1, 0.3, and 0.5
with a coplanar binary and inclinations of 10°, 20°, and 30°
with eAB= 0.5. For each point, we vary eA between 0.1 and 0.9
in steps of 0.1 and find for each an exact α that would give that
rate relative to the eA= 0 rate. We then average all of these. At
small ratios of aA/aAB, the best fit for α is 3/2, but close to our
standard model aA/aAB= 0.05, a much better fit is α= 2.

We now take ABv from Equation (5) and find the stationary
inclination with Equation (4) to be

⎜
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⎜ ⎟
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⎠
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´
+ -

-

The orange curves in Figure 2 show the analytic stationary
inclination with α= 2. There is good agreement between this
and the numerical solutions.

We find the critical particle orbital radius outside of which
there are no polar orbits by setting is= 180° and solving for r to
find

⎜
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Our standard parameters have rc/aAB= 5.73, in agreement with
the top left panel of Figure 2. More generally we find

r

a

M A E

F
5.73 , 10c

AB
2 7

( )=

where M, A, and E are scaling functions for the radius in terms
of mass, semimajor axis, and eccentricity of the companion,
which have been normalized to one for our standard

parameters. The scaling with masses is
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with semimajor axis is
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and with the companion eccentricity is
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The green curves in Figure 3 show this analytic solution for the
critical radius. We see that there is good agreement between the
numerical and analytic solutions.

4. Discussion and Conclusions

Misaligned circumbinary test particle orbits around an
eccentric binary undergo nodal precession either about the
binary angular momentum vector (i= 0°) or about the
stationary polar inclination that is aligned to the binary
eccentricity vector (i= 90°). The orbit type depends on the
initial particle inclination and the binary eccentricity, but it
does not depend upon the particle semimajor axis. With n-body
simulations and analytic methods, we have investigated the
dynamics of circumtriple particle orbits. For close-in particles,
the polar inclination is 90°, and the orbits around the triple star
are similar to those around the outer binary, with the inner
binary replaced by a single star. However, with a hierarchical
triple star, the inner and outer binaries undergo apsidal
precession, and this leads to an increasing polar stationary
inclination with increasing particle semimajor axis. There is a
critical radius rc outside of which there are no polar orbits, only
circulating orbits that precess about the binary angular
momentum vector. We find for typical parameters that the
critical radius is in the approximate range 3–10 times the outer
binary semimajor axis. Therefore, polar circumtriple orbits
typically exist only relatively close to a triple star. But for some
observed shorter-period inner binaries (<1y), the ratio of the
outer to inner semimajor axis is quite large (Tokovinin 2021).
In such cases, the circumtriple orbits can occur at relatively
large distances from the outer binary.
A low-mass circumtriple disk can undergo similar behavior

to the particles, but the radii of the disk communicate with each
other, allowing solid body precession. Therefore, a disk with an
outer radius larger than rc could reach a polar state. However,
because rc can be only a few times larger than the outer binary
separation, even if a disk began with an outer radius smaller
than rc, it may quickly spread out beyond this, depending upon
the disk viscosity. This suggests that a polar circumtriple disk
could form although it may be the inner part of a broken disk. If
rc is small, communication through the disk may instead lead
the outer parts to dominate the behavior and the disk to move
toward coplanar alignment. These effects should be investi-
gated in future work.
There are two triple star systems that may have planets

orbiting them, GG Tauri A (Phuong et al. 2020b) and GW Ori
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(Bi et al. 2020; Smallwood et al. 2021). The GG Tauri A
system consists of three stars (Di Folco et al. 2014) with
mB= 0.6Me, mAa= 0.38Me, and mAb= 0.3Me. The outer
binary semimajor axis is estimated to be aAB= 36 au and inner
binary semimajor axis is about aA= 5.1 au. The other orbital
parameters are uncertain, but we can estimate M≈ 1,
A≈ 0.55, and rc= 3.2 aAB= 113 au. The disk around the
triple star system extends from r= 180 au≈ 5 aAB to 800 au,
and the proposed planet is at about 230 au. The second
system, GW Ori, has the triple star parameters mAa=
2.47Me, mAb= 1.43Me, mAB= 1.36Me, aA= 1.2 au,
aAB= 8.89 au, eA= 0.069, and eAB= 0.379 (Kraus et al.
2020). These give A= 0.56, M= 0.95, F= 1, and E= 1.05,
and we find rc= 3.0 aAB= 28.4 au. The observed disk is at
r> 36 au≈ 4 aAB, and the proposed planet is at r= 100 au.
Again the disk and the planet are well outside the critical
radius.

