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Abstract 

 
In this paper, a more robust estimator of the Shannon entropy is applied in place of an earlier estimator, to 

obtain an improved goodness-of-fit test to normality which is based on the Balakrishnan-Sanghvi measure of 

divergence. The statistic is affine invariant and consistent against fixed alternatives. The critical values of the 

new statistic and those of a competing statistic as well as their power comparisons are obtained through 

extensive simulation study. The result of the power comparison showed that the statistic can be recommended 

as a good test for normality especially at small samples and against symmetric alternative distributions. 

 

 
Keywords: Balakrishnan-Sanghvi divergence measure; empirical critical value; power of a test; Shannon 

entropy; test for normality. 
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1 Introduction 
 

Goodness-of-fit test to normality has attracted the attention of scores of researchers, both in statistical methods 

and in applications. This is so because of the importance of the normal distribution in classical statistical 

analysis, where most statistical techniques depend on the assumption of normality of datasets. This may also be 

so due to the fact that most datasets approximate to normality especially at large sample sizes. As a result, there 

are in existence more than 80 known statistical techniques for assessing the normality of datasets. These range 

from suggestive procedures like the graphical approaches to pure statistical tests with known statistics. 

 

Suppose a random variable X follows a normal distribution FX  with probability function fX, given by: 

 

 
2

1 1 ( )2 2
, , exp ; , , 0

22 22
X

x
x xf


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                 (1.1)  

 

where   and 
2  are the parameters of the normal distribution, respectively known as the mean and variance 

of the distribution. A good number of unique characterizations have been obtained in the literature for the 

normal distribution in (1.1), such as, the characteristic function, the moment generating function, the entropy 

measure, measures of symmetry and kurtosis, and the behavior of its various transforms, to mention but a few. 

These unique characterizations have been employed extensively in developing goodness-of-fit statistics for 

assessing normality of datasets. One such characterization that is of interest in the present work is the entropy 

measure of the normal distribution. 

 

Shannon [1] has obtained the entropy measure of a random variable X, with probability density function ( )f x
X

 

as: 

 

 ( ) ( ) log ( )H f f x f x dx
X X X


  


                    (1.2) 

 

For the function in (1.1), the Shannon [1] measure in (1.2) has been obtained as: 

 

   1 12 2
( ) log 2 log 2

2 2
H f e

X
                          (1.3)  

 

Now, a good number of authors have considered the problem of estimation of (1.2) in general and (1.3) in 

particular. Some of them include Vasicek [2], Dudewicz and van der Meulen [3], van Es [4], Ebrahimi et al. [5], 

Correa [6], Wieczorkowski and Grzegorzewski [7], Pasha et al. [8], Noughabi and Arghami [9], Park and Shin 

[10], Zamanzade and Arghami [11], Kohansal and Rezakhal [12], and Chaji and Zografos [13]. Most of these 

estimators, which have been obtained mainly based on spacings, nearest neighbor, kernels and quantile density, 

have been applied to goodness-of-fit tests to statistical distributions such as normal, beta, and exponential 

distributions. 

 

In what appears to be an extension of the entropy measure in (1.2) for determining divergence between two 

statistical distributions, researchers have obtained entropy-based phi-divergence measure between two statistical 

distributions, f and g, as: 
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                                (1.4) 

 

Notable among the phi divergence measures in the literature include the Kullback and Leibler [14] and the 

Balakrishnan and Sanghvi [15], which are given as: 
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                  (1.5)  

 

respectively. Alizade Noughabi and Balakrishnan [16] have obtained consistent goodness-of-fit statistics for 

testing for the normal, exponential, uniform, and Laplace distributions, respectively, based on the kernel density 

of these phi-divergence measures. Also in what appears to be very interesting, Alizade Noughabi [17] obtained 

an improved estimator of the Kullback and Leibler [14] divergence measure and used it to obtain a generic 

statistic for testing for the continuous distributions. 

 

Recently, Tavakoli et al. [18] and Tavakoli et al. [19] have employed these divergence measures in testing for 

normality of datasets. They achieved this by taking ( )Xg x  in (1.4) and (1.5) to be normally distributed, having 

the pdf in (1.1) with    and 
2  estimated from the dataset and taking ( )Xf x  to have an unknown continuous 

distribution whose entropy measure is estimated by the Vasicek [2] estimator such that the resultant statistic is 

obtained as an integral of the appropriate phi-divergence measure. They showed that the statistics are both affine 

invariant and consistent against fixed alternatives, which are desirable properties of a good goodness-of-fit 

statistic. They also showed through empirical study that the statistics have relatively good power performances. 

