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Abstract 

 
A rotating beam at varying speed mathematical model is studied. Multiple time scales method is applied 

to the nonlinear system of differential equations and investigated the system behavior approximate 

solution in the instance of resonance case. We studied the system in case of applying the delayed control 

on the displacement and the velocity with Proportional–derivative (PD) controller. The consistency of the 

steady state solution in the near-resonance case is reviewed and analyzed using the Routh-Huriwitz 

approach. The factors on the steady state solution of the various parameters are recognized and discussed. 

Simulation effects are obtained using MATLAB software package. Different response curves are involved 

to show and compare controller effects at various system parameters. 

 

 

Keywords: Non-linear dynamical system; multiple time scales method; active feedback controller; time 

delay. 
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List of Symbols 
 

1 1 1, ,X X X  Position, velocity and Acceleration of the system first mode. 

1 1 1, ,X X X  Position, velocity and Acceleration of the system second mode. 

, 1,2i i   Damping parameters of the system modes 

  System modes natural frequency 

11 21

13 22

, ,

,

 

 
 Coupling factors between the system modes 

5  Cubic nonlinearity factor of the system modes 

14 24,   Parametric excitation parameters 

,of f  Constant rotating speed and variable rotating speed 

  Excitation frequency 

1 2,k k  Controller feedback gains 

1 2,   Detuning parameters 

  Time delay 
  Small perturbation parameter 

C  denotes the speed of sound 

  the density of the free stream air 

X the velocity of the free stream air 

( ) o z
z

L


   

the pre-twist angle of a current beam cross section 

o  the pre-twist at the beam tip 

  the poisons ratio 

E Young's modulus 

T  the change in temperature from the reference level oT . 

 

1 Introduction 
 

In dynamical and structural structures, disturbances and complex instability are always undesired 

phenomena. These systems face nonlinear vibrations for numerous purposes, such as materials' nonlinear 

properties, geometric nonlinearities, and nonlinear powers of excitation. Much time, money and efforts are 

spent on minimizing these systems' vibrations and oscillations for longer life and preventing them from 

failure or damage. 
 

Many scholars and scientists have paid attention to and attempted to alleviate this topic that affects 

equipment, industry, and frugality. The high amplitude nonlinear vibration activity of a revolving cantilever 

beam is treated by Thomas et al. [1], with applications for turbo machinery and turbo-propeller blades. The 

effect of rotation speed on the nonlinear vibrations of the beam and particularly on the hardening/softening 

behavior of its resonances and the occurrence of high amplitude jump phenomena were investigated. A new 

dynamic model of a rotating flexible beam with a condensed mass positioned in an arbitrary location, based 

on the absolute nodal coordinate formulation, was investigated by Zhang et al. [2]. They found that both the 

magnitude and the direction of the condensed mass impact the normal frequencies and the mode shapes. 

Aeroelastic analysis of a spinning wind turbine blade was conducted by Rezaei et al. [3] by considering the 

effects of geometrical nonlinearities associated with large blade deflection created during the operation of 

the wind turbine. Through applying the concepts of quasi-steady and unsteady airfoil aerodynamics, they 

proposed an aerodynamic model based on the strip theory. The results showed that geometrical nonlinearity, 
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especially for larger structural deformations, had a significant impact. The effect of rotation velocity on 

nonlinear resonances is considered in [4], and the multi-scale perturbation approach is used and solved in the 

von Kármán [5] model. In order to simulate nonlinear resonances via a one-mode Galerkin expansion, 

nonlinear beam models such as axial inertia and nonlinear curvature are used. Nonlinear resonance curves 

are also computed, based on a Galerkin discretization with Legendre polynomials and a continuity process, 

with a completely numerical approach (harmonic balance coupled to an asymptotic numerical technique). 

For more detailed and effective dynamic analysis of a rotating cantilever beam with elastic deformation 

defined by partial integro-differential equations with non-Cartesian deformation variables, Kim and Chung 

[6] suggested a nonlinear model. They showed that the proposed model not only provided good numerical 

precision and efficiency, but also overcome the constraints expressed by Cartesian variables of a previous 

traditional nonlinear model. The dynamics of a structure consisting of a rotating rigid hub and a thin-walled 

composite beam with an embedded active part were introduced by Latalski [7].  
 

Based on the device rotation velocity and laminae fiber orientation angle, they studied natural mode shapes 

and electrical field spatial distribution. A Proportional Derivative (PD) controller was applied by Kandil, H. 