For both of these observed circumtriple systems, the inner
edge of the disk and the orbits of the potential planets are larger
than rc. This suggests that the dynamics of the planet and disk
is similar to that around a circular orbit binary. A coplanar
circumbinary disk is truncated at 2–3 times the binary
separation (Artymowicz & Lubow 1994), and the cavity size
decreases with increasing tilt of the disk (Miranda & Lai 2015;
Lubow & Martin 2018; Franchini et al. 2019). Therefore, the
inner truncation radius of both of these disks is larger than
would be predicted for a circumbinary disk. This could be a
result of the triple star effects described in this work that limit
the disk to be in r> rc. The tidal truncation of a misaligned
circumtriple disk should be investigated in future work.

We thank an anonymous referee for useful comments that
improved the manuscript. We acknowledge support from NASA
through grants 80NSSC21K0395 and 80NSSC19K0443.
S.H.L. thanks the Institute for Advanced Study for visitor
support.

ORCID iDs

Stephen Lepp https://orcid.org/0000-0003-2270-1310
Rebecca G. Martin https://orcid.org/0000-0003-2401-7168
Stephen H. Lubow https://orcid.org/0000-0002-4636-7348

References

Aly, H., Dehnen, W., Nixon, C., & King, A. 2015, MNRAS, 449, 65
Artymowicz, P., & Lubow, S. H. 1994, ApJ, 421, 651
Bate, M. R. 2012, MNRAS, 419, 3115
Bate, M. R. 2018, MNRAS, 475, 5618
Bate, M. R., Lodato, G., & Pringle, J. E. 2010, MNRAS, 401, 1505
Bi, J., van der Marel, N., Dong, R., et al. 2020, ApJL, 895, L18
Chen, C., Franchini, A., Lubow, S. H., & Martin, R. G. 2019, MNRAS,

490, 5634
Chen, C., Franchini, A., Lubow, S. H., & Martin, R. G. 2020, MNRAS,

495, 141

Chen, C., Lubow, S. H., & Martin, R. G. 2020, MNRAS, 494, 4645
Childs, A. C., & Martin, R. G. 2021a, MNRAS, 507, 3461
Childs, A. C., & Martin, R. G. 2021b, ApJL, 920, L8
Cuello, N., & Giuppone, C. A. 2019, A&A, 628, A119
de Elía, G. C., Zanardi, M., Dugaro, A., & Naoz, S. 2019, A&A, 627, A17
Di Folco, E., Dutrey, A., Le Bouquin, J. B., et al. 2014, A&A, 565, L2
Doolin, S., & Blundell, K. M. 2011, MNRAS, 418, 2656
Duchêne, G., & Kraus, A. 2013, ARA&A, 51, 269
Facchini, S., Lodato, G., & Price, D. J. 2013, MNRAS, 433, 2142
Farago, F., & Laskar, J. 2010, MNRAS, 401, 1189
Franchini, A., Lubow, S. H., & Martin, R. G. 2019, ApJL, 880, L18
Hamers, A. S. 2021, MNRAS, 500, 3481
Hayashi, T., Trani, A. A., & Suto, Y. 2022, arXiv:2209.08487
Holman, M. J., & Wiegert, P. A. 1999, AJ, 117, 621
Kennedy, G. M., Matrà, L., Facchini, S., et al. 2019, NatAs, 3, 230
Kennedy, G. M., Wyatt, M. C., Sibthorpe, B., et al. 2012, MNRAS, 421, 2264
Kenworthy, M. A., González Picos, D., Elizondo, E., et al. 2022, A&A,