 

Now, it has been shown in the literature that Vasicek [2] estimator of the entropy measure of a distribution, 

( )H f
X

, is not as good as some other newer estimators, see for instance, van Es [4]. As a result, it is expected 

that a test for normality that is based on the Vasicek [2] estimator will not be as good as that is based on an 

improved estimator. This therefore is the essence of this work. The rest of the paper is organized as follows: the 

statistic is developed in section two while its empirical critical values are obtained in section three. Section four 

gives the empirical power comparison of the statistic with other competing statistics while the paper is 

concluded in section five. 

 

2 The Statistic 
 

Vasicek [2] showed that the entropy measure of a certain distribution as given in (1.2) can be rewritten as: 

 
1

1

0

( ) log ( )X
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where (0,1)p  is such that the inverse distribution function, 
1( )F p x   for a strictly continuous x . By 

replacing F in (2.1) with Fn and using the difference operator in place of the differential operator, Vasicek [2] 

obtained an estimator of (1.2) as: 
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where 
( ) (1)jX X  for j < 1 and 

( ) ( )j nX X  for j > n, and m is an integer such that 
2

n
m  . Now, Tavakoli 

et al. [18] employed the Vasicek [2] estimator in (2.2) to obtain a statistic for testing normality in what follows. 

 

From the Balakrishnan and Sanghvi [15] divergence measure, given in (1.5), it is obvious that 

( , ) 0BS X XD f g   where equality holds if and only if ( ) ( )X Xf x g x . Suppose ( )Xg x  is a normal 
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distribution with parameters   and 
2 , which are estimated by  1

1
ˆ

n

jj
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
    and 

2 1 2

1
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n

j
n x 


   respectively, such that ( )Xg x  is approximated by: 
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By substituting (2.3) for ( )Xg x  in (1.5), Tavakoli et al. [18] obtained: 
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and by taking ( )Xf x  to have an unknown continuous distribution whose entropy measure is estimated by 

Vasicek [2] in (2.2) through the transformation in (2.1), they obtained 
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which by replacing F by Fn and employing (2.2) gave rise to a statistic for testing the null distribution of the 

normality of ( )Xf x , given by: 
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The statistic rejects the null distribution of normality for large values of the ( )mnT BS  since it is expected to 

tend to zero if ( )Xf x  is normal. 

 
Now, van Es [4], Ebrahimi et al. [5], and Noughabi and Arghami [9] have all obtained estimators of the 

Shannon [1] entropy which are improvements on the Vasicek [2] estimator. More recently, Al-Omari [20] 

obtained yet another improved estimator of (2.2), which is shown to have least absolute bias and smallest root 

mean square error (RMSE). It is given by: 
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where 
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( ) (1)j mX X   for j m , ( ) ( )j m nX X   for j n m   and m has its usual meaning. As a result, an 

improved statistic for testing the normality of a dataset is obtained in this paper, based on the Al-Omari [20] 

entropy estimator, as: 
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where jc  is as given in (2.7). It is obvious, from Tavakoli et al. [18], that the test is both affine invariant and 

consistent against fixed alternatives. The test rejects the null distribution of normality of datasets for large values 

of the statistic. 

 

3 Empirical Critical Values of the Test 
 

Since the exact null distribution of the TBSImn is not known as it is not the interest in this work, the empirical 

critical values of the statistic shall be obtained in this section. They are computed for different sample sizes, n, 

through extensive simulation study. Precisely, the critical values at the level of significance, α = 0.05 for n = 5, 

6, 7, 8, 9, 10 (5) 100 are evaluated. N = 100,000 samples were generated from a standard normal distribution 

and the N values of the TBSImn statistic are obtained from each generated set of N samples under each specified 

n and m. The α-level critical value of the test for each n and m is then obtained as the 100(1−α) percentile of the 

N values. In order to carry out this, an appropriate window size, m, for each sample size is needed to avoid a too 

lengthy computation for all the possible m. Wieczorkowski and Grzegorzewski [7] have obtained it as 

0.5m n  
 

, where  y  is the integer part of y. This measure has however been criticized. This led 

Tavakoli et al. [18] to obtain appropriate m for each range of values. Since this work is similar but a mere 

improvement to their work, their method of determining appropriate m is adopted in this paper. The percentile 

values are presented in Table 1. It is important to note that no effort is made to obtain the critical values of the 

statistic for all the sample sizes n which may be encountered in real-life applications as such will definitely be 

an effort in futility. This is because it will be practicably impossible to have all of them computed and listed. As 

a result, the percentile values presented in Table 1 may be regarded appropriate for demonstration purposes, 

especially for power comparisons in section four. 

