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Abstract

This study explores a hybrid stochastic delay Gompertz model under regime switching. It is proved that the
model has a unique global positive solution. Sufficient conditions for persistence in mean and extinction are
obtained. The results show that the random perturbations and time delays could effect the persistence and
extinction of the model.
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1 Introduction

1.1 Background and research aims

Tumors have always been a major threat to our human health. More than 9.5 million people were counted
to have died from the tumors in 2018 [1]. The growth of the tumor cells could be modeled by the Gompertz
equation. Let ψ(t) be the number of cells, it has the following form

dψ(ι) = (aψ(ι)− bψ(ι) lnψ(ι))dι, ι > 0, (1.1)

here a, b denotes the intrinsic growth rate and growth deceleration factor of the tumor, respectively.

To be better model the process, one can consider the time delays which represent the lag in the tumor
growth/regression process. In [2], the authors studied the previous time ι − τ to determine the per capita
growth at the current time t, i.e.

dψ(ι) = [aψ(ι)− bψ(ι) lnψ(ι− τ)]dι, ι > 0, (1.2)

with the initial date ψ0 = {%(ς),−τ ≤ ς ≤ 0} where %(ι) is continuous function from [−τ, 0] to R+.

Stochastic perturbations are common in our daily life [3, 4, 5]. They can usually be divided into large and small
perturbations, May RM [6] stated that the disturbances in the environment have great impacts on the growth
of the species, it can be estimated by modeling methods. This methodology has been widespread adoption (see
[7, 8, 9, 10, 11, 12, 13]). Following this approach, a → a + σḂ(ι), where B(ι) denotes the standard Brownian
motion and the constant σ represents the strength of the white noise, one can get the following stochastic
Gompertz model with time delay as

dψ(ι) = [aψ(ι)− bψ(ι) lnψ(ι− τ)]dι+ σψ(ι)dB(ι), t > 0. (1.3)

In addition to the perturbations described above, there are other perturbations (e.g., drug concentration, oxygen
supply) that can cause species to change their state, such as their growth switching from one state to another,
however, this variation must not be estimated with the white noise [7]. For example, the mortality rate of
recently hatched small yellow croaker varies at different temperatures [14]. In general, the next state switching
is not the same as the one before, and the time at which the switching occurs follows an exponential distribution
[8, 9, 10]. Therefore, the Markov chains $(ι) can be used to model this regime switchings [8, 9, 10].

In this paper, we mainly consider a = r, b = rβ in model (1.3). Thus, with model (1.3), we can get the hybrid
stochastic system as

dψ(ι) = r($(ι))[ψ(ι)− β($(ι)))ψ(ι) lnψ(ι− τ)]dι+ σ($(ι)))ψ(ι)dB(ι), ι > 0, (1.4)

where ri > 0, βi > 0, σi > 0 for any i ∈ S, the Markov chain $(ι) is independent of B(ι).

Some integral differential equations are difficult to solve exactly, and in [15, 16] A.Hamoud et al. studied the
behavior of the solution by analyzing the approximation form, and in [17, 18, 19, 20] the convergence and
uniqueness of the solution were analyzed. Of course, the solution of stochastic differential equations is also
difficult to obtain. In this paper, we get the existence of the solution to model (1.4). We will focus on the
asymptotic behaviors of the model.

This paper consists of the following structures: first, we show the existence and positivity of the solution for Eq.
(1.4). Secondly, in Section 3 we give the persistence in mean and extinction of Eq. (1.4) with the time delays.
Finally, we concluded the paper with an example and a brief discussion.
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2 The Existence of Positive Solutions

Through out this paper, we always assume that the Markov chain $(ι) is irreducible. It means that the following
linear equation (see, [12, 13])

ΥQ = 0,

N∑
i=1

Υi = 1, (2.1)

has a single fixed solution Υ = (Υ1, · · · ,ΥN ) which satisfys Υi > 0, i ∈ S.

To proceed with our discussion, we need the following notations:

ŕ = max
1≤i≤N

ri, r̀ = min
1≤i≤N

ri, β́ = max
1≤i≤N

βi,

β̀ = min
1≤i≤N

βi, ωi = ri −
1

2
σ2
i .

Theorem 2.1. Suppose that Eq. (1.4) satisfies the following condition

max
i∈S
|ωi + riβi| ≤M. (2.2)

Then Eq. (1.4) has a unique positive solution ψ(ι).

Proof. Consider the following differential equation

dz(ι) = [ω($(ι))− r($(ι))β($(ι))z(ι− τ)]dι+ σ($(ι))x(ι)dB(ι), (2.3)

with the initial value z0 = lnψ0. It is easy to see that under the certain assumptions, Eq. (2.3) satisfies the
global Lipschitz condition and the linear growth condition. Next, define ψ(ι) = ez(ι) and using Itô formula, one
can obtain that

dψ(ι) = ez(ι)[ω($(ι))− r($(ι))β($(ι))z(ι− τ)]d(ι) + ez(ι)σ($(ι))dB(ι)

+
1

2
ez(ι)σ2($(ι))dι

= ψ(ι)[r($(ι))− r($(ι))β($(ι)) lnψ(ι− τ)]dι+ ψ(ι)σ($(ι))dB(ι).

