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Abstract

Aims/ Objectives: Recently, it has been shown by Ighachane and Akkouchi [1] that using
binomial coefficients, one can derive some new refinements of Holder’s inequalities. This
inequalities then can be applied to a wide class of special functions such as the Nielsen’s beta
function and some extended gamma functions. In this paper, we have derived some generalizations
of previously known number theoretic functions. Furthermore, based on the results of Ighachane
and Akkouchi, Holder’s inequalities for the derived generalized functions are established.

Keywords: Number theoretic functions; Holder’s inequalities; Nielsen’s beta function; extended
gamma function.

2010 Mathematics Subject Classification: 33B15; 33E50; 39B62.

1 Introduction

Holder’s inequalities have played an important role in wide application based areas of mathematics.
In this paper, we have applied the generalizations of Holder’s inequality given by Ighachane and
Akkouchi in [1] to a wider class of some special number theoretic functions which are also derived
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in this paper. The paper is arranged as follows. In this section, we have introduced some extended
definitions of the gamma function which we will be subsequently using throughout the paper. In
section 2, we present Holder’s inequality and some preliminary results. In section 3, the results of
Ighachane and Akkouchi are presented that we will be applying throughout our paper to various
special functions. In section 4, we have derived a analogue of Nielsen’s beta function and derived
some of its properties. In section 5, we have presented and extension of the Chaudhary-Zubair
gamma function and derived some of its properties. The next sections are followed by applying
inequalities from section 3 to the special functions derived in previous two sections.

The p-k gamma function or two parameter gamma functions is a parametric deformation of the
classic gamma function given by:

Definition 1.1. [[2], pg. 3](p-k Gamma Function) Given x € C/kZ ™ ;k,p € Rt —{0} and R(z) > 0,
then the integral representation of p-k Gamma Function is given by

oo k
() :/ e~ " ldt. (1.1)
0

The above definition reduces to k-gamma function when p = k [3]. T'p(z) appears in a variety
of contexts, such as, the combinatorics of creation and annihilation operators [4], [5] and the
perturbative computation of Feynman integrals, see [6]. For more applications of k-gamma function
refer to [7]-[20]

Definition 1.2. [[2], pg. 5] Forz € C/kZ ;k,p € R" —{0} and R(z) > 0,n € N. The fundamental
equations satisfied by p-k Gamma Function, ,I's(x) are,

.
JTu(p) = 2T (). (13)

JT(@) yTi(—2) = = %i) (1.4)

oTe(@) pTe(k — ) = % Sm?%). (1.5)

[1 e+ %) - Ilz:lil(zw)%m%*% JLn(maz);m =2,3,4, ... (1.6)

0<r<m-—1

Relation of p-k gamma function with k£ gamma function and the classic gamma function is given by

i () = (%)%rk () = %F (%) (1.7)

We kindly request readers to make themselves familiar with the k-gamma function introduced in
[3]. Further generalizations of the k-gamma function and ordinary gamma function can be found
n [21]-[23].

2 Holder’s Inequalities and Some Preliminary Results

Theorem 2.1 (Holder’s Inequality). Let (2, F, 1) be a measure space where i is a positive measure.
Let £,€: Q — C be two measurable functions. Then, for all p,q > 1 and p~* + ¢~ =1, we have

[leélan < ( [1el aueo 5 I
Q Q Q

pLi(x) = 1 Tk(z) =Tk(z) asp=k and pI'x(z) = 1Ti(z) =T(z) as p, k — 1.

1

Cau (1 (2.1)
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From [24], we have the following two theorems

Theorem 2.2. Let n and m be two integers and let a; € RY. Setig := m, in := 0 and A :=
{(i1, .. yin—1) : 0 < i <ig—1, 1 <k <n—1}. Then, we have

n m

i1 —in Go—iy i1—i in_1—i

<E l/kak> — E CAVZU ”uél 2 em "al’ "ag T an ", (2.2)
k=1 (i15emin_1)EA

where, Ca = (’:1)

2

('" 2) the (”“Z;l) is the binomial coefficient.

tn—

Theorem 2.3. For k =1,2,...,n, let ar > 0 and let v > 0 satisfy >.;_, v = 1. Then for all
integers m > 1, we have

n n

Vi m
||ak"+r0 E ar —n"
k=1 k=1

where ro = min{v, : k=1,...,n}.

n a\m n
< (Zukalj‘) < Zykak, (2.3)
k=1 k=1

1\m
Moreover, if we set Uy, := (EZ:1 uka,;”) , then {Un} is a decreasing sequence and we

. v,
havelimp 00 Um = [[1_, arF.

3 Ighachane-Akkouchi Holder’s Inequalities
Using theorems 2.3 and 2.4, Ighachane and Akkouchi [1] derived the following refinements of the
Holder’s inequality.

Theorem 3.1 (Ighachane-Akkouchi inequality type-1). Let (2,5, u) be a measure space where y is
a positive measure. Let n be a positive integer and let £1,&2,...,&n be p-measurable functions such
that & € LP%(u), for all k = 1,...,n. Then for all integers m > 2, the inequalities

n —pp n i
/ Hm )ldpu(tynr Hugknpk(lfl'[nfkups / [T 161 du(v))
k=1 k=1
1 17%(%*%_1) n P (i —ip_1) n
Y Camrn H Erllp ™ / [T1e@l™ = du) < ] l1éxllo
--Pn k=1 Q=1 k=1

(i1,erin_1)€A  P1
(3.1)

holds for pr > 1, such that > ;_, = =1, where ro = min{i ck=1,...,n}.

1
Pk

Theorem 3.2 (Ighachane-Akkouchi inequality type-11). Let n, N be two integers and {Q; 1} C R,
where k =1,2,...,n and j =1,2,...,N. Let px > 1, such that >} _ v =1, Then the inequalities

Pr
n)

P (i — ‘k 1)

n N n — N n

i ’ ﬁ Qj,k‘nrgl (; |Qj,k|p’“)’%’“ (1 -1I (z:: |Qj,k|p’“>T S I 1@

j=1 k=1 k=1 j= k=1 j j=1k=1

1 Gg—ig—1) N

n N
< Z C'Aﬁlj(z: ka)mc " ZH|Q32|

(i1,in-1)€a  P1 j=1k=1

< f[ (ZIQ klp’“)‘% (3.2)

is valid, where ro = min{i ck=1,...,n}.