 

Table 1. Empirical critical values of the T(BS) and the TBSI statistics 

 

n T(BS) TBSI 

5 

6 

7 

8 

9 

10 

15 

20 

25 

30 

35 

0.2462 

0.2422 

0.2381 

0.2301 

0.2205 

0.1888 

0.1575 

0.1311 

0.1145 

0.1151 

0.1037 

0.1934 

0.2018 

0.2002 

0.1950 

0.1878 

0.1548 

0.1332 

0.1097 

0.0995 

0.0997 

0.0925 
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n T(BS) TBSI 

40 

45 

50 

55 

60 

65 

70 

75 

80 

85 

90 

95 

100 

0.0947 

0.0876 

0.0999 

0.0931 

0.0873 

0.0825 

0.0783 

0.0748 

0.0905 

0.0865 

0.0828 

0.0795 

0.0766 

0.0863 

0.0815 

0.0925 

0.0879 

0.0837 

0.0801 

0.0769 

0.0739 

0.0894 

0.0861 

0.0834 

0.0807 

0.0781 

 

4 Empirical Power Comparison 
 

The power of a test is the ability of the test to take the right decision of rejecting a wrong null hypothesis. It is 

therefore expected that a statistic for assessing goodness-of-fit for normality will reject a null hypothesis of the 

normality of a dataset which is not drawn from a normal distribution. In this section, we shall investigate the 

relative ability of two statistics to reject normality when the true distribution is non-normal. The statistics are the 

T(BS) of Tavakoli et al. [18] and the TBSI, proposed in this paper. In order to carry out the power comparison 

objective of this section, seven different distributions are considered. We simulated 10,000 samples of each of 

the seven distributions at sample sizes n = 5, 10, 25, 50 and 100. For each simulated sample under each sample 

size, we calculated the values of the two competing statistics, giving rise to 10,000 values for each statistic, and 

estimated the power of each of the statistics as the percentage of the 10,000 samples that is rejected by the 

statistic at   = 0.05. 

 

Three of the seven distributions considered are symmetric while the remaining four distributions are         

skewed. They include the standard normal, Laplace, and student’s t as the symmetric distributions. Others       

are the exponential, Weibull, lognormal and the beta as skewed distributions. The results are presented in     

Table 2. 

 

Table 2. Empirical powers of T(BS) and TBSI statistics with higher power values in bold,   = 0.05 

 

Distribution n T(BS) TBSI 

Normal (0, 1) 

 

 

 

 

5 

10 

25 

50 

100 

4.8 

5.4 

5.0 

4.9 

5.0 

4.9 

4.9 

4.9 

5.2 

4.8 

Laplace (0, 1) 

 

 

 

 

5 

10 

25 

50 

100 

9.0 

9.7 

23.4 

27.1 

80.5 

9.0 

12.9 

38.7 

64.7 

90.6 

t (2) 

 

 

 

 

5 

10 

25 

50 

100 

13.9 

22.6 

54.3 

71.7 

98.3 

14.1 

26.6 

67.0 

91.0 

99.6 

Exponential (1) 

 

 

 

 

5 

10 

25 

50 

100 

17.7 

49.9 

95.1 

100.0 

100.0 

17.9 

49.4 

92.9 

99.6 

100.0 
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Distribution n T(BS) TBSI 

Weibull (1, 2) 

 

 

 

 

5 

10 

25 

50 

100 

17.6 

49.8 

95.2 

100.0 

100.0 

18.1 

50.0 

92.9 

99.6 

100.0 

Lognormal (0, 1) 

 

 

 

 

5 

10 

25 

50 

100 

24.9 

63.4 

98.1 

100.0 

100.0 

25.4 

64.4 

97.9 

100.0 

100.0 

Beta (1, 5) 5 

10 

25 

50 

100 

12.1 

33.2 

85.6 

99.5 

100.0 

12.5 

33.6 

77.8 

95.4 

99.8 

 

From Table 2, the two statistics have averagely the same power performance of 5% under the standard normal 

distribution. The null distribution in this case is the normal distribution, as such, the power performance should 

equal the level of significance,   = 5%. This is attained by the two competing statistics and as a result, they are 

said to have good control over type-one-error. Under the remaining two symmetric alternative distributions of 

Laplace (Laplace (0, 1)) and student’s t (t (2)), it is clear that the new proposed statistic is more powerful than its 

counterpart in almost all the sample sizes considered. Under the four skewed alternative distributions considered 

however, the new proposed statistic appeared to be more powerful than the T(BS) statistic at small sample sizes 

while it is either at par or less powerful than the T(BS) statistic at large sample sizes. This by extension could 

suggest that the Vasicek [2] estimator of the Shannon entropy approaches the Al-Omari [20] estimator at large 

sample sizes under skewed distributions. 

 

5 Conclusion 
 

In this paper, we have developed an alternative version of the Tavakoli et al. [18] statistic for assessing the 

normality of datasets. The affine invariance and consistency of the statistic are drawn from the Tavakoli et al. 

