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1 Introduction

Since the appearances of the Ekeland variational principle [1, 2] in 1972-74 and the Caristi fixed point theorem
[3] in 1976, almost one thousand papers were published on their equivalents, generalizations, modifications,
applications, and related topics. Many of them are related to new spaces extending complete metric spaces, new
metrics or topologies on them, and new order relations extending the so-called Caristi order.

While working on the same subject in 1983-2000, we found a metatheorem on fixed point theory. It claims that
certain order theoretic maximal element statements are equivalent to existences of fixed points of progressive
maps, stationary points, common fixed points, common stationary points of families of maps or multimaps.
Apparently, their dual to minimal element statements can be possible.

After 22 years have passed, we began again to study our Metatheorem in [4, 5] and to apply its extended versions
in several works in 2022 [6, 7, 8, 9, 10]. Recall that Brøndsted [11] in 1976 observed certain case that maximal
elements are fixed points, and tat Jachymski [12] in 2003 studied when periodic points are same to fixed points.
Recently, in 2022, we obtained extended versions of our Metatheorem with the Brøndsted-Jachymski Principle
and applied them to various results related maximality and progressive maps in [6, 7, 8, 9, 10]. Later, in the end
of 2022, we obtained a more general version of them called the 2023 Metatheorem and its applications in [13].
However, works on their counterparts related minimality and anti-progressive maps are quite a few. We began
such study in our recent articles [14, 15].

Motivated by such situation, in the present article, we begin with various forms of Maximal (or Minimal) Element
Principles and apply them to known or new works related to minimality. Recall that completeness for metric
spaces as well as Banach spaces are one of the most important properties of them and a huge number of related
papers appeared already; for example, see Cobzaş [16] in 2020. Our another aim in this article is to apply our
Principles to equivalent formulations of metric completeness mainly appealing to the Caristi fixed point theorem.
Consequently, in this article, we show that some ordered fixed point theorems on metric spaces are equivalent
to completeness, existences of maximal (or minimal) elements, common fixed points, common stationary points,
and others.

We are based on our 2023 Metatheorem, a prototype of Maximal (or Minimal) Element Principles, and the
Brøndsted-Jachymski Principle due to ourselves.

This article is organized as follows: In Section 2, we introduce the 2023 Metatheorem, which is the basis of our
ordered fixed point theory. Based on this, we derive several Maximal or Minimal Element Principles in Section
3. From these principles, in Section 4, we introduce the Brøndsted Principle and the Brøndsted-Jachymski
Principle. Section 5 devotes to improvements of the Caristi and Zermelo fixed point theorems. In Section 6,
we obtain equivalent formulations of the Caristi theorem and its dual. Section 7 is to improve the Bae-Park’s
generalization [17] of the Caristi theorem and its variants. In Section 8, based on Cobzaş [16], our Metatheorem
is applied to equivalencies of the weak Ekeland Principle, the Takahashi Principle, the Caristi theorem, and
others. Section 9 is to introduce Jachymski’s 2003 Theorem [12] on the equality of periodic point sets and fixed
point sets. In Section 10, we derive a consequence of Metatheorem showing the role of the whole space X in the
power set P(X). Finally, Section 11 is for conclusion or epilogue.

In this article all spaces are nonempty and all multimaps are nonempty valued.

2 Basic Principles

In order to obtain some equivalents of the well-known central result of Ivar Ekeland [1, 2] on the variational
principle for approximate solutions of minimization problems, we deduced a Metatheorem [18, 19] and related
works in 1983-2000. Later in 2022 we found an extended version of the Metatheorem [6, 7, 8, 10, 14]. Certain
other related results will appear in [9, 15, 20, 21, 22].

Now the following is the new 2023 version derived from [13], where ¬ denotes the negation:
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Metatheorem. Let X be a set, A its nonempty subset, and G(x, y) a sentence formula for x, y ∈ X. Then the
following propositions are equivalent:

(α) There exists an element v ∈ A such that G(v, w) holds for any w ∈ X\{v}.

(β1) If f : A → X is a map such that for any x ∈ A with x 6= f(x), there exists a y ∈ X\{x} satisfying
¬G(x, y), then f has a fixed element v ∈ A, that is, v = f(v).

(β2) If F is a family of maps f : A → X such that for any x ∈ A with x 6= f(x), there exists a y ∈ X\{x}
satisfying ¬G(x, y), then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ1) If f : A → X is a map such that ¬G(x, f(x)) for any x ∈ A with x 6= f(x), then f has a fixed element
v ∈ A, that is, v = f(v).

(γ2) If F is a family of maps f : A → X satisfying ¬G(x, f(x)) for all x ∈ A with x 6= f(x), then F has a
common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(δ1) If F : A ( X is a multimap such that, for any x ∈ A\F (x) there exists y ∈ X\{x} satisfying ¬G(x, y),
then F has a fixed element v ∈ A, that is, v ∈ F (v).

(δ2) Let F be a family of multimaps F : A( X such that, for any x ∈ A\F (x) there exists y ∈ X\{x} satisfying
¬G(x, y). Then F has a common fixed element v ∈ A, that is, v ∈ F (v) for all F ∈ F.

(ε1) If F : A ( X is a multimap satisfying ¬G(x, y) for any x ∈ A and any y ∈ F (x)\{x}, then F has a
stationary element v ∈ A, that is, {v} = F (v).