The detailed proof of above two theorems can be found in [1].
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4 On some analogues of Nielsen’s Beta Function

4.1 Basic properties
Definition 4.1. For z > 0, we define Nielsen’s 8 function as follows

oo

5(95)_/1;:1)5&_7)1;4 Z;im {¢(m;1)_w(g)} (4.1)

0 =0

where ¢ (z) = - log I ().

Nielsen’s 8 function satisfies the following properties

1
Blat1)=2 -8, (42)
1—2)= . 4
fla)+B0-m)= " (13)
Further additional properties can be found in [19]. From [2], we have
1 x z a xT _ =z
= Y - nk
@) © El () e (44)
From, Eqn. (4.4), we get the following value for p-k digamma function
d Inp—~ 1 > x
= —1In(,I == — = _ 4.
p¥r () dz (1 (2)) L T + ; nk(nk + x) (4.5)
Inp —~ > 1 1
= —_— . 4.
k +nz_;)(nk+k nk+x> (4.6)
Theorem 4.1. For z,y > 0 and p,k € RT, we have
p Uk () —p¥k (y) = i () — Yk () (4.7)

where pi (z) is the p-k digamma function from Eqn. (4.5) and vy (z) is the k-digamma function
[20].

Proof. Proof follows from the definition of p-k digamma function and k-digamma function. O

Definition 4.2. The p-k extension of the Nielsen’s S function ,S8x(x) for > 0 is defined as

k
o (@) = & {pwk (i) o (g)} s)

_p - k k

Eg(mﬂg 2nl<;+x+k) (4.9)
= 67%— dt (4.10)

ko/l—‘,—e t

1

p [th!
Tk at, (4.11)

Ico/1+t

where 0k (z) = Bk (z) when p =k and 8k (z) = 8 (z) when p=Fk = 1.

[15]-[18]
! k-digamma function can be obtained from Eqn. (4.5) by letting p = k.
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Theorem 4.2. ,0; (z) satisfies the functional equation

wBre(@+k) =L -5 (a) (4.12)
and the reflection formula )
B (2) 1B (k= @) = 5 o (4.13)
Proof. From Eqn. (4.11), we have
1o, . 1
B (4 k) +pB (z) = %/%dt = %/ﬁ*ldt :g (4.14)
0 0

Now,

z k T

pBk () +pBr (k —x) = g {pwk (5 + 5) —ptk (g) +pk (k - 5) —ptk (5 - 5)} , (4.15)

o (- (55)) o (55 o (- D) o

Now, logarithmically differentiating Eqn. (1.5), we get

P T

pUk (z) +pthr (kK —x) = 2T cot T (4.17)
Using the above relation in Eqn. (4.16), we get
=Pl P T (E Y P T
pBr () +pBr (k—x) = 5 {kQﬂcot 2 (2 2) + k27rcot 2k} (4.18)
2
_p7 T_Tr =
= o {cot (2 Qk) + cot 2% (4.19)
2
) m
= o {tan (Zkz) + cot 2% (4.20)
2
P ™
== 4.21
k2 2cos (5£) sin (32) (421)
2
™
== —". 4.22
k? sin (%) ( )
This completes our proof. O
Definition 4.3. For 2 > 0, p,k € RT and n € N, we have
n p n T+ n xr
g xt
_ (=D [thew
el (4.24)
[ (nt)"tE
_p nt)"tk~
=2 / DLt (4.25)
0
n n n!p n
WY (@ k) = (-1 B (@) (4.26)
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Theorem 4.3. i) ,0k (x) is positive and decreasing.
i) p ,g") () is positive and decreasing when n is an even integer.
i) ,(c") (z) is negative and increasing if n is an odd integer.

Proof. Proof trivially follows from Eqn. (4.24).

Theorem 4.4. i) ,0k (x) is logarihmically convez on (0,00).
i) pBr (x) is completely monotonic on (0, 00).

Proof. i) Let r,s > 1, L + 1 =1 and z,y € (0,00), then, using Eqn. (4.11) and Hlder’s inequality,

we have

k Y [

— —+ = = dt

{ppﬁk(r+s)] / 1+t
0
1 z—k y—k
/ t ke t ks
0

(1+8)7 (1+1)s

IA
S
==
Ealic]
+1
~| =
Y
&
S|
—
=l =
+1|
~ —
Q.

it) Using Eqn. (4.24), we have

(n) _ P "TT
(—1)", 8 km1/ > 0.
0
)-

Therefore, 0% (z) is completely monotonic on (0, co

4.2 On the equivalent conditions for log-convexity

This completes our proof.

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

If f is any function differentiable over an interval and is logarithmically convex, then the function

satisfies the following two inequalities:
i) For x,y > 0, we have

log f (z) > log f (y) +

which equivalently can be written as
fm)fv X(f@)
(f(y) =P\ )

[ (@) f (2) 2 f'(2)*.

Therefore, we obtain the following theorem.

ii) For > 0, we have

Theorem 4.5. For z,y > 0 and p,k € RT, we have the following inequalities

i) ) /
() e (25

B (), Br () =B ().

i)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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Proof. Substitute f(z) with ,8k (x) is Eqn. (4.33) and (4.34) and the desire result readily follows.
O

Proposition 4.1. The following relation holds true
x
Wi (@) = 2 (@) =95 (]) (4.37)
where [y (z) is the k-extension of Nielsen’s beta function as introduced in [25].

