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In this paper, the stochastic resonance (SR) phenomenon of four kinds of noises (the white noise, the harmonic noise, the
asymmetric dichotomous noise, and the Lévy noise) in underdamped bistable systems is studied. By applying theory of
stochastic differential equations to the numerical simulation of stochastic resonance problem, we simulate and analyze the
system responses and pay close attention to stochastic control in the proposed systems. Then, the factors of influence to the SR
are investigated by the Euler-Maruyama algorithm, Milstein algorithm, and fourth-order Runge-Kutta algorithm, respectively.
The results show that the SR phenomenon can be generated in the proposed system under certain conditions by adjusting the
parameters of the control effect with different noises. We also found that the type of the noise has little effect on the resonance
peak of the output power spectrum density, which is not observed in conventional harmonic systems driven by multiplicative
noise with only an overdamped term. Therefore, the conclusion of this paper can provide experimental basis for the further

study of stochastic resonance.

1. Introduction

The concept of stochastic resonance (SR) was firstly pro-
posed by Benzi et al. [1] in the 1980s to explain the periodic
recurrence of ice ages on Earth. Since then, much attention
has been paid to SR due to its potential applications in many
fields [2-6].

In the past few years, many researchers focused the SR
phenomenon of the overdamped systems [2, 4], while in
recent years, researchers gradually shifted their views to the
underdamped systems. The SR phenomenon in under-
damped bistable system was firstly studied by Ray and
Sengupta [7]; they analyzed the difference of the dependence
of noise amplitude between underdamped bistable system
and overdamped bistable system.

In fact, the bistable systems are very important on the
noise effect of the nonlinear systems. Jia et al. [5] studied
SR in bistable systems driven by additive and multiplicative
white noise. Guo et al. [8] studied the instability probability
density evolution in bistable systems driven by Gaussian

noise and white noise, and obtained rich conclusions. Mean-
while, relevant theories have shown practical application sig-
nificance in chemistry, physics, engineering, and other fields
[9, 10]. With the further study of stochastic phenomena, SR is
gradually extended to multistable and more complex systems
[11, 12]. However, SR in bistable systems is still widely
concerned by researchers due to its practical value.

On the other hand, the studies of early SR mechanism
mainly focus on Gaussian white noise [13]. In recent years,
however, some literatures have begun to focus on the effects
of some non-Gaussian noises on SR of bistable systems [11,
14-17]. Wang et al. [11] studied the SR of the bistable system
driven by simple harmonic noise. Zhang et al. [14] studied
the stochastic resonance in the system driven by the Lévy
noise and found interesting dynamic behaviors. Gingl et al.
[15] studied the nondynamical SR with arbitrarily coloured
noise, and Shen et al. [16] studied system driven by correlated
non-Gaussian noise and Gaussian noise, while Neiman and
Schimansky-Geier studied the SR in a bistable system driven
by the harmonic noise.
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However, as the best of our knowledge, there is no
detailed horizontal comparison of the dynamical effects
among different noises in the available literature, and also
there is a lack of simulation analyses of the complex system
driven by nonwhite noise. As a matter of fact, most SR are
difficult to be expressed in analytic form [17-20], especially
for a wide range of situations in nonlinear systems. We
noticed that the numerical simulation of SR is essentially
numerically solving a stochastic differential equation. Hence,
the numerical algorithm suitable for stochastic differential
equations is more suitable for SR [21, 22].

Therefore, the main goal of this paper is to focus on the
control effects in an underdamped bistable system driven
by four kinds of noises (the white noise, the harmonic noise,
the asymmetric dichotomous noise, and the Lévy noise);
meanwhile, we will provide the vivid numerical simulation
analyses. Furthermore, since the harmonic noise can be gen-
erated by the white noise through the resonance subsystem,
we would like to control the properties of harmonic noise
by controlling the parameters of the resonance subsystem.
Thus, the control of SR is realized.

The organization of this paper is as follows. Section 2 def-
initely introduces the system model and the definition of the
four kinds of the noises and its parameters. The analyses of
the effects of different noises on system output are given in
Section 3 where we give the method to determine the number
of simulations firstly. Finally, the conclusions are discussed in
Section 4.

2. System Model

We consider the undamped bistable system driven by four
kinds of noise which is described by the following stochastic
differential equation:

d*x . dx __aU(x)
ar Ta T T Tox

+Acos (wt+0)+&(t), (1)

where # is the coefficient of the damping term, U(x)is the
system potential field, with U(x) = —(1/2)ax? + (1/4)bx", a
>0 and b > 0 are the two constants of potential field U(x),
A, w, 0 are the amplitude, frequency, and phase of periodic
driven force, respectively, and £() is the noise; in this paper,
we consider four types of noises which are the white noise,
the harmonic noise, the asymmetric dichotomous noise,
and the Lévy noise.