666, A61
Keppler, M., Penzlin, A., Benisty, M., et al. 2020, A&A, 639, A62
Kozai, Y. 1962, AJ, 67, 591
Kraus, S., Kreplin, A., Young, A. K., et al. 2020, Sci, 369, 1233
Larwood, J. D., Nelson, R. P., Papaloizou, J. C. B., & Terquem, C. 1996,

MNRAS, 282, 597
Lepp, S., Martin, R. G., & Childs, A. C. 2022, ApJL, 929, L5
Lidov, M. L. 1962, P&SS, 9, 719
Lubow, S. H., & Martin, R. G. 2018, MNRAS, 473, 3733
Lubow, S. H., & Ogilvie, G. I. 2001, ApJ, 560, 997
Mardling, R. A., & Aarseth, S. J. 2001, MNRAS, 321, 398
Martin, R. G., Lepp, S., Lubow, S. H., et al. 2022, ApJL, 927, L26
Martin, R. G., & Lubow, S. H. 2017, ApJL, 835, L28
Martin, R. G., & Lubow, S. H. 2018, MNRAS, 479, 1297
Miranda, R., & Lai, D. 2015, MNRAS, 452, 2396
Morais, M. H. M., & Correia, A. C. M. 2012, MNRAS, 419, 3447
Naoz, S. 2016, ARA&A, 54, 441
Nealon, R., Cuello, N., & Alexander, R. 2020, MNRAS, 491, 4108
Nixon, C., King, A., & Price, D. 2013, MNRAS, 434, 1946
Offner, S. S. R., Kratter, K. M., Matzner, C. D., Krumholz, M. R., &

Klein, R. I. 2010, ApJ, 725, 1485
Papaloizou, J. C. B., & Pringle, J. E. 1983, MNRAS, 202, 1181
Papaloizou, J. C. B., & Terquem, C. 1995, MNRAS, 274, 987
Phuong, N. T., Dutrey, A., Diep, P. N., et al. 2020a, A&A, 635, A12
Phuong, N. T., Dutrey, A., Di Folco, E., et al. 2020b, A&A, 635, L9
Quarles, B., Li, G., Kostov, V., & Haghighipour, N. 2020, AJ, 159, 80
Rein, H., & Liu, S.-F. 2012, A&A, 537, A128
Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424
Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376
Smallwood, J. L., Nealon, R., Chen, C., et al. 2021, MNRAS, 508, 392
Sterne, T. E. 1939, MNRAS, 99, 451
Tobin, J. J., Looney, L. W., Li, Z.-Y., et al. 2016, ApJ, 818, 73
Tokovinin, A. 2008, MNRAS, 389, 925
Tokovinin, A. 2021, Univ, 7, 352
Tokuda, K., Onishi, T., Saigo, K., et al. 2014, ApJL, 789, L4
Valtonen, M., & Karttunen, H. 2006, The Three-Body Problem (Cambridge:

Cambridge Univ. Press)
Verrier, P. E., & Evans, N. W. 2009, MNRAS, 394, 1721
Vinson, B. R., & Chiang, E. 2018, MNRAS, 474, 4855
von Zeipel, H. 1910, AN, 183, 345
Vynatheya, P., Hamers, A. S., Mardling, R. A., & Bellinger, E. P. 2022,

arXiv:2207.03151
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528
Yokoyama, T., Santos, M. T., Cardin, G., & Winter, O. C. 2003, A&A,

401, 763
Zanardi, M., de Elía, G. C., Di Sisto, R. P., & Naoz, S. 2018, A&A, 615, A21
Zanazzi, J. J., & Lai, D. 2018, MNRAS, 473, 603

7

The Astrophysical Journal Letters, 943:L4 (7pp), 2023 January 20 Lepp, Martin, & Lubow