Proof. The first equality follows from Eqn. (4.8), (4.7) and Definition 2.2 from [25]. Similarly, the
second inequality follows from Definition 2.2 from [25] and the 4th equality of Eqn. (4.1).
Another way of proving the above proposition is using taking the counter examples. Authors in
[25] have proved the following inequality for 8y (z) for z,y € [0, o)

Bk (CL‘—‘rk) Be Y+ k) <In2B; (z+y+Ek). (4.38)

Therefore, if the second equality in Eqn. (4.37) is true, then

kﬂ(%+1)[3(%+1)glnzﬂ(%+%+1) (4.39)

must also be true. By taking various counter examples, it turns that the above inequality holds
true, therefore, we can conclude that the second equality in Eqn. (4.37) is true. Similarly, one can
prove the first equality by substituting f(x) with 8k () in Eqn. (4.32) or by using Eqn. (4.35)
and further taking various counter examples. O

Theorem 4.6. For z,y € [0,00) and p,k € RY, we have
pln2

pBe(T + K)pBr (y + k) < Tpﬁk (z+y+k) (4.40)

Proof. Multiply Eqn. (4.38) with p/k twice and use relation 4.37 to arrive at the desire result. [

Authors in [25] have established the following two results for the k-extension of the Nielsen’s beta
function valid for k& > 0:
i) For z,y, 2 € RT, we have

Br (@) Be (x+y+2) = B (x+y) B (x+2) >0 (4.41)
i1) For a > 1 and z € [0, 1], we have the following inequality which reverses if 0 < a <1

[Br 1+ K)* < [Br (z + k)]

Belat k) = Bolazthy =27 (4.42)

From the above two results, we can deduce the following theorems respectively.
Theorem 4.7. For xz,y,z € Rt and p,k € RT, we have
B (), Bk (x +y + 2) —pBr(z +y) B (x + 2) > 0. (4.43)

Theorem 4.8. Fora > 1,z €[0,1] and p,k € RT, we have the following inequality which reverses
for0<a<1
B (L4 R _ [ e+ R _ p*

i@ k) S ihe(artk) S g (4.44)
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4.3 Some additional results for the n-th order

For n € Ng, we define

B (@) = (1), 8" (@)
which is decreasing for all n € N. From Eqn. (4.26), we get the following relation

nlp
xn+1

o (@4 k)| =

W8 (@)

Proposition 4.2. For z > 0, n € N and p,k € RT, define

n+1

x n
An (@) = T |8 @)
Then we have
lim Ay (2) = p
and
. / _
ilg}) A’y (z) = 0.
Proof. From Eqn. (4.46), we have
n+1 (n)
lim A, (@) = lim “ 80" (2)

) n+1 n|p
20 nl xntl

. " o
:hm(p— - p](c)(:c—kk)’)

5 (@4 b))

x—0
—»
And,
lim A’ (z) = lim % (x:: o8 (a?)D
= lim (x:,—l PBY (2 + k)‘ _ (D 711)!;3“1 WB (z + Ic)D
=0.

This completes our proof.

Theorem 4.9. Forn € Ng, r >0, s > 0, % + % =1 and p,k € RT, we have

b 2+ )] < [ o ot ]

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)
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Proof. Using Eqn. (4.24) and Hlder’s inequality, we have

T e (5Tt
b 2+ D = e [
k r s kn+1 1+6t

0

_yt

P tre ke tSe *°
= kn+1 1 di
4 1+et)r (1+e*t)-

|

N
— kn+ +€t kn+1
0 0
1
SEINETR

This completes our proof. From this, follows the following theorem.

Theorem 4.10.

Theorem 4.11. For x,y > 0 and p,k € RT, we have the following inequalities

i)

1
B @)\

p/Bkn (y))

1
P z(cn+ )(y)‘

P 1(¢n> (y)’

> exp

ii)

P

0 @) |85 @)

Proof. The result follows from Eqn. (4.33) and (4.34).

Proposition 4.3. For n € Ny, we have
n P s(n
oBY (@) = 28" (@)

Proof. Using Eqn. (4.24) and (A.1.6), we have

. ) [ e n
7 @) = G [ =2 @),

1+4+e?
0

Thus »
b8 (@) = L8 (@)

This completes our proof.

It follows from the above proposition that

B @) =28 @)

where

8 @) = (18" (@).

» ,(cm (z )‘ is logarithmically convez for alln € N on (0, 00).

2
|8 @) = 0.

(4.58)

(4.59)

(4.60)

(4.61)

(4.64)

(4.65)

(4.66)

(4.68)

(4.69)
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Theorem 4.12. Forn € Ng, x, > 0 and p, k € R, we have

v )(w+y)’

@)+ |87 )] (4.70)
Proof. Multiply Eqn. (A.1.8) with £ and use Eqn. (4.68) to get the desire result. O

Theorem 4.13. Let n € No, a > 0, and x > 0, then the inequalities

B (az) ‘ < a’ B ( )) (4.71)

ifa>1, and

2B (az) ‘ >a‘ B ( )) (4.72)

if a <1 are satisfied.

Proof. Multiply Eqn. (A.1.9) and (A.1.10) with £ and use Eqn. (4.68) to get the desire result. [

Theorem 4.14. Let k > 0 and n € No, then the inequality

B (@ y)’ ’ v (= ‘+‘ B (y ‘ (4.73)
holds for x >0 and y > 1.

Proof. Multiply Eqn. (A.1.11) with £ and use Eqn. (4.68) to get the desire result. O

4.4 On some multiplicative convex properties

Theorem 4.15. For x > 0, n € Nygq and p,k € RT, pﬁ,i") (z) is multiplicatively Convex on the
interval (0, 00).

Proof. Using Lemma 2.3.4 (i) from [26], we can say that a function is strictly multiplicatively
convex when it is logarithmically convex and increasing. Therefore using Eqn. (4.24) and Hlder’s
inequality, we have

no Toan,—(E+E )
(n) (g g) _ (=1)"p [t"e (&+ " L
Pk r+s k1 14et (4.74)
0
0 n xt n yt
1" tre  kr tse ks
= (km)tlp/ ‘ 1 < T dt (4.75)
. Q1+et)r (14+et)s
1 1
(D" [tre & (-D)"p e~ % ’
< 4.
— kn+1 / 1 + eft dt knJrl / 1 +€7t dt ( 76)
0 0
) e 1
= [87 @] [87 w)] " (4.77)
Therefore, we can say that , (n )( ) is logarithmically convex. And, using Theorem 4.3, we
can say that , (n) () is increasing when n is odd. Therefore, we can conclude that , (")( )
is multlphcatlvely convex for n € Nygq O
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Theorem 4.16. Let I be the interval (0,00), n € Nogq and p, k € RT—{0}, then for all z1 < z2 < z3
in I, we have
1 logzi log pﬂ,i") (z1)
1 logze log (pB8" (z2)) | >0 (4.78)
1 logzs log|(p ,(c") (z3)

or equivalently

» ]E;n> (ml)log zgpﬂl(cn) (w2)log zlpﬂ]gn) (233)10g 9 Zpﬂlin) (1'1)10g meﬁ](gn) (w2)log T3