Firstly, we give a brief description of the four kinds of the
noises as follows:

2.1. The White Noise. The white noise &(t) is a stationary pro-
cess with zero mean and constant power spectral density,
respectively:

(2)

w € (—00,+00).

Besides, the white noise £(¢) has the following form of the
second moment:
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<E(t)£(t')> :20c8(t— t'). (3)

Here, w is the frequency of the white noise, N is a con-
stant independent with the frequency w, « is the noise inten-
sity, and & is the delta function.

2.2. The Harmonic Noise. The harmonic noise &(t) is a mono-
chromatic noise commonly used in stochastic dynamics. It
can be regarded as the output response of the resonant
subsystem driven by Gaussian white noise &(¢):

&(t) + I'é(t) + Q%e(t) = V20TE(1). (4)

Here, I', 3, and O are the system parameters. Equation
(3) determines the two-dimensional Ornstein-Uhlenbeck
process £(t) and &(t) with the power spectrum:

r
Sul@) = ———2 , (5)
w2l + (w2 - 92)2

and the mean square displacements (&?(t)) = ®/Q*. From
the expression function of simple harmonic noise power
spectrum, it is not hard to know if Q* — I'*/4 > 0; the peak
of power spectrum function should be at w, = v/ 0?-T17?)2.

When Q* - I'?/2 <0, the peak of power spectrum function
should be at w, = 0.

2.3. The Asymmetric Dichotomous Noise. We take £(t) as the
asymmetric dichotomous noise which consists of jumps
between two values: {—a, ka} with a > 0 and k > 0. The jumps
follow, in time, according to the Poisson process. k represents
the asymmetric degree of the noise. When k =1, the noise
becomes a symmetric noise. Let A and A" be the transition
rate from —a to ka and the reverse transition rate, respec-
tively. Without loss of generality, we assume that

B kal —a)’ 3

(&)= BYSUN =0. (6)

Thus, we can obtain kA =A'. Moreover, the correlation
function of the asymmetric dichotomous noise is given by
the following:

(§(1)&(s)) = Dy exp {=At s} (7)

Here, y= A+ A’ is the reverse of the correlation time 7 of
the asymmetric noise £(¢), and the definition of the strength
of &(t) is as follows:

Thus, we know that the noise strength D is not indepen-
dent, but is connected with the asymmetric degree k, the
correlation time 7, and value a.
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F1GURE 1: The relationship between the output average displacement and simulation times of the system within time T = 1000. The x-axis is
the time, the y-axis is the number of simulation times, and the z-axis is the average displacement.
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FIGURE 2: The relationship between the average displacement and the number of simulation time at a certain time. x-axis is the number of

simulation time; y-axis is the average displacement.

2.4. The Lévy Noise. Lévy noise is also well known as the alpha
stable noise, which was proposed by Lindberg Lévy. Since
neither the distribution function nor the probability density
function of Lévy noise has an explicit expression, the distri-
bution of Lévy noise is usually expressed by a characteristic
function as follows:

2
exp [—a"‘\tr”(l - 1[3; sign (1) log |t|> + i‘ut}, a=1,
9(t) =
L2 T .
exp [—a"‘\tr”(l —1[3; sign (1) tan 7) +1‘ut], a#l.

©)

Here, a €(0,2] is the stability index, f€[-1,1] is the
skewness parameter, o > 0 is the scale parameter, and y € R
is the shift.

3. Analyses of the Effects of Different Noises on
System Output

We compare the system outputs driven by Gaussian white
noise, harmonic noise, asymmetric dichotomous noise, and
Lévy noise, which have certain guiding significance for
stochastic resonance phenomenon driven by other noises,
due to their wide applications.

3.1. The Simulation Number of Times. To obtain a stable state
of the system responses, we need to avoid the randomness of
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TaBLE 1: The common parameters for numerical simulation of Section 3.