(ε2) If F is a family of multimaps F : A ( X such that ¬G(x, y) holds for any x ∈ A and any y ∈ F (x)\{x},
then F has a common stationary element v ∈ A, that is, {v} = F (v) for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x} satisfying ¬G(x, z), then there
exists a v ∈ A ∩ Y .

From now on, this version will be called the 2023 Metatheorem. This guarantees the truth of all items when one
of them is true. Since 1985, we have shown nearly one hundred cases of such situation.

Let X be a set and G(x, y) a sentence formula for x, y ∈ X. A chain C in X is defined as follows:
(1) C is a nonempty subset of X;
(2) G(x, x) holds for all x ∈ C;
(3) G(x, y) and G(y, x) imply x = y; and
(4) for any x, y ∈ C, G(x, y) or G(y, x) holds.

We need the following as a supplement of Metatheorem:

Metatheorem.∗ Let X be a set, G(x, y) a sentence formula for x, y ∈ X, and S(x) = {y ∈ X : G(x, y)}. Let
x0 ∈ X and A = S(x0).

Consider the following:

(α) There exists an element v ∈ A such that G(v, w) for any w ∈ X\{v}.

(θ1) For v ∈ A and for each chain C in S(v), we have
⋂
x∈C S(x) 6= ∅.

(θ2) For v ∈ A and a maximal chain C∗ in S(v), we have
⋂
x∈C∗ S(x) 6= ∅.

Then (α) =⇒ (θ1) =⇒ (θ2).

Proof. (α) =⇒ (θ1): By (α), v ∈ S(x0) implies G(x0, v) and G(v, x0). Hence v = x0 by (3). Now C = {v} is
the unique chain in S(v), and

⋂
x∈C S(x) = S(v) 6= ∅, which proves (θ1).

(θ1) =⇒ (θ2): Let v be as in (θ1). By Hausdorff maximal principle (which can be established), there exists a
maximal chain C∗ in S(v) and from (θ1), we have

⋃
x∈C∗ S(x) 6= ∅. Thus (θ1) implies (θ2). 2
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3 Maximal or Minimal Element Principles

Let (X,�) be a preordered set; that is, X is a nonempty set and the order � is reflexive and transitive.
From our 2023 Metatheorem, we deduced the following prototype of Maximal (resp. Minimal) Element Principles
in [13]:

Theorem 3.1. Let (X,�) be a preordered set and A be a nonempty subset of X. Then the following statements
are equivalent:

(α) There exists a maximal (resp. minimal) element v ∈ A, that is, v � w (resp. w � v) for any w ∈ X\{v}.

(β) If F is a family of maps f : A → X such that for any x ∈ A with x 6= f(x), there exists a y ∈ X\{x}
satisfying x � y (resp. y � x), then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A→ X satisfying x � f(x) (resp. f(x) � x) for all x ∈ A with x 6= f(x), then
F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(δ) Let F be a family of multimaps F : A( X such that, for any x ∈ A\F (x) there exists y ∈ X\{x} satisfying
x � y (resp. y � x). Then F has a common fixed element v ∈ A, that is, v ∈ F (v) for all F ∈ F.

(ε) If F is a family of multimaps F : A ( X such that x � y (resp. y � x) holds for any x ∈ A and any
y ∈ F (x)\{x}, then F has a common stationary element v ∈ A, that is, {v} = F (v) for all F ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x} satisfying x � z (resp. z � x),
then there exists a v ∈ A ∩ Y .

Remark 3.2. (1) Note that we claimed that (α)− (η) are mutually equivalent in Theorem 3.1 and did not say
that the items are true. For a counter-example, consider the real line R with the usual order.

(2) All the elements v′s in Theorem 3.1 are same as we have seen in the proof of the 2023 Metatheorem in
[13].

(3) When F is a singleton, each of (β)− (ε) is denoted by (β1)− (ε1), respectively, These are also logically
equivalent to (α)− (η) as shown in the 2023 Metatheorem.

Let (X,�) be a preordered set and F : X ( X a multimap. For every x ∈ X, motivated by Jinlu Li [23], we
denote

S+F (x) := {z ∈ X : u � z for some u ∈ F (x)},
S−F (x) := {z ∈ X : z � u for some u ∈ F (x)}.

Especially, we follow Cobzaş [24]: For the identity map F = 1X and x ∈ X, put

S+(x) = {z ∈ X : x � z}, S−(x) = {z ∈ X : z � x}.

Note that S+ is denoted by S sometimes.

A partially ordered set (poset) is a preordered set having the anti-symmetric order.

From Theorem 3.1, we have several variants:

Theorem 3.3. Let (X,�) be a partially ordered set, F : X ( X be a multimap, x0 ∈ X such that A =
(S+F (x0),�) has an upper bound (resp. A = (S−F (x0),�) has a lower bound) v ∈ A. Then the equivalent
statements (α)− (η) of Theorem 3.1 hold.

Proof. It suffices to show Theorem 3.1(α) for the maximal case: Since z � v for any z ∈ A = S+F (x0), u � z
for some u ∈ F (x0). Since u � z � v, we have v ∈ S+F (x0). Hence v is a maximal element of A. 2

For the identity map F = 1X , Theorem 3.3 reduces to the following:
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Theorem 3.4. Let (X,�) be a partially ordered set, x0 ∈ X such that A = (S+(x0),�) has an upper bound
(resp. A = (S−(x0),�) has a lower bound) v ∈ A. Then the equivalent statements (α) − (η) of Theorem 3.1
hold.