El-Gohary [8] to research the effects of time delay on its output to decrease the oscillations of a spinning 

beam at different speeds. Although the vibrational modes of the dual system are linearly coupled, the 

controller is applied to only one mode and the other coupled mode tracks it. In the case of the worst 

resonance cases that were verified numerically, they regulated the device. Yao et al. [9,10] applied the theory 

and isotropic constitutive law of Hamilton in order to infer the beam's governing equations. Of supersonic 

gas flow and high temperature, they studied the dynamics at different speeds. Choi et al. [11,12] showed that 

an active damping effect can be obtained with polyvinylidene fluoride (PVDF) sensors and macrofiber 

composite (MFC) actuators through a negative velocity feedback control algorithm. MFC is a composite 

form of piezoelectric material. Through the required arrangement and distribution scale of the 

sensor/actuator pair, ample vibration suppression efficiency would therefore be obtained.  
 

Joy Mondal, and S. Chatterjee [13] proposed the efficacy of velocity feedback based nonlinear resonant 

controller to control the free and forced self-excited vibration of a nonlinear beam. The control force is 

determined using the nonlinear function of the derivative of the filter vector, which is fed through a second-

order filter with the velocity signal from the sensor. Liang Li et al. [14] has developed a new hierarchical 

model for vibration studies of rotating versatile beams with improved active constrained layer damping 

(EACLD) treatment that is partially shielded. The mass effect of the two added edge components is included 

by modeling the EACLD patch's edge element as an analogous spring with attached point mass. The 

assumed mode approach and Lagrange's equations are used to obtain the discrete rigid-flexible coupled 

dynamic equations of hub-beam systems with EACLD treatment in the open-loop and closed-loop situations.  
 

 Boumediène, and Smaoui [15] believed that the beam is to be non-uniform and clamped at its left end to the 

disk's core, where torque control occurs, while a memory boundary control resides at the right end. The 

standard torque control is first proposed, followed by the boundary control, which is designed using a special 

type of memory phenomenon as well as the input's dynamic features. L.F. Lyu, W.D. Zhu [16] demonstrated 

a new operational modal analysis (OMA) method for a rotating structure based on a rigorous rotating beam 

vibration theory, an image processing method, and the lifting method of data processing. They developed a 

novel tracking continuously scanning laser Doppler vibrometer (TCSLDV) method to monitor and scan a 

rotating structure, and image processing was used to determine the rotating structure's real-time location, 

enabling the TCSLDV system to track a time-varying scan direction on the rotating structure.  
 

In this article, the PID control with time delay control are applied to the system of rotating beam at varying 

speeds shown in Fig. 1a [8,9,10] subjected external and parametric force in order to reduce its oscillations 

and enhance its efficiency. The displacements of the blade cross section are measured by using MFC sensors 

that are distributed over the bottom surface of the blade, as shown in Fig. 1b. The measured signals will be 

sent back to the computer to analyze and compute the appropriate control signal as shown in Fig. 1c. Once 

the control signal is calculated, it is passed through conditioning circuit and then be applied to the embedded 

MFC actuators that are distributed over the top of the blade so that they can modify the blade position and 

reduce its vibration, a control loop feedback mechanism illustrated in Fig. 2 are continuously calculates an 

error value e(t) as the difference between a desired setpoint (SP) and a measured process variable (PV) and 

https://en.wikipedia.org/wiki/Control_loop
https://en.wikipedia.org/wiki/Feedback_mechanism
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Process_variable
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applies a correction based on proportional, integral, and derivative terms (denoted P, I, and D 

respectively).The multiple time scales perturbation technique (MSPT) was applied to obtain an approximate 

solution and showing the response equation. The stability of the system at primary and principle parametric 

resonance case is investigated using both of phase plane and frequency response equation. The numerical 

solution and the effect of the different parameters for the response of the nonlinear dynamic system.  

 

 
 

(a) (b) 

 
(c) 

 

Fig. 1. Rotating compressor blade model, (a) thin-walled pre-twisted blade, (b) sensors and actuators 

distribution and (c) block diagram of control process 
 

 
Fig. 2 A closed loop system controller 

 

2 System Model and Mathematical Analysis 

 
The equations of motion for the rotating beam shown in Fig. 1 is introduced by Bekhoucha [5] and Yao et al. 