X B (3)°8 ", (4.79)

Proof. Using Theorem 4.15 and Lemma 2.3.1 from [[26], pg. 77], the desire result readily follows. [

Theorem 4.17. Let I be the interval (0,00), n € Nogq and p,k € RY. =1 > 20 > ... > z,, and
Y1 > Y2 > ... > yn are two families of numbers in a subinterval I of (0,00) such that

$1>y1

T1T2 > Y1Y2

L1X2....Tn—1 2 Yiyz....Yn—1

T1T2....Tn 2> Y1Y2....Yn.-
Then
pB (@0), B (@2) eop B (w0) 208" (1), B (y2) B (yn) - (4.80)

Proof. Using Theorem 4.15 and Proposition 2.3.5 from from [[26], pg. 80], the desire result readily
follows. O

Theorem 4.18. Let I be the interval (0,00), m € Nygq and p,k € RT. Let A € M, (C) be
any matriz having the eigenvalues A1, ...., A\n and the singular numbers si, ...., Sn, listed such that
[Ad1] > ... > |An| and s1,...., 0. Then

IT »80" (se) > TT »8 (A (4.81)

1<k<n 1<k<n

Proof. Using Theorem 4.15 and Proposition 2.3.6 from from [[26], pg. 80], the desire result readily
follows. O

Remark 4.1. In a similar manner presented above, we can prove using the Hlder’s inequality that
both ﬁ,(cm (z) and g (z) are multiplicatively convex on the interval (0,00). And therefore, both will
satisfy the above theorems.
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4.5 On some monotonicity and convexity properties
Theorem 4.19. If F(z) is defined as

F(2) =2 [,8" ()] (4.82)

then, for a € R, k € RT, n € Ny and x > 0, F(x) is decreasing if # < n+1 and increasing if
2>n4+1+e’

Proof. Using Eqn. (4.24) and convolution theorem for Laplace transform, we have

F' (2) = " [,80" (2) = 2 [n8" ()] (4.83)
F'(z a n n
) _ &g )| - [0 ) (4.84)
3 T on 7¥t T+l 771&
_a_p *%fdt/te /t 4.85
kkn+1 /6 1+8_t kn +1 1+€_t ( . )
0 0 0
(oS} t +1 t
a p s" _zy t"Hle
== d kUdt — 4.86
Ic/c”“/ /1+efss ¢ kn+1/ Tret @ (4.86)
o Lo 0
P _z
- [emeta (187
0
where .
a Sn tn+1
n = 7 - 4.
0 k / 1+es ds 1+4+et (4.88)
0
Therefore, &, (0) = lim &, (¢t) =0 and
t—0t
/ a t" (n+1)t" et
n_ o _ _ 4.89
5 n( ) k 1 +€7t 1+67t (1 +€7t)2 ( )
t" a te™?
= — = 1) — —|. 4.
1+e? [k (n+1) 1—|—e*t} (4.90)

If ¢ <n+1,then ¢’ (¢) < 0 which implies that F” (x) < 0, thus it gives the desire result. Similarly,
we can prove that if ¢ > n+1+4e~" then ¢, (t) > 0 which implies that F’ (z) > 0. This completes
our proof. O

Theorem 4.20. Let m € N, the the inequality

o8 (2y)| < B0 @)] + 180 W) (4.91)

holds true for x > 0 and y > 1.

Proof. Let
G (2,9) = o8B0 (on)] = B (@) = |80 W) (4.92)
Fix y and differentiate with respect to x to get
0 m m
5-G (@,y) ==y 80" (@y)| + [ @) (4.93)
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= % [2 o800 @) = 2y |8 ()|

From theorem 4.19, we know that z |,

(4.94)

x(cm) (x)’ is decreasing. Since y > 1, this implies that zy > z,

which therefore states that G’ (z,y) > 0 and thus is increasing. Then for 0 < z < 0o, we have

G (2,y) < lim G (r,y) = —
Tr—r 00

P I(cm) (y)‘ <0.
Putting the value of G (z,y) in the above inequality yields the desire results.
Theorem 4.21. Let n € N, then the function

H(z)==z

B (@)
is strictly completely monotonic on (0, 00).

Proof. Differentiate Eqn. (4.96) to get

H' (@) = |8 (@)] == [,8" " (@)
H' (2) = -2, ,i’”” (@)| +2[oB0" (@)
H/// 3’ ﬂ(n+2) )‘ —zl, Ign+3) (.’E)‘

and therefore

H™ (z) = (=1)""'m »

B @) + ()"

(@)

Furthermore, we have

()" H™ () _ —m

n+m—1 n+m
. WBUY (@) 4 BT (@)

Using the convolution theorem for Laplace transform, we have

o o n+m—1_—Zt o nt+m —Zt
L . “rge [ LAY N A A
k kn+l /6 / 1 + e—t + kn+l 1 + e—t
0 0 0
- n+m—1 - n4+m _—Et
-m p S D t e k
=" d ktdt dt
k kn+1/ /1+ —s S| e +k:n+1/ 1+67t
0 0 0
= /«il /Qn (t) e *'dt
0
where ,
—m Sn+m—1 tn+m
Qp (t) = — d
n () k /1—1—6*5 S+1+e*t
0
Therefore, Q, (0) = lim Q, (t) =0 and
t—0t
Q/ (t) B -m tn+m—1 (TL+’I’I’L) tn+m—1 tn+m6—t
n - k’ 1+6—t 1+67t (1+6_t)2
Tl4et | k 14+et

Hence Q,, (t) is increasing. Therefore, for ¢t > 0, we have ,, (t) > Q, (0) = 0 and thus (—

0. This competes our proof.

(4.95)
O

(4.96)

(4.97)

(4.98)

(4.99)

(4.100)

(4.101)

(4.102)

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

nmHE™ >

O
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5 On Some Extensions of Chaudhary-Zubair Gamma
Function