[18] statistic. The power performance of the test shows that is has a very good control over type-one-error and 

that it has relative good power performance, especially under symmetric alternative distributions. As a result, it 

can be regarded as a good statistic for testing normality of datasets. 

 

Competing Interests 
 

Authors have declared that no competing interests exist. 

 

References 
 

[1] Shannon CE. A mathematical theory of communications. Bell System Technical Journal. 1948;27:379- 

423, 623656.  

DOI:10.1002/bltj.1948.27.issue-3 

 

[2] Vasicek O. A test for normality based on sample entropy. Journal of the Royal Statistical Society B. 

1976;38:54-59. 

 

[3] Dudewicz EJ, van der Meulen EC. Entropy-based tests of uniformity. Journal of the American Statistical 

Association. 1981;76:967-974. 

 

[4] Van Es B. Estimating functionals related to a density by class of statistics based on spacings. 

Scandinavian Journal of Statistics. 1992;19:61-72. 



 

 
 

 

Madukaife and Ossai; J. Adv. Math. Com. Sci., vol. 37, no. 12, pp. 75-83, 2022; Article no.JAMCS.95269 
 

 

 
82 

 

[5] Ebrahimi N, Pflughoeft K, Soofi ES. Two measures of sample entropy. Statistics & Probability Letters. 

1994;20:225-234.  

DOI:10.1016/0167-7152(94)90046-9 

 

[6] Correa JC. A new estimator of entropy. Communication in Statistics-Theory and Methods. 

1995;24(10):2439-2449.  

DOI:10.1080/03610929508831626 

 

[7] Wieczorkowski R, Grzegorzewsky P. Entropy estimators improvements and comparisons. 

Communication in Statistics – Simulation and Computation. 1999;28(2):541-567.  

DOI:10.1080/03610919908813564 

 

[8] Pasha E, Kokabi Nezhad M, Mohtashami GR. A version of the entropy estimator via spacing. Iranian 

International Journal of Sciences. 2005;6(1):119–129. 

 

[9] Noughabi HA, Arghami NR. A new estimator of entropy. Journal of the Iranian Statistical Society. 

2010;9(1):53-64. 

 

[10] Park S, Shin DW. On the choice of nonparametric entropy estimator in entropy-based goodness-of-fit test 

statistics. Communications in Statistics - Theory and Methods. 2012;41(5):809-819.  

DOI: 10.1080/03610926.2010.531365 

 

[11] Zamanzade E, Arghami NR. Testing normality based on new entropy estimators. Journal of Statistical 

Computation and Simulation. 2012;82(11):1701-1713. 

 

[12] Kohansal A, Rezakhah S. Modified entropy estimators for testing normality. Journal of Statistical 

Computation and Simulation; 2015.  

DOI: 10.1080/00949655.2015.1025270 

 

[13] Chaji A, Zografos K. An estimator of Shannon entropy of beta-generated distributions and a goodness of 

fit test. Communications in Statistics - Simulation and Computation; 2017.  

DOI: 10.1080/03610918.2017.1381739 

 

[14] Kullback S, Leibler RA. On information and sufficiency. Annals of Mathematical Statistics. 1951;22:79–

86. 

 

[15] Balakrishnan V, Sanghvi LD. Distance between populations on the basis of attribute. Biometrics. 

1968;24:859–865. 

 

[16] Alizadeh Noughabi H, Balakrishnan N. Tests of goodness of fit based on Phi divergence. Journal of 

Applied Statistics. 2016;43:412-429. 

 

[17] Alizadeh Noughabi H. A new estimator of Kullback–Leibler information and its application in goodness 

of fit tests. Journal of Statistical Computation and Simulation. 2019;89:1914-1934.  

DOI: 10.1080/00949655.2019.1602870 

 

[18] Tavakoli M, Arghami N, Abbasnejad M. A goodness of fit test for normality based on Balakrishnan-

Sanghvi information. Journal of the Iranian Statistical Society. 2019;18(1):177-190. 

 

 



 

 
 

 

Madukaife and Ossai; J. Adv. Math. Com. Sci., vol. 37, no. 12, pp. 75-83, 2022; Article no.JAMCS.95269 
 

 

 
83 

 

[19] Tavakoli M, Alizadeh Noughabi H, Borzadaran GRM. An estimation of phi divergence and its 

application in testing normality. Hacettepe Journal of Mathematics and Statistics. 2020;49 (6):2104-2118. 

 

[20] Al-Omari AI. Estimation of entropy using random sampling. Journal of Computation and Applied 

Mathematics. 2014;261:95-102.  

DOI:10.1016/j.cam.2013.10.047.361 

_______________________________________________________________________________________ 
© 2022 Madukaife and Ossai; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

 

 

 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://www.sdiarticle5.com/review-history/95269 

http://creativecommons.org/licenses/by/3.0