From Metatheorem∗, we have the following in [15]:

Theorem 3.5. Let (X,�) be a partially ordered set, x0 ∈ X, and A = S+(x0) (resp. A = S−(x0)) have an
upper bound (resp. a lower bound). Then the following equivalent statements hold:

(α) There exists a maximal (resp. minimal) element v ∈ A, that is, v 6� w (resp. w 6� v) for any w ∈ X\{v}.

(θ1) There exists v ∈ A such that, for each chain C in S+(v) (resp. S−(v)), we have
⋂
x∈C S+(x) 6= ∅ (resp.⋂

x∈C S−(x) 6= ∅).

(θ2) There exist v ∈ A and a maximal chain C∗ in S+(v) (resp. S−(v)), we have
⋂
x∈C∗ S+(x) 6= ∅ (resp.⋂

x∈C∗ S−(x) 6= ∅).

For the motivation of this theorem and its proof, we have a long story as shown in [15]. The conditions (θ1) and
(θ2) are originated from [25] and Theorem 3.5 extends a part of ([26], Theorem 5.1). See also ([15], Theorem
5.1∗).

4 The Brøndsted-Jachymski Principle

For a preordered set (X,�), a selfmap f : X → X is said to be progressive if x � f(x) for all x ∈ X; and
anti-progressive if f(x) � x for all x ∈ X. Such maps appear in (γ) of Theorems 3.1, 3.3, and 3.4.

Recently, motivated by Brøndsted [11], we adopted the following in Park [9]:

Brøndsted Principle. Let (X,�) be a preordered set and f : X → X be a progressive (resp. anti-progressive)
map. Then a maximal (resp. minimal) element v ∈ X is a fixed point of f .

Note that this principle is just Theorem 3.1 (α) =⇒ (γ) with X = A.

Remark 4.1. We noticed that, in most applications of this principle for partially ordered sets (X,�), the
existence of a maximal (resp. minimal) element is achieved by the upper (resp. lower) bound of a chain in
(X,�) as in Zorn’s Lemma.

From now on Max(�) (resp. Min(�)) denotes the set of maximal (resp. minimal) elements of the order �, and
Fix(f) (resp. Per(f)) denotes the set of all fixed points (resp. periodic) points of a map f : X → X.

The following was given by Jachymski ([12], Proposition 1):

Proposition 4.2. Let (X,�) be a partially ordered set and f : X → X be progressive. Then Per(f) = Fix(f).

This also holds for anti-progressive maps. Combining this with the Brøndsted Principle, we obtained the
following [20]:

Brøndsted-Jachymski Principle. Let (X,�) be a partially ordered set and f : X → X be a progressive map.
Then we have

Max(�) ⊂ Fix(f) = Per(f).

Similarly, if f : X → X is a anti-progressive map, then we have

Min(�) ⊂ Fix(f) = Per(f).

This also follows from Theorem 3.1 for a partially ordered set X = A with
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(γ′) If f : X → X is a map such that x � f(x) (resp. f(x) � x) for any x ∈ X, then f has a fixed and periodic
element v ∈ X, that is, v = f(v).

Remark 4.3. Note that this gives a new proof of the Brøndsted-Jachymski Principle. This is not claiming the
non-emptiness of the three sets there.

Note that Theorems 3.4 and 3.5 imply the following common generalization of the Zermelo fixed point theorem
and Zorn’s Lemma:

Theorem 4.4. (Zermelo-Zorn) If a chain in a partially ordered set (X,�) has an upper bound (resp. a lower
bound) v ∈ X, then it is a maximal (resp. minimal) element. Moreover, a selfmap f : X → X is progressive
(resp. anti-progressive) if and only if

Fix(f) = Per(f) ⊃ Max(�) ⊃ {v} (resp. Fix(f) = Per(f) ⊃ Min(�) ⊃ {v}).

Proof. It is enough to prove the maximal case only. Let A be a chain with an upper bound v ∈ X. Let x0 ∈ A
and S+(x0) = {x ∈ A : x0 � x}. Then (S+(x0),�) has an upper bound v ∈ X. Then the conclusion follows
from Theorems 3.4 and 3.5. 2

Example 4.5. We give an example of Theorem 4.4, for which Zorn’s Lemma does not work: Let C = [0, 1]×{0}
and D = R× {1} be with their natural orders �, and X = C ∪D ⊂ R2. Let f : X → X such that,

f(x, y) =

{
( 1

2
(x+ 1), 0) if (x, y) = (x, 0) ∈ C,

(x+ 1, 1) if (x, y) = (x, 1) ∈ D.
(4.1)

Then f is progressive, S+(0, 0) has the upper bound f(1, 0) = (1, 0), which is maximal. Note that the chain
D of X does not have any maximal or minimal element. Hence Zorn’s Lemma does not work for X, for which
Theorem 4.4 holds.

5 Strengthening Caristi Theorem

A real-valued function f : X → R on a topological space X is said to be lower (resp. upper) semi-continuous
(l.s.c.) (resp. u.s.c.) whenever

{x ∈ X : f(x) > r} (resp. {x ∈ X : f(x) < r})

is open for each r ∈ R.