[9, 10] by  applying the Hamilton’s principle as: 

0

( )

t

K U W d t    ,                                                                                                                (1) 

https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
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where K denote the kinetic energy, U the strain energy, and W is the virtual work of external forces, t 

denotes time, and   is the variation operator. By calculating the variation in kinetic, strain energy, and the 

virtual work of non-conservative external forces (given in Appendix), and substituting Equation (1), then the 

governing equations of the nonlinear vibration system for the rotating beam are as the following: 
 

   

     

   

     

2

1 3

2 2

2

1 2

2 2

( ) ( ) ( ) ( )

1 1
( ) ,

2 2

( ) ( ) ( ) ( )

1 1
,

2 2

o x

y

u u R z u R z u T u a z v a z u

u u u v v u u v R z p

v R z v R z v T v a z u a z v

v u u v v v u v p





           

 
              

 

          

 
            

 

                                        (2) 

 

where u, v are the translations along the x, and y axes, ,x yp p  are the external forces per unit axial length in 

the x and the y direction. The values of ,x yp p and the variables ( ), 1,2,3,ia z i   are given in Appendix. 

The dots and primes, respectively, represent partial differentiation with respect to t and z, R(X,Y,Z) is the 

vector function of a point M(X,Y,Z) of the deformed thin wall beam, and given by 

   ( , , ) oR X Y Z X u i Y v j Z k R      . Applying Galerkin’s approach [17] on system (2), the 

horizontal and vertical displacements ,u v  have been approximated to the modes 1 2,X X  respectively to 

have the dimensionless two degree of freedom non-linear rotating beam system in the form: 
 

2 2 3

1 1 1 1 13 2 11 2 5 1 2 5 1 14 1

2 2

14 1 16 1 1 2 1

2 2 cos( )

cos ( ) sin( ) ( ) ( ),

oX X X X X X X X f f X t

f X t f t k X t k X t

      

   

       

        
        

(3a)

 
 

2 2 3

2 2 2 2 22 1 21 1 5 2 1 5 2 24 2

2 2

24 2

2 2 cos( )

cos ( ),

oX X X X X X X X f f X t

f X t

      



       

 
      (3b) 

 

where all system parameters are defined before. 

 

Scaling the previous parameters as: 
 

11 11 13 13 14 14 16 16 21 21 22 22 24 24 5 5

1 1 2 2 1 1 2 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , ,

ˆ ˆ ˆ ˆ, , , .k k k k

               

     

       

   
        

(4) 

 

Applying multiple time scales method [18], an asymptotic expansion is sought as: 
 

2

1 1 10 1 11 1

2

2 1 20 1 21 1

2

1 1 10 1 11 1

( , , ) ( , ) ( , ) ( ),

( , , ) ( , ) ( , ) ( ),

( , , ) ( , ) ( , ) ( ),

o o o

o o o

o o o

X T T X T T X T T O

X T T X T T X T T O

X T T X T T X T T O 

  

  

     

  

  

    

                                         (5) 

where the time derivative will takes the values: 
 

2
2 2 2

0 1 0 12
( ) , 2 ( )o

d d
D D O D D D O

dt dt
                                                               (6) 
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and  

, , 0,1n

n n

n

T t D n
T




  


. 

 

Applying Eqs. (4) - (6) into Eq. (3), then equating same powers of  coefficients to obtain the following: 

 
0( )O  : 2 2

10( ) 0oD X 
 

 (7a) 

 
2 2

20( ) 0oD X 
 

 (7b) 

 

( )O  : 

2 2

11 14 10 0 0 16 0

2 3

0 1 10 1 0 10 13 0 20 11 20 5 10 20 5 10

1 10 2 0 10 1 10 2 0 10

ˆ ˆ( ) cos( )[2 cos( )] sin( )

ˆ ˆ ˆ ˆˆ2 2

ˆ ˆ .

o oD X f X T f f T f T

D D X D X D X X X X X

k X k D X k X k D X 

  

    

       

     

   
 

(8a) 

 

  
2 2

21 24 20 0 0 0 1 20 2 0 20

2 3

22 0 10 21 10 5 20 10 5 20

ˆ ˆ( ) cos( )[2 cos( )] 2 2

ˆ ˆ ˆ ˆ .

o oD X f X T f f T D D X D X

D X X X X X

  

   

      

   
 

(8b) 

 

It is well known that solutions of (7a), (7b) are  

 

0

0

0

10 1

20 1

( )

10 1

( ) .,

( ) .,

( ) .,

i T

i T

i T

X A T e cc

X B T e cc

X A T e cc





 

 



 

 

 

                                                                                     (9) 

 

Using Taylor expansion, then the value of 1( )A T  is given by [19]: 

  

1 1 1 1( ) ( ) ( ) ( )A T A T A T A T        

 

As approximation, we keep only the first term of this expansion, then,  
0( )

10 1( ) .,
i T

X A T e cc
 




    

 

where .cc  represents the complex conjugates of the preceding terms and A, B are complex functions of
 1T . 

 

Now we will study the system worst operating modes due to resonance cases. 