(2.4)

The proof is compete.

3 Persistence in Mean and Extinction

In this section, we are going to study the survival and extinction of Eq. (1.4). The definitions for persistence in
mean and extinction for stochastic model could be found in [21, 22].

Definition 3.1. Suppose that ψ(ι) is a solution of Eq. (1.4), then

(i) ψ(ι) is persistence in mean if lim inf
ι→∞

1

ι

∫ ι

0

ψ(s)ds > 0 a.s.;

(ii) ψ(ι) is extinction if lim
ι→∞

ψ(ι) = 0 a.s..

Theorem 3.1. Suppose Theorem 2.1 holds and

h∗ =

N∑
i=1

πi[ωi + riβi] > 0. (3.1)

Then Eq. (1.4) is persistence in mean.
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Proof. By using the generalised Itô formula to Eq. (1.4), we can get that

lnψ(ι) = lnψ(0) +

∫ ι

0

[ω($(~))− r($(~))β($(~)) lnψ(~− τ)]d~ +

∫ ι

0

σ($(~))dB(~). (3.2)

Elementary inequality lnψ ≤ ψ − 1 for ψ > 0, implies that

lnψ(ι) +

∫ ι

0

r($(~))β($(~)) lnψ(~− τ)d~

≤ ψ(ι) +

∫ ι

0

r($(~))β($(~))ψ(~− τ)d~−
∫ ι

0

r($(~))β($(~))d~

≤ ψ(ι) + ŕβ

∫ ι

0

ψ(~)d~−
∫ ι

0

r($(~))β($(~))d~ + ŕβ

∫ 0

−τ
%($(~))d~

= e−ŕβι
d

dι

(
eŕβι

∫ ι

0

ψ(~)d~
)
−
∫ ι

0

r($(~))β($(~))d~ + ŕβ

∫ 0

−τ
%($(~))d~.

(3.3)

Combining (3.2) and (3.3), we obtain that

lnψ(0) +

∫ ι

0

ω($(~))d~ +

∫ ι

0

σ($(~))dB(~)

≤ ψ(ι) + ŕβ

∫ ι

0

ψ(~)d~−
∫ ι

0

r($(~))β($(~))d~ + ŕβ

∫ 0

−τ
%($(~))d~.

(3.4)

Therefore,

e−ŕβι
d

dι

(
eŕβι

∫ ι

0

ψ(~)d~
)
≥ lnψ(0) +

∫ ι

0

[ω($(~)) + r($(~))β($(~))]d~

+

∫ ι

0

σ($(~))dB(~)− ŕβ
∫ 0

−τ
%($(~))d~.

(3.5)

Now, integrating both sides of (3.5), it yields that∫ ι

0

ψ(~)d~ ≥ C

ŕβ
(1− e−ŕβι) +

∫ ι

0

(
eŕβ(~−ι)

∫ ~

0

[ω($(u)) + r($(u))β($(u))]du
)
d~

+

∫ ι

0

(
eŕβ(~−ι)

∫ ~

0

σ($(u))dB(u)
)
d~

=
C

ŕβ

(
1− e−ŕβι

)
+

1

ŕβ

∫ ι

0

[ω($(~)) + r($(~))β($(~))]d~

− 1

ŕβ

∫ ι

0

eŕβ(~−ι)[ω($(~)) + r($(~))β($(~))]d~

+
1

ŕβ

∫ ι

0

σ($(~))dB(~)− 1

ŕβ

∫ ι

0

eŕβ(~−ι)σ($(~))dB(~),

(3.6)

where C = lnψ(0)− ŕβ
∫ 0

−τ %($(~))d~. On the other hand, let

M1(ι) =

∫ ι

0

σ($(~))dB(~),M2(ι) =

∫ ι

0

eŕβ(~−ι)σ($(~))dB(~). (3.7)

Note that M(ι) is a martingale with quadratic variation

〈M1(ι),M1(ι)〉 =

∫ ι

0

σ2($(~))d~ ≤ σ́ι, (3.8)

〈M2(ι),M2(ι)〉 =

∫ ι

0

e2ŕβ(~−ι)σ2($(~))d~ ≤ σ́ι. (3.9)

Using the strong law of large numbers for local martingales (see, e.g., [23]), we have

lim
ι→∞

Mi(ι)

ι
= 0 a.s., i = 1, 2. (3.10)
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From this we see that

lim inf
ι→∞

1

ι

∫ ι

0

ψ(~)d~ ≥ lim inf
ι→∞

1

ιŕβ

∫ ι

0

[ω($(~)) + r($(~))β($(~))]d~

− lim inf
ι→∞

1

ιŕβ

∫ ι

0

eŕβ(~−ι)[ω($(~)) + r($(~))β($(~))]d~.
(3.11)

Since

lim
ι→∞

∣∣ ∫ ι

0

eŕβ(~−ι)[ω($(~)) + r($(~))β($(~))]d~
∣∣

ι
≤ lim
ι→∞

M(1− e−ŕβι)
ŕβι

= 0, (3.12)

holds a.s.. Then from (3.11)

lim inf
ι→∞

1

ι

∫ ι

0

ψ(~)d~ ≥ lim inf
ι→∞

1

ι

∫ ι

0

[ω($(~)) + r($(~))β($(~))]d~ =

N∑
i=1

πi[ωi + riβi] = h∗. (3.13)

Now, if h∗ > 0, we have

lim inf
ι→∞

1

ι

∫ t

0

ψ(~)d~ > 0 a.s.. (3.14)

This completes the proof.