5.1 p-k-Chaudhary-Zubair gamma function

The aim of this section is to provide a p-k extesion of the Chaudhary-Zubair gamma function [27]
defined as follows for p,z > 0

Ty (z) = /tm_le(_t_g)dt. (5.1)
0
When p =, T', (z) reduces to I' (z). It satisfies the following properties
Lp(z+1) =2l (x) + ply (x — 1), (5.2)
Tp(—2) =p Ty (2). (5-3)

Differentiating Eqn. (5.1) n times yields

0 (z) = [ (ne)"t" el Fat (5.4)

0\8

We now establish the following extension of 5.1 for > 0 and ¢,p, k € RT — {0}.

c

oo k
()
Fcz:(c,%k) (.Z‘) = t e P dt. (55)
0

Note that we have slightly changed the notation by replacing p with ¢ in Eqn. (5.1) to avoid getting
confused it with the p that will appear in our above extended definition. Differentiating Eqn. (2.2)
n times yields

()
Lz emi (

o0 tk c

1 t n z—1 777? d

(In e t. (5.6)
0

In this section, we are going to explore some properties of Fcz (ep k) (z) and T'czi(c,p,k) (T)-

5.2 Holder’s inequalities for p-k-Chaudhary-Zubair gamma function
Theorem 5.1. Forz,y >0, a, 8 € (0,1), a+B =1, m,n € {2s:s € No} and p,k € R — {0},

(n)
CZ:(c,p,k)

(z) satisfies the following inequality
am n m @ n B

Proof. Using Eqn. (5.6), we have

3 i7L>(a+ﬁ)
k
rigten (ax + By) = / (In t) @ HAn et By=—(oth) ( T dt (5-8)
0
7 (o) ()
T p T ik T p T ik
/ (Int)*™(Int)Pr¢@-1hla=D, % e v at (5.9)
0
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Fmrine U Eupnen 258
tk k
:/(mt)M”ta(z—l)e ( ! (Int)?"t?@ Ve \ " %) g, (5.10)
0
Now, using Hlder’s inequality. we have
s U5 852
XN T TR I
/(mt)amta(““e ’ (Int)"#eVe \ " %/t (5.11)
0

a

1 1
e O] o] e 5-2))
T p T ik T p T ik
< / (Int)*™*@ Ve \ 7 5 dt / (Int)’rtPw-De \ " % dt (5.12)
0 0

e B
P t p
/lnt (@D %/ dt /lnt )b 5/ dt (5.13)
0 0

o B
(m) (n)
= [ché (i) (T )] [FJZ:<C,p,k) (y)] : (5.14)
This completes our proof. O

Corollary 5.1.1. We have

n n @ n B
Proof. Let m = n in Eqn. (5.7) and the desire result readily follows. O

Corollary 5.1.2. We have

(=) (zty (m (n)
FCZ?(c,p,k) ( 2 ) [Fcz (e,p,k) (z )] [Fcz (c,p,k) (y)] (5.16)
Proof. Let a=p = % in Eqn. (5.7) and the desire result readily follows. O

Corollary 5.1.3. We have

a B
Leziepr (ax+ BY) < [Coziepr @] [Coziepr @)]- (5.17)
Proof. Let m =n =0 in Eqn. (5.7) and the desire result readily follows. O
Corollary 5.1.4. F(C"% (e, k)( x) is logarithmically conver on the interval (0,00) and increasing

therefore, it is multiplicatively convex.

Theorem 5.2. Forz,y >0, o, 3 € (0,1), a+ 8 =1 and p,k € RT — {0}, Lczi(epr) (@) satisfies
the following inequality

Leziepr (@+y) < [Fcz (,p,k) (w)r {Fczmc,p,k) <Z>]B (5.18)
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Proof. Using Eqn. (5.5), we have

o ,ﬁ,;)
k
Leziepr (@ +y) = /(z+y) 1 ( L (5.19)
,ﬁ,i)(a+5)
k
/t”y””‘“’)e( Ty dt (5.20)
0

(5 ) (Fo5)

i s

:/t“”‘e S A e AN WA (5.21)
0

_ 1 a 1 B
oo tk_ ¢ « oo tk _ ¢ &
T—a Cr iR “ —B 3 s
< t" e » dt t' e » dt (5.22)
0 0
- a B
s8] [ )
x k P 13
= /tz‘le T a /tﬁ"le "%t (5.23)
K 0
HANE y s
= [FCZ:(c,p,k) (a)] I‘C’Z:(c,p,k:) E . (524)
This completes our proof. O

Corollary 5.2.1. We have

x
Ceziepry (@ +1) < alcziepk) ( ) + BTz (k) (5> (5.25)
Proof. Using Young’s inequality (A.2.1), the desire inequality readily follows. O
Theorem 5.3. For x,y > 0, ¢ > 1, m,n € {2s:s € Ng} and p,k € RT — {0}, Fg’%:(c,p,k) (z)

satisfies the following inequality

1 1 1
[F(CW;) (e,p, k)( z) + Fglz (e,p, k)(y)] ! [anz (c,p,k)(x):| ‘+ [Fgﬂ%:(c,p,k)(y)} ‘. (5.26)
Proof. Using Eqn. (5.6), we have
1
P02 i@ + TSy )]
[ oo tk ¢ ©0 tk_ ¢ %
- /(mt)mt”@‘le(__f>dt+/(1nt)”ty—le(_’°_‘f)dt (5.27)
Lo 0
e - ()] z
= / lnt T\ "% + (lnt)%ty;leq toR dat| . (5.28)
Lo
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Using Minkowski’s inequality (A.2.2), we have