Parameter Value Parameter Value Parameter Value Parameter Value

T 1000s TestNum 50 Fs 200 0 0.03

w 0.02pi n 0.5 0 1 r 1

The output response x (t) driven by the white noise

0 100 200 300 400 500 600 700 800 900 1000

t
(a) The output response x(t) driven by the white noise

The output response x (t) driven by the asymmetric dichotomous noise

0 100 200 300 400 500 600 700 800 900 1000

t

(c) The output response x(t) driven by the asymmetric dichotomous noise

The output response x (t) driven by the harmonic noise

x (1)

0 100 200 300 400 500 600 700 800 900 1000

t
(b) The output response x(t) driven by the harmonic noise

The output response x (t) driven by the levy noise

0 100 200 300 400 500 600 700 800 900 1000
t

(d) The output response x(t) driven by the Lévy noise

Ficure 3: The system responses x(t) for underdamped system under different noises. The values of the parameters for the numerical
simulation are shown in Table 1. The blue line is for input sine signal. The black line is for D = 0, and red line is for D = 0.07.

the noises by considering the statistical average in numerical
simulation. Therefore, we will determine the number of sim-
ulations in this paper by observing the relationship between
the average particle displacement X(t) = Y~ X(¢)/N; and
the number of simulations N.

In Figures 1 and 2, it is obvious that the average displace-
ment tends to be stable when the number of simulations is
50, which indicates that when simulation time equals to 50,
it can reveal the general rule of the system output. Therefore,
it is reasonable for us to use 50 simulations to reveal the rule
of the noise-driven dynamical phenomena in the following
simulation process.

Furthermore, without a special request, the common
simulation parameters will be used in the following table:

3.2. The System Response Driven by Different Noises. We have
compared the response of the system driven by Gaussian
white noise, harmonic noise, asymmetric binary noise, and
Lévy noise, respectively. The simulation values are set as
Table 1.

Figure 3 shows the performance of the response of the
periodic modulated underdamped system driven by different
noises in the time domain, where Figure 3(a) is the situation
driven by the white noise, Figure 3(b) is the situation driven
by the simple harmonic noise, and Figure 3(c) is the situation
driven by the asymmetric dichotomous noise. Figure 3(d)
shows the situation driven by Lévy noise. Four kinds of noise

can be found that they can cause approximately periodic
transitions between two states. And we found that the jump
frequencies of the four noise are close to the frequencies of
the input periodic forces. In other words, under the simula-
tion conditions with the same parameters as shown in
Figure 3, the particles vibrate approximately synchronously
with the input periodic force.

Besides, we found that the particles fluctuated in orbit
around the noiseless input. At the same time, the output of
the system driven by harmonic noise is obviously stronger
than the other two damping effects. The vibration of particles
is much stronger when they located in the two potential wells
during the transition and then decreases significantly. The
vibration in the potential wells is more stable than that of
harmonic noise and asymmetric binary noise. Finally, the
case driven by Lévy noise is the most special. Due to the
impulse characteristic of Lévy noise, the particle displace-
ment has great changes in some positions and then quickly
returns to orbit.

3.3. The Stochastic Resonance of the System Driven by
Different Noises. The power spectral density is the character-
istic quantity of signal energy realization in the frequency
domain, which reveals the characteristic of signal in the fre-
quency domain. In the next sections, we will observe the
influence of noise on system output through the power
spectrum of system output at the frequency point of input
periodic signal.
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FIGURE 4: The relationship between 2 and system output PSD of undamped bistable system driven by the harmonic noises. (a) Input white
noise intensity D = 0.02, 0.05, and 0.07. (b) Input white noise intensity D = 0.09, 0.12, and 0.15.
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Ficure 5: The relationship between Ig (a) and system output of undamped bistable system driven by asymmetric dichotomous noise. (a) The
output when input white noise intensity is D = 0.02, 0.05, and 0.07. (b) The output when input white noise intensity is D = 0.09, 0.12, and 0.15.

3.3.1. The System Driven by the Harmonic Noise. In this
section, we did the numerical simulation by the Euler-
Maruyama method; the results are as follows.

Figure 4 shows the impact of O on system response
PSD in harmonic noise (Equation (1)) model in the case
of different noise intensities. With the increase of Q, the
power spectrum density of the system response is increas-
ing; then, it peaks and then goes down. There are obvious
resonance peaks, and there is a random resonance phe-

nomenon. Meanwhile, comparing the two pictures, it can
be found that as the noise intensity increases, the power
spectrum density of the system response also increases
first and then decreases. The value of Q corresponds to
the peak that constantly moves to the right with the
increase of noise intensity. Therefore, by adjusting the
value of 2 in harmonic noise model, the stochastic reso-
nance phenomenon can be induced by the undamped
bistable system.
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output when input white noise intensity is D = 0.02, 0.05, and 0.07. (b) The output when input white noise intensity is D = 0.09, 0.12, and 0.15.