Theorem 3.2. Suppose

max
i∈S
|ri −

σ2
i

2
| ≤ A, (3.15)

and

η = lim
ι→∞

∫ ι

0

r($(u))β($(u))du < 1, (3.16)

hold, and for all ι ≥ 0

r − σ2

2
≤ −θ < 0, (3.17)

where θ is a constant such that θ > ηA
1−η . Then Eq. (1.4) is extinction with probability 1.

Proof. By using Itô formula to Eq. (1.4), we show that

lnψ(ι) = lnψ(0) +

∫ ι

0

[r($(~))− 1

2
σ2($(~))− β($(~))r($(~)) lnψ(~− τ)]d~ +

∫ ι

0

σ($(~))dB(~). (3.18)

Consequently,

| lnψ(ι)| ≤ | lnψ(0)|+
∫ ι

0

|r($(~))− 1

2
σ2($(~))|d~

+

∫ ι

0

β($(~))r($(~))| lnψ(~− τ)|d~ + |
∫ ι

0

σ($(~))dB(~)|

≤ | lnψ(0)|+Aι+ η sup
u∈[−τ,ι]

{| lnψ(u)|}+ |
∫ ι

0

σ($(~))dB(~)|.

(3.19)

It follows from (3.19) that

sup
u∈[−τ,ι]

{| lnψ(u)|} ≤ sup
u∈[−τ,0]

{| lnψ(u)|}+ sup
u∈[0,ι]

{| lnψ(u)|}

≤ 2 sup
u∈[−τ,0]

{| lnψ(u)|}+Aι+ η sup
u∈[−τ,ι]

{| lnψ(u)|}

+ sup
u∈[0,ι]

|
∫ u

0

σ($(~))dB(~)|,

(3.20)
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and then

sup
u∈[−τ,ι]

{| lnψ(u)|} ≤ 2

1− η sup
u∈[−τ,0]

{| lnψ(u)|}

+
A

1− η ι+
1

1− η sup
u∈[0,ι]

|
∫ u

0

σ($(~))dB(~)|.
(3.21)

This, together with (3.18), gives that

lnψ(ι) ≤ lnψ(0) + (−θι) +

∫ ι

0

σ($(~))dB(~) +
2η

1− η sup
u∈[−τ,0]

{| lnψ(u)|}+
Aη

1− η ι

+
η

1− η sup
u∈[0,ι]

|
∫ u

0

σ(ξ(~))dB(~)|

≤ 1 + η

1− η sup
u∈[−τ,0]

{| lnψ(u)|}+ (−θ +
Aη

1− η ) +
1

1− η sup
u∈[0,ι]

|
∫ u

0

σ($(~))dB(~)|.

(3.22)

Then by using the strong law of large numbers for martingales, from (3.22) we obtain that

lim sup
ι→∞

lnψ(ι)

ι
≤ −θ +

ηA

1− η < 0. (3.23)

That is
lim
ι→∞

ψ(ι) = 0 a.s.. (3.24)

The proof is complete.

4 Example and Conclusion

Example: Suppose that the irreducible Markov chain $(ι) taking values in S = {1, 2} and the transition

probability matrix be q =

(
−1 1
2 −2

)
. Thus, its stationary distribution is Υ = (Υ1,Υ2) = (

2

3
,

1

3
). To verify

the result of Theorem 3.1, let

r1 = 4, r2 = 1, σ1 =
√

5, σ2 =
√

3,
β1 = 1/2, β2 = 1, ω1 = 1.5, ω2 = −0.5, M = 3.5892.

By calculation, we can get

h∗ = π1[ω1 + r1β1] + π2[ω2 + r2β2] > 0, ω2 + r2β2 ≤M.

Therefore, by Theorem 3.1, Eq. (1.4) is persistence in mean.

An important topic in ecology is the effect of various perturbations on the persistence in mean and extinction
of stochastic Gompertz models [6]. In this paper we present and explore the stochastic Gompertz model with
two kinds of stochastic perturbations and time delays. Theorem 3.1 and Theorem 3.2 establish the sufficient
conditions for persistence in mean and extinction of the species.

The topics that trigger our further research through this article are as follows: firstly what happens if Eq. (1.4)
is perturbed by the intrinsic growth rate r while β is also perturbed by white noise. Secondly what happens
to the asymptotic properties of Eq. (1.4) if both distribution delay and Lévy jumps are introduced (for more
details of Lévy jumps, see [11, 24, 25]).
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