[ oo k 4 k q %
w e 3(-%-5) s v 3(-%-%)
< / (Int)yat a e a + |(Int)at @ e a dt (5.29)
Lo
1 1
[ o tk . q oo tk . q
myr—1 <_T_E> nyy—1 <_T_E>
< (Int)™t" e Edt|] + (Int)"t""e &/ dt (5.30)
LO 0
(m) i [pm) g
m q n q
= [FCZ:(c,p,k) (IIJ)] + [FCZ:(c,p,k)(y)] . (531)
This completes our proof. O
Theorem 5.4. Forxz >0, m,r € {25 :5 € No} such that m > r and p, k € Rt —{0}, Fg’%:(c,p,k) (z)
satisfies the following inequality
-T m-T m 2
exp (F(C'Z:(c),p,k) (:c)) exp (F(C‘Zic%p,k) (1:)) > (exp (F(C'Z):(c,p,k) (x))) . (5.32)
Proof. Using Eqn. (5.6), we have
L (pom=r) (me+7) (m)
5 (FCZ:(c,p,k) (l’) + FCZ:(c,p,k) (.17)) - 1—‘C'Z:(c,p,k) (x)
e s T 58)
Y [y reteN T ary [(mymrrete TR ar
2
0 0
g E8)
- / ()™ le\ " % (5.33)
0
17 1 ( i )
_ Tk Ttk
== Int)" —2|(Int)"¢" " ®/ dt 5.34
5 [ [agr + o =2 amoretel s (5.34)
0
°° (i)
_ %/[1— Int) Pnt)™ "= e\ " % (5.35)
0
> 0. (5.36)
Therefore,
Lipm=n @y iptmn o)) S () >0 (5.37)
2 CZ:(c,p,k) CZ:(c,p,k) CZ:(c,p,k) = .
P(c”;(rc),p,k) (z) + P(c”;(rc),p,k) (z) > 211(072):(0,;7,;@ (). (5.38)
Now, take the exponent of the above equation and the desire result readily follows. O

Similar inequalities for the original version of chaudhry-Zubair gamma function can be found in
(28, 29].
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5.3 On some multiplicative convex properties

Using corollary 5.1.4, we now know that I‘gg:(ep %) (z) is multiplicatively convex. Therefore, it

satisfies following theorems.

Theorem 5.5. Let I be the interval (0,00), n € {25 :s € No} and c,p,k € RT — {0}, then for all
r1 < xo < 3 in I, we have

1 logzi log F(c@:(c,p,k) (z1)

1 logzz log P(cnz);(c,p,k) (x2)) | >0 (5.39)
1 logzs log F(Cn%:(s,p,k) (z3)

for all x1 < xo < x3 in I; equivalently, if and only if

(n) log z3 ~(n) log 1 ~(n) log x
L0zt @) LG 0 by (@2) L7 (0 (23) 7572
n log = n logz n log =
21—‘(C’%:(c,p,k)(ml) ® 2F(C'Z>:(c,p,k)(x2) ¢ SF(C'%:(C,p,k)(m3) s (540)
Proof. Using Corollary 5.1.4 and from from [[26], pg. 77], the desire result readily follows. O

Theorem 5.6. Let I be the interval (0,00), n € {25:s € No} and ¢,p,k € RT — {0}. z1 > x2 >
w2 Tp and Y1 > Y2 > ... > yn are two families of numbers in a subinterval I of (0,00) such that
1> Y

T1T2 > Y1y2

T1T2....Tp—1 = Y1Y2.-..Yn—1

T1T2....Ty, 2 Y1Y2-.-Yn.-

Then
(n) (n) (n)
FCZ:(c,p,k) (1) FCZ:(c,p,k) (z2) ""FCZ:(c,p,k) (x3)
(n) (n) (n)
2 FCZ:(c,p,k) (yl) 1—‘C’Z:(c,p,k) (yQ) ""FCZ:(c,p,k) (yn) . (541)
Proof. Using Corollary 5.1.4 and from from [[26], pg. 80] the desire result readily follows. O

Theorem 5.7. Let I be the interval (0,00), m € {2s:s € No} and ¢,p,k € Rt — {0}. Let A €

M, (C) be any matriz having the eigenvalues A1, ...., A\n and the singular numbers s, ...., $n, listed
such that |Ai| > .... > |An| and s1, ..., $n. Then
H anZ):(c,p,k) (sk) Z H Fg’?:(c,p,k) (|)‘k|) (542)
1<k<n 1<k<n
Proof. Using Corollary 5.1.4 and from [[26], pg. 80], the desire result readily follows. O
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6 Ighachane-Akkouchi Holder’s Inequalities for p-k- anal-
ogue of Nielsen’s Beta Function

In section 3, we defined the p-k-analogue of the Nielsen’s beta function as

1
7—1
oDk ( %/ . (6.1)
0

For the sake of this section, we change the subscripts of 0% (z) from p and k to v and v:

1

tv !

ubo (x) = U/1+tdt. (6.2)
0

Theorem 6.1. Letpp > 1 fork=1,2,...,n with >;_, i =1 and zx > 0. Then for all integers
m > 2, we have

n

(kz—xk) + nrﬁlﬁuﬁﬁ(mk)(1ﬁuﬁﬁ(m)uﬂu(;;mk))

k=1
1 . . n n
1 - 1- el & — Gh—1)Tk o
< Onmi e Tlonton ™ (3 20t < [
10 —11 In—1"%n
(i1, rin_1)EA Py --Pn k=1 k=1 k=1
— ing L _
where, Ty = mln{ﬁ, k=1,...,n}.

Proof. To apply Theorem 3.1, we set Q := (0,1) and take the measure du(t) := dt. Then we

t(t+1)

choose & (t) = 2tk , for k =1,2,...,n. So we have the following equalities:

/H\&k )ldu(t) —uﬁv(Z—xk) (6.3)

n

S I auo = uso(3- 2, (6.4)

k=1 k=1

1/pk

6kl = [uBulan)] (6.5)

and

n

/ [T 6™ du(e) = o (30 U= enlee), (6.6)

k=1 k=1

Now, using Theorem 3.1, we have

uﬁv(ipikm) + oy H () (1~ Huﬁ,ﬁl(mk)uﬁu(iimk))

k=1 k=1
1 i i g1 "\ (g —ip_1)x - ;
_ = k= lk—1)Tk Dy
< Y G L@y “5“(27) H Bi* (wx)
(i1, in_1)€A  P1 ~Pn k=1 k=1 k=1
This completes our proof. O
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Recall the n** derivative of Eq. (6.2) in section 3, we have

Y 1()N)( ): (*1)NU/tNe_%dt (6.7)

pN+1 1+et

Notice that here again we had a slight change in the notation, we have denoted the order by N
instead of n. Now, applying theorem 3.1 on uﬂﬁN) (z) gives the following theorem.