In 2002, Chen-Cho-Yang [27] introduced the following concept of lower semicontinuity from above:

Definition 5.1. [27] Let X be a topological space. A function f : X → R ∪ {+∞} is said to be lower
semicontinuous from above at a point x ∈ X if xn → x as n→∞ and f(x1) ≥ f(x2) ≥ · · · ≥ f(xn) ≥ · · · imply
that limn→∞ f(xn) ≥ f(x).

Obviously, the usual lower semicontinuity implies lower semicontinuity from above, but the converse does not
hold. In fact, Chen-Cho-Yang [27] gave an example of a function which is lower semicontinuous from above at
a point, but not lower semicontinuous at that point.

Similarly, we define the following motivated by Lin-Du [28]:

Definition 5.1.∗ Let X be a topological space. A function f : X → R is said to be upper semicontinuous
from below at a point x ∈ X if xn → x as n → ∞ and f(x1) ≤ f(x2) ≤ · · · ≤ f(xn) ≤ · · · imply that
limn→∞ f(xn) ≤ f(x).

Chen-Cho-Yang [27] showed that the Weierstrass theorem, Ekeland’s variational principle, and Caristi’s fixed
point theorem hold for lower semicontinuity from above. See also [22]. In fact, the following is obtained by
Chen-Cho-Yang [27]:
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Theorem 5.2. (Caristi) Let (X, d) be a complete metric space and f : X → X be a map such that for all x ∈ X,

d(x, f(x)) ≤ φ(x)− φ(f(x)) (5.1)

where a function φ : X → R+ is lower semicontinuous from above. Then f has a fixed point.

Note that (X, d) can be made into a partially ordered set by defining

x � y ⇐⇒ φ(y) ≤ φ(x)

for x, y ∈ D.

Here we give a new proof of the Caristi theorem 5.2:

Proof. Since φ : X → R+ is l.s.c. from above at any z ∈ X, for any {xn} converging to z such that

φ(x1) ≥ φ(x2) ≥ · · · ≥ φ(xn) ≥ · · · =⇒ lim
n→∞

φ(xn) ≥ φ(z)

and hence x1 � x2 � · · · � xn � · · · � z. Note that C = {z} ⊂ S+(x1) is a chain in S+(z). Let v = z ∈ C.
Then C = {v} ⊂

⋃
x∈C S+(x) 6= ∅. Hence, Theorem 3.5(θ1) holds, v is maximal by (α), and our Caristi theorem

3.4(γ1) holds. 2

For the early history of various proofs of the Caristi theorem, see Kirk [29]. Our above proof seems to be
elementary.

Recall that Kirk [30] in 1976 showed that a metric space X is complete if and only if the Caristi theorem on
X holds. Moreover, Park [19] in 1984 extended to seven equivalent statements for completeness, which showed
certain basic proper properties of complete metric spaces. Now the new Caristi theorem 5.2 is equivalent to
completeness. Recently in 2022, Cobzaş [16] collected a large number of results on fixed points in ordered
structures and their completeness properties.

A map satisfying (5.1) is called the Caristi map. Now, Theorem 5.2 simply tells that any Caristi map on a
metric space X has a fixed point if and only if X is complete.

A Caristi map f is progressive by defining x � f(x) if and only if (2) holds for any x ∈ X. Based on the
characterization of completeness by Kirk [30] in 1976, by improving it, we have the following:

Theorem 5.3. A metric space (X, d) is complete if and only if

Fix(f) = Per(f) ⊃ Max(�) 6= ∅

for any Caristi map f : X → X.

We also improved Zermelo’s fixed point theorem given implicitly in 1908 [31] as follows in [13]:

Theorem 5.4. Let (X,�) be a partially ordered set in which a nonempty well-ordered subset has a least upper
bound. Then every progressive map f : X → X has

Fix(f) = Per(f) ⊃ Max(�) 6= ∅.

6 Dual Formulation of Caristi Theorem

In our previous work 24, we gave equivalent formulations of the Caristi theorem. Now we can add some more
equivalent propositions.

From Theorems 3.4, 3.5 and 5.3, we have the following:
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Theorem 6.1. Let (X,�) be a partially ordered metric space, and a function ϕ : X → R+ be lower semicontinuous
from above such that

x � y iff d(x, y) ≤ ϕ(x)− ϕ(y) for x, y ∈ X.

Then the following statements are equivalent:

(0) (X, d) is complete.

(α) There exists a maximal element v ∈ X; that is, v 6� w for any w ∈ X\{v}.

(γ1) If f : X → X is a map such that x � f(x) for any x ∈ X, then f has a fixed element v ∈ X, that is,
v = f(v).

(γ2) If F is a family of maps f : X → X satisfying x � f(x) for all x ∈ A with x 6= f(x), then F has a common
fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(θ1) There exists v ∈ X such that, for each chain C in S(v), we have
⋂
x∈C S(x) 6= ∅.

(θ2) There exist v ∈ X and a maximal chain C∗ in S(v), we have
⋂
x∈C∗ S(x) 6= ∅.

Remark 6.2. (1) Note that (0)⇐⇒ (γ1) extends the characterization of metric completeness in Kirk [30].

(2) Recall that (α) is originated from Ekeland [1, 2] where the maximal element v ∈ X in (α) is called a
d-point.