https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2270-1310
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0003-2401-7168
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://orcid.org/0000-0002-4636-7348
https://doi.org/10.1093/mnras/stv128
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449...65A/abstract
https://doi.org/10.1086/173679
https://ui.adsabs.harvard.edu/abs/1994ApJ...421..651A/abstract
https://doi.org/10.1111/j.1365-2966.2011.19955.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3115B/abstract
https://doi.org/10.1093/mnras/sty169
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.5618B/abstract
https://doi.org/10.1111/j.1365-2966.2009.15773.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.1505B/abstract
https://doi.org/10.3847/2041-8213/ab8eb4
https://ui.adsabs.harvard.edu/abs/2020ApJ...895L..18B/abstract
https://doi.org/10.1093/mnras/stz2948
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5634C/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.5634C/abstract
https://doi.org/10.1093/mnras/staa1143
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..141C/abstract
https://ui.adsabs.harvard.edu/abs/2020MNRAS.495..141C/abstract
https://doi.org/10.1093/mnras/staa1037
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.4645C/abstract
https://doi.org/10.1093/mnras/stab2419
https://ui.adsabs.harvard.edu/abs/2021MNRAS.507.3461C/abstract
https://doi.org/10.3847/2041-8213/ac2957
https://ui.adsabs.harvard.edu/abs/2021ApJ...920L...8C/abstract
https://doi.org/10.1051/0004-6361/201833976
https://ui.adsabs.harvard.edu/abs/2019A&A...628A.119C/abstract
https://doi.org/10.1051/0004-6361/201935220
https://ui.adsabs.harvard.edu/abs/2019A&A...627A..17D/abstract
https://doi.org/10.1051/0004-6361/201423675
https://ui.adsabs.harvard.edu/abs/2014A&A...565L...2D/abstract
https://doi.org/10.1111/j.1365-2966.2011.19657.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418.2656D/abstract
https://doi.org/10.1146/annurev-astro-081710-102602
https://ui.adsabs.harvard.edu/abs/2013ARA&A..51..269D/abstract
https://doi.org/10.1093/mnras/stt877
https://ui.adsabs.harvard.edu/abs/2013MNRAS.433.2142F/abstract
https://doi.org/10.1111/j.1365-2966.2009.15711.x
https://ui.adsabs.harvard.edu/abs/2010MNRAS.401.1189F/abstract
https://doi.org/10.3847/2041-8213/ab2fd8
https://ui.adsabs.harvard.edu/abs/2019ApJ...880L..18F/abstract
https://doi.org/10.1093/mnras/staa3498
https://ui.adsabs.harvard.edu/abs/2021MNRAS.500.3481H/abstract
http://arxiv.org/abs/2209.08487
https://doi.org/10.1086/300695
https://ui.adsabs.harvard.edu/abs/1999AJ....117..621H/abstract
https://doi.org/10.1038/s41550-018-0667-x
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..230K/abstract
https://doi.org/10.1111/j.1365-2966.2012.20448.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.421.2264K/abstract
https://doi.org/10.1051/0004-6361/202243441
https://ui.adsabs.harvard.edu/abs/2022A&A...666A..61K/abstract
https://ui.adsabs.harvard.edu/abs/2022A&A...666A..61K/abstract
https://doi.org/10.1051/0004-6361/202038032
https://ui.adsabs.harvard.edu/abs/2020A&A...639A..62K/abstract
https://doi.org/10.1086/108790
https://ui.adsabs.harvard.edu/abs/1962AJ.....67..591K/abstract
https://doi.org/10.1126/science.aba4633
https://ui.adsabs.harvard.edu/abs/2020Sci...369.1233K/abstract
https://doi.org/10.1093/mnras/282.2.597
https://ui.adsabs.harvard.edu/abs/1996MNRAS.282..597L/abstract
https://doi.org/10.3847/2041-8213/ac61e1
https://ui.adsabs.harvard.edu/abs/2022ApJ...929L...5L/abstract
https://doi.org/10.1016/0032-0633(62)90129-0
https://ui.adsabs.harvard.edu/abs/1962P&SS....9..719L/abstract
https://doi.org/10.1093/mnras/stx2643
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473.3733L/abstract