Theorem 6.2. Letpr > 1 fork=1,2,...,n with >;_, i =1 and zx > 0. Then for all integers
m>2 and N > 1, we have

n
1
A La)| 4
k

=1 PE

L/B’U

1 n 1
A0 (%))

k=1

el

1o ki
uﬁaEN) (xk). —m (N)

n 1 n
< X CA#H uﬁﬁN)(Zm)‘

(i1, vin_1)€A  P1 Pn k=1 k=1 k=1

/\

where, 1o = rnin{i7 k=1,...,n}.

7 Ighachane-Akkouchi Holder’s Inequalities for Extended
Chaudhary-Zubair Gamma Function

7.1 For p-k- extended Chaudhary-Zubair gamma function

Recall the definition of extended Chaudhary-Zubair gamma function that we presented in section
5:

7 e
Loz (e (T) = /tzle< s >dt (7.1)
0
Again here we have replaced p and k with u and v. The N** derivative of 7.1 is given by
_,u .
TE7 (e /(mt e\ " %)dt. (7.2)
Theorem 7.1. Let pr > 1 fork=1,2,...,n with Y, _ 15 =1 and x > 0. Let u,v > 0 Then for

all integers m > 2, we have

n

n 1 1
Tezite,um) ( Z p—mk)nro H ngz () ( H Z (e v)(mk)Pcz (c,u,v) ( am))

k=1 k

s |
-

1 _ik’i’kfl (Zk *ik_l)xk
< Z Ca A T i H Coz. (eyu u)(l“lc) FCZ:(c,u,v)( T)
(i1seeryin_1)EA Py --Pn k=1 k=1
n 1
<TI0 e (), (7.3)
k=1

where, T = min{i, k=1,...,n}.

For 7.2 we have the following theorem.
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Theorem 7.2. Letpr > 1 fork=1,2,...,n with _;_, i =1 and xy > 0. Let u,v > 0 Then for
all integers m > 2, we have

n

(N) (N) == (V) 1
Loz ( Z 73’,’“)7”"0 H FCZ () (Th ( H Fcz (o) @)L EZ ( ;Ik))

k=1 k=1
1 T (N 1- k=1 (N (i — ik—1)Tk
< Y Ca o HTE e (20) Y, cuv)( BT )
(i1, in_1)€A  P1 --Pn k=1 k=1
n
(N) =
< H FCZ:fck,u,v)(xk)’ (7.4)
k=1
where, ro = min{z%k7 k=1,...,n}.

7.2  For ordinary Chaudhary-Zubair gamma function

If w = v in theorems 7.1 and 7.2, then we get the corresponding inequalities for the ordinary

Chaudhary-Zubair gamma function:
= /t’”‘le(‘t‘%)dt. (7.5)
0

Theorem 7.3. Let pr > 1 fork=1,2,...,n with >_}_, —k =1 and zy, > 0. Let u,v > 0 Then for
all integers m > 2, we have

where, ro = min{pik7 k=1,...,n}.

Theorem 7.4. Letpr > 1 fork=1,2,...,n with ) _;_, i =1 and xy > 0. Let u,v > 0 Then for
all integers m > 2, we have

n n n
N)-L =1 1
F(CN)( E p—a:k>nr0 I I I‘ PR ( (1 — I I FgN) n (xk)F(CN)( ;ﬂ%))

k=1 k=1 k=1
- <N> (N) “~ (ik — ik—1)Tk (A
< Z Ca ig— 7.1 m 1—in H L F ( m ) < H Le o (mk)’
(i1, mrin_1)EA 1 P k=1 k=1
(7.7)
where, To = min{i, k=1,...,n}.
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7.3 For v-extended Chaudhary-Zubair gamma function

In [30], authors derieved the following extension of the Chaudhary-Zubair gamma function:

Ty (2 /tz L= = g (7.8)
0

for Rz > 0 and b > 0 and v > 0. The N** derivative of I'y,, (z) can be given by

TN (z) = [ (N te v e (7.9)

0\8

Applying theorem 3.1 on I'y,, () and I‘éf}) (z) gives the following theorems.

Theorem 7.5. Let pr > 1 fork=1,2,...,n with >_}_, i =1 and xzy, > 0. Let u,v > 0 Then for
all integers n > 2, we have

k=1 k=1 k=1 =1
1 = -1 “~ (i — ik—1)Tk -
< X G [Pt (Z ) < HF (),
(i1rerin—1)EA 1 Pn k=1 k=1 k=1
(7.10)
where, ro = rnin{i7 k=1,...,n}.

Theorem 7.6. Let pr > 1 fork=1,2,...,n with > }_, = =1 and zy, > 0. Let u,v >0 Then for
all integers m > 2, we have

n
= 1
0 (3 g TL o (1= T ort? (3 1))

k= 1 k

ih—ig S n
< Z Ca ey zn — H F}()A:}) 7111(,? ( ('Lk Zk71)$k> < H Fb,u Pl (iCk),
(i1,--yin—1)€EA Py P =1 k=1

Il
-

3

o

where, ro = min{pik7 k=1,...,n}.

8 Conclusion

In this paper, using the theory of k—special functions and some extended versions of the gamma
function, we have derived some new number theoretic functions such as the Nielsen’s beta function
and the extended Chaudhary-Zubair gamma function. Some monotonicity properties of this functions
are also proved and modified Holder’s inequalities which were derived by Ighachane and Akkouchi
in their work are applied in deriving some inequalities for the functionsthat we have presented in
this paper.

Competing Interests

Author has declared that no competing interests exist.

61



Atalen; ARJOM, 18(10): 40-65, 2022; Article no.ARJOM.90303

References

1]

Ighachan MA, Akkouchi M. Some new refinements of the generalized Holder inequality and
applications. Int. J. Nonlinear Anal. Appl. 2022;13(2):265276.

Kuldeep Singh Gehlot, Two Parameter Gamma Function and its Properties,
arXiv:1701.01052v1(math.CA); 2017.

Diaz R, Pariguan E. On hypergeometric functions and Pochhammer k-symbol. Divulgaciones
Mathematicas. 2007;15(2):179-192.

Daz R, Pariguan E. Quantum symmetric functions, Communications in Algebra.
2005;6(33):19471978.