(3) Recall that (γ1) extends the one in Caristi [3]. The equivalence of (α) and (γ1) extends the one of
Brézis-Browder [32]. Moreover, (γ2) extends the one given by Kasahara [33] and Siegel [34].

(4) We already gave seven equivalent conditions for metric completeness in [19]. Theorem 6.1 and our
Metatheorem give additional properties of complete metric spaces.

The following is a dual of Theorem 6.1; see also [22].

Theorem 6.3. Let (X,�) be a partially ordered metric space, and a function ϕ : X → R+ be upper semicontinuous
from below and bounded from above such that

y � x iff d(x, y) ≤ ϕ(y)− ϕ(x) for x, y ∈ X.

Then the following statements are equivalent:

(0) (X, d) is complete.

(α) There exists a minimal element v ∈ X; that is, w 6� v for any w ∈ X\{v}.

(β) If F is a family of maps f : X → X such that for any x ∈ X with x 6= f(x), there exists a y ∈ X\{x}
satisfying y � x, then F has a common fixed element v ∈ X, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : X → X satisfying f(x) � x for all x ∈ X with x 6= f(x), then F has a common
fixed element v ∈ X, that is, v = f(v) for all f ∈ F.

(δ) If F is a family of multimaps T : X ( X such that, for any x ∈ X\T (x) there exists y ∈ X\{x} satisfying
y � x, then F has a common fixed element v ∈ X, that is, v ∈ T (v) for all T ∈ F.

(ε) If F is a family of multimaps T : X ( X such that y � x holds for any x ∈ A and any y ∈ T (x)\{x}, then
F has a common stationary element v ∈ X, that is, {v} = T (v) for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x} such that z � x, then there exists
an element v ∈ Y .

Proof. Clear from ([22], Theorem D) and Theorem 3.1. 2
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Remark 6.4. (1) All the elements v′s in Theorem 6.3 are same as we have seen in the proofs of Metatheorem
or Theorem 3.1.

(2) Theorem 6.3(γ) implies a dual to the Caristi fixed point theorem 5.2 and can be stated as follows:

Theorem 6.5. Let (X,�) be a partially ordered metric space, and a function ϕ : X → R+ be upper semicontinuous
from below and bounded from above such that

y � x iff d(x, y) ≤ ϕ(y)− ϕ(x) for x, y ∈ X.

Then (X, d) is complete if and only if every anti-progressive map f : X → X has

Fix(f) = Per(f) ⊃ Min(�) 6= ∅.

Note that there are nearly one thousand papers related to the Caristi theorem for its extensions, modifications,
and applications. However, the contents of this article have something different from them.

7 Revisit to Bae-Park in 1983

In attempting to improve the Caristi fixed point theorem, Kirk has raised the question of whether f continues to
have a fixed point if we replace d(x, f(x)) by d(x, f(x))p where p > 1 in the original Caristi theorem (cf. Caristi
[3]).

In Bae-Park [17], after giving an example showing that Kirk’s problem is not affirmative, it is recalled that
the Caristi theorem and Theorem 6.1(α) are equivalent (Brézis-Browder [32]). This could be expressed more
explicitly as follows by combining Theorems 6.1(α) and (γ1); see Bae-Park ([17], Theorem 1]):

Theorem 7.1. Let (M,d) be a metric space, φ : M → R+ an arbitrary function. Let F be the family of all
selfmaps of M such that for each x ∈M , we have

d(x, f(x))p ≤ φ(x)− φ(f(x)) where p > 0.

Then v ∈ M is a common fixed point of F if and only if v satisfies φ(v)− φ(x) < d(v, x)p for every other point
x ∈M .

In Theorem 7.1, if M is complete and φ is lower semicontinuous from above, and if 0 < p < 1, then φ has a point
v ∈ M satisfying φ(v) − φ(x) < d(v, x)p for each other point x ∈ M . This extends Ekeland’s Theorem 6.1(α).
To prove this, take a new metric ρ on M with ρ(x, y) = d(x, y)/(1 + d(x, y) which is equivalent to the original
metric d.

Moreover, we obtain the following extension of ([17], Theorem 2]) and other related results.

Theorem 7.2. Let (M,d) be a complete metric space and φ : M → R+ a lower semicontinuous function from
above. Let F be the family of all selfmaps f of M such that for each x ∈M , we have

d(x, f(x))p ≤ φ(x)− φ(f(x)).

(1) If 0 < p ≤ 1, then F has a common fixed point.

(2) If φ has a minimal d-point v ∈M , then it is a common fixed point of F.

This extends corresponding parts of Theorem 6.1.

Furthermore, Theorems 7.1 and 7.2 also can be reformulated by adopting our method in Theorem 3.1. For
Theorem 7.2, we have the following:
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Theorem 7.3. Let (X, d) be a partially ordered metric space, a function ϕ : X → R+ be lower semicontinuous
from above, and 0 < p ≤ 1 such that

x � y iff d(x, y)p ≤ ϕ(x)− ϕ(y) for x, y ∈ X.

Then the statements in Theorem 6.1 are equivalent. For example,

(0) (X, d) is complete.

(α) There exists a maximal element v ∈ X; that is, v 6� w (that is, d(v, w)p > ϕ(v)−ϕ(w)) for any w ∈ X\{v}.

(γ) Let F be the family of all selfmaps f of X such that for each x ∈M , we have x � f(x) or

d(x, f(x))p ≤ φ(x)− φ(f(x)).