https://doi.org/10.1086/322493
https://ui.adsabs.harvard.edu/abs/2001ApJ...560..997L/abstract
https://doi.org/10.1046/j.1365-8711.2001.03974.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.321..398M/abstract
https://doi.org/10.3847/2041-8213/ac54b4
https://ui.adsabs.harvard.edu/abs/2022ApJ...927L..26M/abstract
https://doi.org/10.3847/2041-8213/835/2/L28
https://ui.adsabs.harvard.edu/abs/2017ApJ...835L..28M/abstract
https://doi.org/10.1093/mnras/sty1648
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.1297M/abstract
https://doi.org/10.1093/mnras/stv1450
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452.2396M/abstract
https://doi.org/10.1111/j.1365-2966.2011.19986.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.3447M/abstract
https://doi.org/10.1146/annurev-astro-081915-023315
https://ui.adsabs.harvard.edu/abs/2016ARA&A..54..441N/abstract
https://doi.org/10.1093/mnras/stz3186
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.4108N/abstract
https://doi.org/10.1093/mnras/stt1136
https://ui.adsabs.harvard.edu/abs/2013MNRAS.434.1946N/abstract
https://doi.org/10.1088/0004-637X/725/2/1485
https://ui.adsabs.harvard.edu/abs/2010ApJ...725.1485O/abstract
https://doi.org/10.1093/mnras/202.4.1181
https://ui.adsabs.harvard.edu/abs/1983MNRAS.202.1181P/abstract
https://doi.org/10.1093/mnras/274.4.987
https://ui.adsabs.harvard.edu/abs/1995MNRAS.274..987P/abstract
https://doi.org/10.1051/0004-6361/201936173
https://ui.adsabs.harvard.edu/abs/2020A&A...635A..12P/abstract
https://doi.org/10.1051/0004-6361/202037682
https://ui.adsabs.harvard.edu/abs/2020A&A...635L...9P/abstract
https://doi.org/10.3847/1538-3881/ab64fa
https://ui.adsabs.harvard.edu/abs/2020AJ....159...80Q/abstract
https://doi.org/10.1051/0004-6361/201118085
https://ui.adsabs.harvard.edu/abs/2012A&A...537A.128R/abstract
https://doi.org/10.1093/mnras/stu2164
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446.1424R/abstract
https://doi.org/10.1093/mnras/stv1257
https://ui.adsabs.harvard.edu/abs/2015MNRAS.452..376R/abstract
https://doi.org/10.1093/mnras/stab2624
https://ui.adsabs.harvard.edu/abs/2021MNRAS.508..392S/abstract
https://doi.org/10.1093/mnras/99.5.451
https://ui.adsabs.harvard.edu/abs/1939MNRAS..99..451S/abstract
https://doi.org/10.3847/0004-637X/818/1/73
https://ui.adsabs.harvard.edu/abs/2016ApJ...818...73T/abstract
https://doi.org/10.1111/j.1365-2966.2008.13613.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.389..925T/abstract
https://doi.org/10.3390/universe7090352
https://ui.adsabs.harvard.edu/abs/2021Univ....7..352T/abstract
https://doi.org/10.1088/2041-8205/789/1/L4
https://ui.adsabs.harvard.edu/abs/2014ApJ...789L...4T/abstract
https://doi.org/10.1111/j.1365-2966.2009.14446.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.394.1721V/abstract
https://doi.org/10.1093/mnras/stx3091
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474.4855V/abstract
https://doi.org/10.1002/asna.19091832202
https://ui.adsabs.harvard.edu/abs/1910AN....183..345V/abstract
http://arxiv.org/abs/2207.03151
https://doi.org/10.1086/115978
https://ui.adsabs.harvard.edu/abs/1991AJ....102.1528W/abstract
https://doi.org/10.1051/0004-6361:20030174
https://ui.adsabs.harvard.edu/abs/2003A&A...401..763Y/abstract
https://ui.adsabs.harvard.edu/abs/2003A&A...401..763Y/abstract
https://doi.org/10.1051/0004-6361/201732127
https://ui.adsabs.harvard.edu/abs/2018A&A...615A..21Z/abstract
https://doi.org/10.1093/mnras/stx2375
https://ui.adsabs.harvard.edu/abs/2018MNRAS.473..603Z/abstract

	1. Introduction
	2. Circumtriple Particle Orbits
	2.1. Triple Star Parameters
	2.2. Test Particle Orbits around Our Standard Triple Star
	2.3. Critical Radius for Librating Orbits

	3. Analytical Estimation
	4. Discussion and Conclusions
	References