 

2.1 Case 1 Primary resonance 
 

The primary resonance occur when the value of   is equal to   so we study the behavior of the system 

near this case i.e. 

1 1
ˆ        ,    (10) 

 

Combining Eq. (9) and (10) into (8), we get: 
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Eliminating all secular terms in Eqs. (11), and (12), we obtain: 
 

1

1

22
214

1 11 13 5 5
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Converting ,A B to the polar form then we have: 

 

1

2

1

2

,
2

2

i

i

a
A e

a
B e






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                                                                                                                                   (15) 

 

where , , ( 1,2)j ja j  are the system amplitude and phase respectively. 

 

Introducing Eq. (15) in Eqn. (13) and (14) and equating the real and imaginary parts we get: 
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For obtaining the steady state solution for amplitude and phase, putting 1 1 2 2 0a a      into Eq. 

(16), the resultant formulas can be solved numerically. To discuss the stability behavior of these solutions, 

linearizing these equations according to Lyapunov first (indirect) method [20] to give the following system: 
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where the values of , ( , 1,2,3,4)m n m n  are included in “Appendix”. Stability of a particular fixed 

point with respect to perturbation proportional to 1exp( )T  is determined by zeros of characteristic 

equation of the jacobian determinate J I  which gives:  

 
4 3 2

1 2 3 4 0,                                                                                             (19) 

 

 where , , 1: 4m n m n   are given in appendix. According to Routh-Hurwitze criteria [20,21], the 

necessary and sufficient condition for all characteristic roots of the characteristic equation (19) to have 

negative real parts if and only if the determinate D  and all its principle minors are positive, where  
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 , then the stability conditions will be 
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1 4 1 2 3 3 1 2 3 1 40, 0, ( ) 0, [ ( ) ] 0,                                         (20) 

 

2.2 Case 2 Principal Parametric resonance  

 

Assume that the detuning parameter 2 is to be used to depict the principal parametric resonance as shown 

in the following relation: 

2 2
ˆ2 2       

                                                                                                          (21) 

Similarly as in case 1 combining Eq. (9) and (21) into (8) and eliminating all secular terms from the resulting 

equations to have: 
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Using Eq. (15) into (22) and equating the real and imaginary parts to obtain the following system of ordinary 

differential equations: 
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where  
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2 ,
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                                                                                                                           (24) 

Similarly For obtaining the steady state solution for amplitude and phase putting 1 1 2 2 0a a      

into Eq. (23), the resultant formulas can be solved numerically using MATLAB software.  

To discuss the stability behavior of these solutions, linearizing these equations according to Lyapunov first 

(indirect) method to give the following system: 
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where the values of , ( , 1,2,3,4)m n m n  are given in “Appendix”. Numerically, primary resonance is 

the worst resonance case that is taken into account in the discussions.  

 

3 Results and Discussion 

 
In this section, system behaviors of the amplitude and phase at various resonance cases are illustrated. A 

comparison between active and time delay control and the effect of some system parameters on its amplitude 

are shown.  
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3.1 Time history 
 

Fig. 3(a, b) shows the time response for the amplitude 1X ,
2X , where Fig. 3(c) illustrates the system phase 

plane, Without resonance case and without applying any control system (i.e. 
1 2 0k k  ) at the following 

parameter variables:  

 

1 2 11 13 14 16

5 22 21 24
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Fig. 3(a). the time response for the amplitude
1X  

 

 
 

Fig. 3(b). The time response for the amplitude 1X
 

 

 
 

Fig. 3 (c). System phase plane 
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We can see that the steady state amplitudes are stable in the case of non-resonance operating mode. Fig. 4 

clarifies the time history without control and with primary resonance at the same previous parameters except 

that 99  , we observe that the amplitudes have been increased due to the resonance operating point. 

 

 
 

Fig. 4(a). The time response for the amplitude 1X
 

 

 
 

Fig. 4(b). The time response for the amplitude
2X  

 

 
 

Fig. 4(c). System phase plane 

 

Now applying active and time delay control for the system with primary resonance and comparing the 

amplitudes. Fig. 5, 6 shows the effect of active and time delay control on both 1 2,X X . We observe that the 
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effective of active control is about 105%, and Time delay controller is about 125% so the time delay 

controller is more efficient than active velocity feed-back controller for this system. 

 

 
 

 

Fig. 5 (a,b). Effect of active control on 
1,

2
X X  respectively at primary resonance case 

 

  
 

Fig. 6 (a,b). Effect of time delay control on 1,
2

X X  respectively at primary resonance case, 0.0015   

 

3.2 Comparisons with numerical method 
 

In this sub-section we compared the approximate solution induced by (MTSM) and numerical solution using 

Rung-Kutta Method (RKM). Figure 7, and 8 show good agreement between the approximate solution (blue 

curves) and the numerical results (red curves) in case of 0, 0.0015   respectively. 