Daz R, E. Pariguan, Symmetric quantum Weyl algebras, Annales Mathematiques Blaise Pascal.
2004;11:187203.

Deligne P, Etingof P, Freed D, Jeffrey L, Kazhdan D, Morgan J, Morrison D, Witten E.
Quantum fields and strings: A course for mathematicians, American Mathematical Society;
1999.

Mansour M. Determining the k -generalized gamma function I'y;(z) by functional equations,
Int. J. Contemp. Math. Sciences. 2009;4:1037-1042.

Ch. Kokologiannaki. Propierties and Inequalities of generalized k-Gamma, Beta and Zeta
Functions. Int. J. Contemp. Math. Science. 2010;5.

SS Dragomir, Agarwal RP, Barnett NS. Inequalities for beta and gamma functions via some
classical and new integral inequalities, J. Inequal. Appl. 2000;5:103165.

ALZER H. Some beta function inequalities, Proc. of the Royal Soc.of Edinburgh.
2003;133A:731745.

Ivady, P. On a beta function inequality, J. Math. Inequal. 2012;6(3), 333341.

Barkat Ali Bhayo, Jozsef Sandor, On the inequalities for beta function, Notes on Number
Theory and Discrete Mathematics. ISSN 13105132. 2015;21(2):17.

Horst Alzer, Sharp inequalities for the beta function, Indag. Mathem., N.S.; 2001;12 (1):15-21.

Ravi B, Venkat Lakshmi A. Some inequalities for the beta function, Bulletin of the International
Mathematical Virtual Institute, ISSN (p) 2303-4874. 2017;7:403-406.

Connon DF. On an integral involving the digamma function, arXiv:1212.1432 [math.GM].

I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, Edited by D.
Zwillinger and V. Moll. Academic Press, New York, 8th Edition; 2014.

K. Nantomah, On Some Properties and Inequalities for the Nielsens B-Function,
arXiv:1708.06604v1 [math.CA], 12.

N. Nielsen, Handbuch der Theorie der Gammafunktion, First Edition, Leipzig : B.G. Teubner;
1906.

K. Nantomah, Monotonicity and Convexity Properties of the Nielsens S-Function, Probl. Anal.
Issues Anal. 2017;6:8193.

Kokologiannaki, Chrysi and Krasniqi, Valmir. Some properties of the k-Gamma function. Le
Matematiche. 2013;1.

Islam, Mujahid and Ali, Asad and Shehzadi, Asia and Ain, Hoor. Gamma function
and k-gamma function for two variables. International Journal of Mathematical Analysis.
2020;14:117-124.

DOI: 10.12988/ijma.2020.91286.

62



Atalen; ARJOM, 18(10): 40-65, 2022; Article no.ARJOM.90303

[22]

23]
24]

[25]

[26]
[27]

28]

[29]

[30]

Gehlot, Kuldeep. New Two Parameter Gamma, Function; 2020.
10.20944 /preprints202004.0537.v1.

Gehlot, Kuldeep. The Umbrella Function; 2020. 10.20944 /preprints202005.0004.v1.

Ighachan MA, Akkouchi M, El. H. Benabdi. A new generalized refinement of the weighted
arithmetic geometric mean inequality, Math. Ineq. Appl. 2020;23(3):10791085.

Nantomah, Kwara and Nisar, Kottakkaran and Gehlot, Kuldeep. On a k-extension of
the Nielsen’s S-function. The International Journal of Nonlinear Analysis and Applications
(IJNAA). 2019;9:191-201. DOI: 10.22075/ijnaa.2018.12972.1668.

Niculescu CP, Persson LE. Convex Functions and Their Applications. CMS Books in
Mathematics; 2006. doi:10.1007/0-387-31077-0

Chaudhry MA, Zubair SM, Generalized incomplete gamma functions with applications,
Journal of Computational and Applied Mathematics. 1994;55:99-124.

Atugba, Monica and Nantomah, Kwara. On Some Inequalities for the Chaudhry-Zubair
Extension of the Gamma Function. Asian Research Journal of Mathematics. 2019;1-9. DOI:
10.9734/arjom/2019/v14i130117.

Dragomir SS. New inequalities of Hermite-Hadamard type for log-convex functions. Khayyam
J. Math. 2017;3(2):98115.
DOI: 10.22034/kjm.2017.47458.

Mubeen, Shahid and Purohit, Sunil and Arshad, Muhammad and Rahman, Gauhar. Extension
of k-gamma, k-beta functions and k-beta distribution. Journal of Mathematical Analysis.
2016;7:118-131.

63



Atalen; ARJOM, 18(10): 40-65, 2022; Article no.ARJOM.90303

Appendix 1

1.1.[25] For z,k > 0

Br (z) =

|

() - ()}

k k
nk+x 2nk+z+k

ﬁbﬂﬂg

xt

e k
—t

dt

+
)

~

8
|

-

O\H 0\8

—_
Jr
~

2.[25] For n € Ng, we have

n k n l'+k' n X
v @) = 2n+1{’(€)( 2 )* ’i)(§)}
() 7#@—“2‘
Tk 1+e*tdt
0
1

/ (Int) tk‘l
14+t
0

1.3.[25] For n € Ny and z,y > 0, the following inequality holds true

160 (@ + )| < |87 (@) + |50 )]
1.4.[25] Let n € Ng, a > 0, and = > 0, then the inequalities
180" (a2)| < 0| (@)]

if a > 1, and
887 ()] 2 al” =)

if a <1 are satisfied.
1.5.[25] Let k£ > 0 and n € No, then the inequality

180 (@y)| < [ @)] + |80 )|

holds for z > 0 and y > 1.

(A.1.1)

(A.1.2)

(A.1.3)

(A.1.4)

(A.1L5)

(A.1.6)

(A.1.7)

(A.1.8)

(A.1.9)

(A.1.10)

(A.1.11)
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Appendix 2
2.1. (Young’s Inequality): If u,v > 0 and (a, 8) € (0,1) sucn that o + 8 = 1, then the inequality
u“v? < o+ Bu (A.2.1)

holds.
2.2. (Minkowski’s inequality): Let w > 1. If f(¢) and g¢(t) are continuous real-valued function on
[a, b], then inequality

u

Jir@+ara) <| [ir@ra) +| [la@r (A22)

holds.
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