Then F has a common fixed point v ∈ X.

(θ1) There exists v ∈ X such that, for each chain C in S(v), we have
⋂
x∈C S(x) 6= ∅.

(θ2) There exist v ∈ X and a maximal chain C∗ in S(v), we have
⋂
x∈C∗ S(x) 6= ∅.

Here S(x) = {y ∈ X : x � y} for x ∈ X.

Proof. Note that (γ) is just Theorem 7.2. From (γ), others (α)− (θ2) routinely follow. 2

Note that Theorem 7.3 for p = 1 reduces to Theorem 6.1 and that the dual version of them holds; that is,
Theorem 6.3 with d(x, y)p instead of d(x, y).

Moreover, by applying the Brøndsted-Jachymski Principle to Theorem 7.3, we have the following:

Theorem 7.4. Under the hypothesis of Theorem 6.5, if f : X → X is progressive (that is, d(x, f(x)p ≤
φ(x)− φ(f(x) for each x ∈ X) for 0 < p ≤ 1, then we have

Fix(f) = Per(f) ⊃ Max(�) 6= ∅.

Similarly, if f : X → X is a anti-progressive map, then we have

Fix(f) = Per(f) ⊃ Min(�) 6= ∅.

8 Equivalency due to Cobzaş

Early in 1985, Daneš [35] proved that the Daneš drop theorem, Krasnoselskii-Zabreiko renorming theorem,
Browder’s generalization of the Bishop-Phelps theorem, Caristi’s fixed point theorem, and Ekeland’s variational
principle are all equivalent. Some others also mentioned some equivalences among extended Ekelend’s variational
principle, extended Takahashi’s minimization theorem, Caristi-Kirk fixed point theorem for set-valued maps, and
Oettli-Théra theorem[36].

Our Metatheorem was originated from the Ekeland Principle which has equivalent forms like the Caristi fixed
point theorem, Takahashi’s minimization theorem, and many others. Our recent applications of Metatheorem
to those theorems were given in [7, 8, 10, 13, 14, 15, 20, 21, 22].

Recently, Cobzaş [24] in 2022 gave versions of Ekeland, Takahashi, Caristi Principles in preordered quasi-metric
spaces, and the equivalence to some completeness results for the underlying quasi-metric spaces.

For convenience, Cobzaş [24] formulated these three principles as follows:

Theorem 8.1. (Ekeland, Takahashi and Caristi principles) Let (X, d) be a complete metric space and ϕ : X →
R ∪ {∞} a proper bounded below l.s.c. function. Then the following statements hold:
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[wEk] There exists z ∈ domϕ such that ϕ(z) < ϕ(x) + d(x, z) for all x ∈ X\{z}.

[Tak] If for every x ∈ domϕ with ϕ(x) > inf ϕ(X) there exists an element y ∈ domϕ\{x} such that ϕ(y) +
d(x, y) ≤ ϕ(x), then ϕ attains its minimum on X, i.e., there exists z ∈ domϕ such that ϕ(z) = inf ϕ(X).

[Car] If the mapping f : X → X satisfies d(f(x), x) +ϕ(f(x)) ≤ ϕ(x) for all x ∈ domϕ, then f has a fixed point
in domϕ, i.e., there exists z ∈ domϕ such that f(z) = z.

Here [wEk] means the weak Ekeland principle, [Tak] the Takahashi principle, and [Car] the Caristi fixed point
theorem. Moreover, following our way in the present article. the lsc function can be replaced by the function
lower semicontinuous from above.

Our Metatheorem can be applied to give equivalencies for various situations as we have shown in our previous
works. Motivated by this, we derive the following; see also [22]:

Theorem 8.2. Let (X, d) be a metric space and ϕ : X → R a proper l.s.c. function from above and bounded from
below (resp. u.s.c. function from below and bounded from above). Let A = domϕ = {x ∈ X : −∞ < ϕ(x) <∞}.

Then the following statements are equivalent:

(0) (X, d) is complete.

(α) There exists a maximal (resp. minimal) element v ∈ A such that

d(v, w) > ϕ(v)− ϕ(w) (resp. d(v, w) > ϕ(w)− ϕ(v))

for any w ∈ X\{v}. [wEk]

(β) If F is a family of maps f : A → X such that for any x ∈ A with x 6= f(x), there exists a y ∈ X\{x}
satisfying

d(x, y) ≤ ϕ(x)− ϕ(y) (resp. d(x, y) ≤ ϕ(y)− ϕ(x)),

then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F.

(γ) If F is a family of maps f : A→ X satisfying

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) (resp. d(x, f(x)) ≤ ϕ(f(x))− ϕ(x))

for all x ∈ A\{f(x)}, then F has a common fixed element v ∈ A, that is, v = f(v) for all f ∈ F. [Car]

(δ) Let F be a family of multimaps T : A( X such that, for any x ∈ A\T (x), there exists y ∈ X\{x} satisfying

d(x, y) ≤ ϕ(x)− ϕ(y) (resp. d(x, y) ≤ ϕ(y)− ϕ(x)),

then F has a common fixed element v ∈ A, that is, v ∈ T (v) for all T ∈ F.