 

 
 

Fig. 7(a). Time history for the amplitude 1X  using MTSM (blue curve) and RKM (red curve) 
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Fig. 7(b). Time history for the amplitude 2X  using RKM (blue curve) and MTSM (red curve) 

 

 
 

Fig. 8(a). Time history for the amplitude 1X using MTSM (blue curve) and RKM (red curve) for

0.0015   

 

 
 

Fig. 8 (b). Time history for the amplitude 2X using MTSM (blue curve) and RKM (red curve) for

0.0015   

3.3 Frequency response 

 

Now the following figures show the system amplitude against the detuning parameter 1 with change in 

specified values for system parameters. In Fig. 9 the parameters 1 2,a a with 1  in case of primary resonance 

case with: 
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We observe that the amplitude decreases with the increase of the gain 2k , then the delayed velocity feedback 

control is more efficient than the delay on the displacement . Figs. 10, and 11 illustrate the effect of 1  on 

the amplitude with various values of the damping parameter 1 2,  as given in these figures respectively. 

The same system parameters values as given for Fig. 9 are used and 
2 1k  . We observe in Fig. 10 that the 

values of 1 2,a a  are proportional inversely with the damping parameter 1 but in Fig. 11 the value of 1a  is 

approximately constant with 2  as it is effect on the velocity 
2X  of the system second mode with two 

peaks.  

 

3.4 Amplitude vs. certain system parameters 

 
Let us consider the parameters given in sub-section 3.3 unless otherwise specified. In this sub-section we 

shows the change of amplitude range with varying of the constant and variable rotating forces ,of f as 

shown in Fig. 12(a,b) respectively 215, 100k   , 90 . The steady state amplitude of the main 

system is a monotonic increasing function of the excitation amplitude up to maximum amplitude at 

saturation. The saturation value may lead to an unstable or damaged system due to its large value. Figure 13 

(a, b) describe the behavior of the amplitude with damping parameters 1 2,   respectively at 10  . 

We observe in Fig. 13 that the suitable range for
2 0.003  , and 

1 0.2  , it is useful for the system to 

choose a large value for 1 , but an expensive material should be used, so we use suitable materials with 

appropriate cost and adding a specified controller for reducing the amplitude for minimum values in the 

instance of resonance cases.  

 

 
 

Fig. 9(a). System amplitude
1a against detuning parameter

 1  at 
2 0.7,1,1.5k   

 

 
 

Fig. 9(b). System amplitude
2a against detuning parameter 1 at

2 0.7,1,1.5k   



 
 
 

Amer et al.; ARJOM, 17(1): 99-122, 2021; Article no.ARJOM.66021 

 

 

 

114 
 
 

 
 

Fig. 10(a). System amplitude
1a against detuning parameter 1 at 

1 0.4, 0.5, 0.7   

 

 
 

Fig. 10(b). System amplitude
2a against detuning parameter 1 at 

1 0.4, 0.5, 0.7   
 

 
 

Fig. 11 (a) System amplitude
1a against detuning parameter 1 at 

2 0.4, 0.5, 0.6,0.9   
 

 
 

Fig. 11 (b). System amplitude
2a against detuning parameter 1 at 

2 0.4, 0.5, 0.6,0.9   
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Fig. 12(a). System amplitude against constant rotating forces fo  
 

 
 

Fig. 12(b). System amplitude against variable rotating forces f  
 

 
 

Fig. 13(a). System amplitude against damping parameters
1  
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Fig. 13(b). System amplitude against damping parameters 
2  

 

4 Conclusion 

 
In this research, a system of nonlinear ordinary differential equations that describing a rotating beam is 

analyzed approximately via multiple time scales method. We studied the effect of existence and 

nonexistence of the time delay on the velocity and the displacement feedback the system amplitude. The 

study are in case of the worst resonance cases that are primary and principal parametric resonance. We 

concluded that the time delay controller is more efficient than active feed-back controller on the velocity for 

this system, as the effective of active control is about 105%, and Time delay controller is about 125%, so the 

Time delay control is recommended to use in this system. The Lyapunov first method and Routh–Hurwiz 

criteria are adopted to achieve the stability analysis. In addition, approximate solution induced by (MSPT) is 

compared with numerical approximation solution using Rung-Kutta of fourth order method. The distinction 

offered a good agreement between approximately and numerical approaches. The effects of system 

parameters on the amplitude are discussed for choosing appropriate values for these parameters that attaining 

the system stability.  
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