3.3.2. The System Driven by the Asymmetric Dichotomous  intensity, the width of the resonant peak is relatively stable,
Noise. We mainly focused on the relationship between the  while the height of the resonant peaks goes from low to high.
noise parameter a and the system response PSD, for the

two states of random telegraph noise are symmetrical. After ~ 3.3.3. The System Driven by the Lévy Noise. Due to the com-
the numerical simulation by the Euler-Maruyama method,  plex form of Lévy noise, it is difficult to apply the Euler-

the results are as follows. Maruyama method and Milstein method to its numerical
Figure 5 shows the relationship between a and system  simulation. Therefore, we will use the fourth-order Runge-

output of undamped bistable system PSD driven by asym-  Kutta method for numerical simulation, to investigate the

metric dichotomous noise with b fixed. We find that there  control effect of each parameter on stochastic resonance.

is stochastic resonance in this system. When it has low noise In Figure 6, we find there is stochastic resonance in the

intensity, the resonance peak of power spectral density in  relational graph. With the increase of the noise intensity,
system responding is narrower. With the increase of noise  the resonant peak of the power spectral density curve is
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moving in the positive direction, that is, a reaching resonance
peak grows with the increase of the noise intensity.

Comparing Figures 7(a) and 7(b) in Figure 7, we found
that the stochastic resonance occurs in this system. With
the increase of the noise intensity, the peak value of the reso-
nant peak of the power spectral density curve increases and
then decreases. However, the position of the peak is almost
unchanged. Hence, by controlling the symmetric parameter
B =0, we lead to phenomenon of the stochastic resonance
of the symmetric parameters of the undamped bistable sys-
tem driven by Lévy noise.

3.3.4. The Comparison of Different Noises on Stochastic
Resonance. It can be found that four kinds of noise can
induce the approximate periodic transition between the two
states. And the frequency of the four types of jumps is close
to the frequency of the input periodic forces. That is, the par-
ticle is almost synchronized with the periodic force of the
input under the same parameter simulation condition. The

particles are all moving up and down in the direction of the
noiseless input. At the same time, we also find that the output
of system output generated by harmonic noise is significantly
stronger than that of other two. The vibration of the particle
in two potential well is stronger when the transition occurs
and then significantly decreases. Compared with that, the
harmonic noise and asymmetric noise are more stable in
the potential well. The case driven by Lévy noise is the most
special one. Because of the pulse characteristic of steady
noise, the displacement of particles varies greatly in some
places and then rapidly returns to orbit.

In Figure 8, the noise intensity D can be used to guide the
occurrence of random resonance. With the undamped dou-
ble steady-state damping coefficient increasing, the resonant
peaks of noise intensity D are constantly moving to the right.
It indicates that damping has an inhibitory effect on random
forces. In four kinds of noise, the output power spectral
density of the harmonic noise at the signal frequency point
is highest, and that from white noise and asymmetric



dichotomous noise takes second place. And that from steady
noise is the lowest. When harmonic noise, asymmetric
dichotomous noise, and white noise are at low noise inten-
sity, they are very close to the spectral density of the periodic
signal. The output power spectrum of the system output in
the undamped bistable system is basically coincident with
white noise and asymmetric dichotomous noise. The reso-
nant peak of the stochastic resonance of the Lévy noise and
the harmonic noise drive is very close to the resonant peak
driven by the other two noises. It can be found that the noise
type has little influence on the resonance peak of the
undamped bistable system on the noise intensity D.

4. Conclusion

In this paper, we mainly study the control effect of four kinds
of noise (white noise, harmonic noise, asymmetric dichoto-
mous noise, and Lévy noise) on undamped bistable system.
The random resonance phenomenon is generated by adjust-
ing the noise parameters. Since the harmonic noise can be
generated by the white noise through the resonance subsys-
tem, we can change the properties of harmonic noise by con-
trolling the parameters of the resonance subsystem and then
we can control stochastic resonance. In this paper, the con-
trol effect of harmonic noise in undamped bistable system
is studied, and the similar random resonance phenomenon
is found in the undamped bistable system.

The four kinds of noise used in stochastic resonance
research are simulated by numerical algorithms. Here, Euler
numerical algorithm and Milstein numerical algorithm are
based on stochastic differential equation and fourth-order
Runge-Kutta algorithm is based on ODE. The main object
of the analysis is the time domain diagram and the power
spectral density diagram of the system output.

In this paper, it has indicated that in the undamped bis-
table system, the stochastic resonance can be controlled by
the harmonic noise generated by the resonance subsystem.
The four kinds of noise (white noise, harmonic noise, asym-
metric dichotomous noise, and Lévy noise) can be used to
change the noise parameters and control stochastic reso-
nance under certain conditions. For these four kinds of noise,
the power spectrum density of the system output is very close
to the horizontal position of the resonant peak of the noise.
That is, the noise type has little influence on the horizontal
position of the resonant peak of stochastic resonance after
full optimization.
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