(ε) If F is a family of multimaps T : A( X such that

d(x, y) ≤ ϕ(x)− ϕ(y) (resp. d(x, y) ≤ ϕ(y)− ϕ(x))

holds for any x ∈ A and any y ∈ T (x)\{x}, then F has a common stationary element v ∈ A, that is, {v} = T (v)
for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ A\Y there exists a z ∈ X\{x} satisfying

d(x, z) ≤ ϕ(x)− ϕ(z) (resp. d(x, z) ≤ ϕ(z)− ϕ(x)),

then there exists a v ∈ A ∩ Y .

(θ1) There exists v ∈ A such that, for each chain C in S(v), we have
⋂
x∈C S(x) 6= ∅.

(θ2) There exist v ∈ A and a maximal chain C∗ in S(v), we have
⋂
x∈C∗ S(x) 6= ∅.
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Here S(x) = {y ∈ X : d(x, y) ≤ ϕ(y)− ϕ(x)}.

This theorem includes various earlier related results and is very useful as follows:

(1) (0)⇐⇒ (γ) extends Kirk’s characterization [30] of metric completeness.

(2) Recall that (α) implies the variational principle of Ekeland (1979) and also given by Brunner (1987), (δ1)
essentially due to Tuy (1981), (γ) to Kasahara (1975), (ε1) to Maschler-Peleg (1976), and (γ1) to Caristi (1976),
which implies the Banach contraction principle. See [13].

(3) Note that “(α)⇐⇒ [wEk] with its dual form.”

(4) Consider the following particular form of (γ) :

(γ1) If f : A→ X is a map such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) (resp. d(x, f(x)) ≤ ϕ(f(x))− ϕ(x))

for any x ∈ A, then f has a fixed element v ∈ A, that is, v = f(v).

Then “(γ1) ⇐⇒ [Car] with its dual form.”

(5) From Caristi’s theorem, Mizoguchi-Takahashi [18] in 1989 deduced a particular form of (δ1) and applied it
to obtain Ekeland’s ε-variational principle, generalizations of Nadler’s and Reich’s theorems. This can be done
also from our version of Caristi’s theorem.

(6) By using Ekeland’s variational principle, Mizoguchi-Takahashi [18] derived the following Caristi-Kirk’s
theorem [37], which is the set-valued version of the Caristi fixed point theorem:

Theorem 8.3. (Caristi-Kirk) Let (X, d) be a complete metric space and T : X ( X be a multimap with
nonempty values such that for each x ∈ X, there exists y ∈ T (x) satisfying d(x, y) + ϕ(y) ≤ ϕ(x), where
ϕ : X → R∪ {+∞} is a proper, lower semicontinuous and bounded below functional. Then, T has a fixed point,
that is, there exists x̄ ∈ X such that x̄ ∈ T (x̄).

Here the lower semicontinuous function can be replaced by the one from above.

(7) From Theorem 8.2(α), (γ) and the Brøndsted-Jachymski Principle, we have the following:

Theorem 8.5. Let (X, d) be a complete metric space and ϕ : X → R∪ {∞} a proper function l.s.c. from above
and bounded below (resp. u.s.c. from below and bounded above). If f : X → X is a map such that

d(x, f(x)) ≤ ϕ(x)− ϕ(f(x)) (resp. d(x, f(x)) ≤ ϕ(f(x))− ϕ(x))

for any x ∈ X. Then we have

Fix(f) = Per(f) ⊃ Max(�) 6= ∅ (resp. Fix(f) = Per(f) ⊃ Min(�) 6= ∅).

Consequently, this section demonstrates the usefulness of our Metatheorem. Until now, we gave more than one
hundred examples or applications of our Metatheorem, and each of them might have useful consequences.

9 Jachymski Type Equivalents

In this article, we introduced many examples of maps f : X → X satisfying Per(f) = Fix(f) 6= ∅. Such sets X
can have more rich properties by the following main theorem of Jachymski ([12], Theorem 2):

Theorem 9.1. [12] Let X be a nonempty abstract set and T : X → X. Then the following statements are
equivalent:

(a) Per(T ) = Fix(T ) 6= ∅.
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(b) (Zermelo) There exists a partial ordering � such that every chain in (X,�) has a supremum and T is
progressive with respect to �.

(c) (Caristi) There exists a complete metric d and a lower semicontinuous function ϕ : X → R+ such that
T satisfies Caristi’s condition.

(d) There exists a complete metric d and a d-Lipschitzian function ϕ : X → R+ such that T satisfies Caristi’s
condition and T is nonexpansive with respect to d; i.e.

d(Tx, Ty) ≤ d(x, y) for all x, y ∈ X.

(e) (Hicks-Rhoades) For each α ∈ (0, 1), there exists a complete metric d such that T is nonexpansive with
respect to d and

d(Tx, T 2x) ≤ αd(x, Tx) for all x ∈ X.

(f) There exists a complete metric d such that T is continuous with respect to d and for each x ∈ X, the
sequence (Tnx)∞n=1 is convergent (the limit may depend on x).

(g) There exists a partition of X, X =
⋃
γ∈Γ Xγ , such that all the sets Xγ are nonempty, T-invariant and

pairwise disjoint, and for all γ ∈ Γ, T |Xγ has a unique periodic point.

(h) For each α ∈ (0, 1), there exists a partition of X, X =
⋃
γ∈Γ Xγ , and complete metrics dγ on Xγ such

that all the sets Xγ are nonempty; T-invariant and pairwise disjoint; and

dγ(Tx, Ty) ≤ αdγ(x, y) for all x, y ∈ X.

Remark 9.2. [12] Implication (a) =⇒ (b) is a converse to Zermelo’s theorem. Implication (a) =⇒ (c) is a
reciprocal to Caristi’s theorem; in fact, a stronger result, (a) =⇒ (d) can be obtained here. Implication (a) =⇒
(e) is a converse to a fixed point theorem of Hicks-Rhoades. Finally (a) =⇒ (f) answers a question posed by
Matkowski.

Remark 9.3. Each of (a)–(h) seems to be order theoretic fixed point theorems. For them, we state our own
comments.

(a) This could be Fix(T ) = Per(T ) ⊃ Max(�) 6= ∅ by defining � on X.

(b) Zermelo’s theorem is improved by Theorem C, Theorem D(iii), Section 10(I) in [10] and its equivalents
there. Note that its conclusion should be as above (a).

(c) Caristi’s theorem is improved by Section 5, especially in Theorems 5.3 and 5.4. Their conclusions imply
(a).

(d) This is a variant of Caristi’s theorem and its conclusion should be as in (a).

(e) Here nonexpansiveness is redundant in view of Theorem H(δ) in [13]. Moreover, the continuity in the
following is also redundant:

Proposition 9.4. (Rus [38]) Let f be a continuous selfmap of a complete metric space X satisfying

d(fx, f2x) ≤ αd(x, fx) for every x ∈ X,

where 0 < α < 1. Then f has a fixed point.

We also improve Zermelo’s fixed point theorem 5.5 by applying Theorem 9.1(b) as follows:

Theorem 9.5. Let (X,�) be a any nonempty set. There exists a partial ordering � such that every chain in
(X,�) has a supremum if and only if every progressive map f : X → X has

Fix(f) = Per(f) ⊃ Max(�) 6= ∅.
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Similarly, we have a new theorem from Theorem 9.1(c):

Theorem 9.6. For any nonempty set X and a map f : X → X. Then there exists a complete metric d and a
lower semicontinuous (from above) function ϕ : X → R+ such that f : X → X satisfies Caristi’s condition if
and only if

Fix(f) = Per(f) ⊃ Max(�) 6= ∅.
This gives a new proof of the Caristi theorem.

10 Metatheorem for Power Sets

As an application of Metatheorem, we consider the power set P(X) of a set X. Then (P(X),⊆) is a partially
ordered set. Let G(A,B) denote A 6⊆ B for A,B ∈ P(X) in Metatheorem. The following consequence of
Metatheorem shows the role of the whole space X in the power set P(X):

Theorem 10.1. Let X be a set and P(X) its power set. Then the following equivalent propositions hold:

(α) The set X is maximal in P(X); that is, X 6⊆ B for all B ∈ P(X)\{X}.

(β1) The set X is a fixed element of a map f : P(X) → P(X), that is, X = f(X), if, for any A ∈ P(X) with
A 6= f(A), there exists a B ∈ P(X)\{A} satisfying A ⊆ B.

(γ1) The set X is a fixed element of a map f : P(X)→ P(X) if A ⊆ f(A)) for any A ∈ P(X) with A 6= f(A).

(δ1) The set X is a fixed element of a multimap F : P(X) ( P(X), that is, X ∈ F (X), if, for any, A ∈
P(X)\F (A) there exists B ∈ P(X)\{A} satisfying A ⊆ B.

(ε1) The set X is a stationary element of a multimap F : P(X) ( P(X), that is, {X} = F (X), if A ⊆ B for
any A ∈ P(X) and any B ∈ P(X)\{A}.

(η) The set X ∈ Y for a subset Y of P(X) if, for each C ∈ P(X)\Y , there exists a D ∈ P(X)\{X} satisfying
C ⊆ D.

11 Conclusion

Since the Ekeland variational principle in 1972 and the Caristi fixed point theorem in 1976 appeared, more
than one thousand related papers were published. Most of them are related to certain maximum principles in
Nonlinear Analysis and belong to Ordered Fixed Point Theory.

In 1985-86, we obtained Metatheorem on equivalents of maximal element theorems and various types of fixed
point theorems. In 2022, we improved Metatheorem several times and its consequence like the Brøndsted-
Jachymski principle. They were applied to a large number of existing or new results. Finally, in the end of 2022,
we obtained the reorganized 2023 Metatheorem and applied it to the new foundations of Ordered Fixed Point
Theory.

In this article we are strictly restricted ourselves in the category of metric spaces. Since there have been appeared
nearly one hundred artificial extensions or modifications of complete metric spaces, the contents of the present
article can be extended or applied to them. The author sometimes doubts the necessity or usefulness or real
applicability of many of them.

The present article is based on certain maximal (or minimal) element principles particular to the 2023 Metatheorem
and applied them to several existing related results. Further true application would be possible and readers are
encouraged to find further study on such topics.
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[32] Brézis H, Browder FE. A general principle on ordered sets in nonlinear functional analysis, Advances in
Math. 1976;21:355–364.

[33] S. Kasahara, On fixed points in partially ordered sets and Kirk-Caristi theorem, Math. Seminar Notes.
1975;3:229–232.

[34] Siegel J. A new proof of Caristi’s fixed point theorem, Proc. Amer. Math. Soc. 1977;66:54–56.
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