

Asian Journal of Probability and Statistics

19(3): 1-12, 2022; Article no.AJPAS.90873 *ISSN: 2582-0230*

Slope Rotatable Central Composite Designs of Second Type

B. Venkata Ravikumar a,b* and B. Re. Victorbabu ^a

^aDepartment of Statistics, Acharya Nagarjuna University, Guntur-522510, India. ^bV. R. Siddhartha Engineering College, Kanuru, Vijayawada-520007, India.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJPAS/2022/v19i330468

Open Peer Review History:

Received 19 June2022 Accepted 20 August 2022 Published 24 August 2022

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/90873

__

Original Research Article

Abstract

Central composite design (CCD) is the most commonly used fractional factorial design used in the response surface model. Kim [1] proposed second order rotatable designs (SORD) of second type using CCD, in which the positions of axial points are indicated by two numbers (a_1, a_2) . Kim and Ko [2] introduced second order slope rotatable designs (SOSRD) of second type using CCD, in which the positions of axial points are indicated by two numbers (a_1, a_2) . In this paper, second order slope rotatable central composite designs of second type with $2\leq n_{\rm a} \leq 4$ (where $n_{\rm a}$ denotes the number of replications of axial points) are suggested for 2 \leq v \leq 17 (v-stands for number of factors). It is observe that the value of level a_2 (taking $a_1 = 1$) for the axial points in CCD required for slope rotatability for second type is appreciably larger than the value required for SORD of second type using CCD. And also noted that if we replicate axial points (n_a) in SOSRD of second type using CCD then the value of a_2 (taking $a_1 = 1$) is approximately nearer to SORD value a_2 of second type using CCD.

Keywords: Response surface designs; second order slope rotatable designs; slope rotatable central composite designs; second order slope rotatable designs of second type.

Research Scholar,

Assistant Professor, Professor of Statistics (Retired),

__

^{}Corresponding author: Email: ravib.stat@gmail.com;*

1 Introduction

Response surface design is a collection of mathematical and statistical techniques useful for analyzing problems where several independent variables influence a dependent variable. The property of rotatability was proposed by Box and Hunter [3] for response surface designs and constructed second order rotatable central composite designs (CCD). Das and Narasimham [4] constructed second order rotatable designs (SORD) using balanced incomplete block designs (BIBD). Draper and Guttman [5] suggested an index of rotatability. Khuri [6] introduced measure of rotatability for response surface designs. Draper and Pukelshein [7] developed another look at rotatability. Park et al. [8] suggested measure of rotatability for second order response surface designs. Kim [1] introduced extended central composite designs with the axial points indicated by two numbers. Victorbabu and Vasundaradevi [9] suggested modified second order response designs, rotatable designs using BIBD. Victorbabu and Surekha [10] studied on measure of rotatability for second order response surface designs using BIBD. Jyostna et al. [11] suggested measure of modified rotatability for second order response surface designs using CCD. Jyostna and Victorbabu [12] studied measure of modified rotatability for second degree polynomial using BIBD. Chiranjeevi et al. [13] developed SORD of second type using CCD. Chiranjeevi and Victorbabu [14] studied SORD of second type using BIBD.

Hader and Park [15] introduced slope rotatable central composite designs (SRCCD). Victorbabu and Narasimham [16] constructed second order slope rotatable designs (SOSRD) using BIBD. Victorbabu and Narasimham [17] studied SOSRD through a pair of incomplete block designs. Park and Kim [18] developed measure of slope rotatability for second order response surface experimental designs. Victorbabu [19,20] introduced modified SOSRD using CCD and BIBD respectively. Victorbabu [21] suggested a review on SOSRD. Victorbabu and Surekha [22,23] studied measure of SOSRD using CCD and BIBD respectively. Rajyalakshmi and Victorbabu [24] studied an empirical study on robustness of SOSRD using symmetrical unequal block arrangements with two unequal block sizes. Rajyalakshmi and Victorbabu [25] [constructed](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=Y27mFaoAAAAJ&citation_for_view=Y27mFaoAAAAJ:hCrLmN-GePgC) [SOSRD under tri-diagonal correlated structure of errors using BIBD.](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=Y27mFaoAAAAJ&citation_for_view=Y27mFaoAAAAJ:hCrLmN-GePgC) Rajyalakshmi et al. [26] studied [SOSRD](https://scholar.google.com/scholar?cluster=17457848144036452875&hl=en&oi=scholarr) [under intra-class correlated errors using pairwise balanced designs.](https://scholar.google.com/scholar?cluster=17457848144036452875&hl=en&oi=scholarr) Sulochana and Victorbabu [27] studied SOSRD under intra-class correlated structure of errors using partially balanced incomplete block type designs. Sulochana and Victorbabu [28] studied SOSRD under tri-diagonal correlation structure of errors using a pair of incomplete block designs. Victorbabu and Jyostna [29] studied [measure of modified slope rotatability for second](https://ph02.tci-thaijo.org/index.php/thaistat/article/view/242825) [order response surface designs.](https://ph02.tci-thaijo.org/index.php/thaistat/article/view/242825) Specifically, Kim and Ko [2] introduced slope rotatability for CCD of second type for 2≤v≤5 (v-stands for number of factors) by taking $n_a=1$ (where n_a denotes the number of replications of axial points), in which the positions of axial points are indicated by two numbers (a_1, a_2) . Ravikumar and Victorbabu [30] extended the work of Kim and Ko [2]and developed SOSRD of second type using CCD for 6 $\leq v \leq 17$ by taking n_a=1. Victorbabu and Ravikumar [31] developed SOSRD of second type using BIBD.

In this paper an attempt is made to study SRCCD of second type with $2 \leq n_{a} \leq 4$ (where n_{a} denotes the number of replications of axial points) for 2≤v≤17. It is observed that the value of level a_2 (taking $a_1 = 1$) required for SOSRD of second type using CCD is appreciably larger than the value required for SORD of second type using CCD, and also noted that if we replicate axial points (n_a) in SOSRD of second type using CCD then the value of a₂ is approximately nearer to SORD of second type using CCD [32].

2 Conditions for Second Order Slope Rotatable Designs

A general second order response surface design $D = ((X_{i\omega}))$ for fitting

$$
Y_{u} = \beta_{0} + \sum_{i=1}^{V} \beta_{i} X_{iu} + \sum_{i=1}^{V} \beta_{ii} X_{iu}^{2} + \sum_{i=1}^{V} \sum_{j=1}^{V} \beta_{ij} X_{iu} X_{ju} + e_{u}
$$
\n(2.1)

where X_{i} denotes the level of the ith factor (i=1,2,...,v) in the uth run (u=1,2,...,N) of the experiment and e_u's are uncorrelated random errors with mean zero and variance σ^2 . Then D is said to be SOSRD if the variance of the estimate of the first order partial derivative of $Y(X_1, X_2, ..., X_n)$ with respect to each of independent variable

 X_i is only a function of the distance $(d^2 = \sum_{i=1}^{V} X_i^2)$ of the point $(X_1, X_2, ..., X_v)$ from the origin (centre) of the design.

The general conditions for second order slope rotatable designs are as follows [cf. Box and Hunter [3], Hader and Park [15] and Victorbabu and Narasimham [16].

All odd order moments are zero. In other words when at least one odd power X's equal to zero. i.e;
\n
$$
\sum X_{iu} = 0, \sum X_{iu} X_{ju} = 0, \sum X_{iu} X_{ju}^2 = 0, \sum X_{iu} X_{ju} X_{ku} = 0,
$$
\nA.
\n
$$
\sum X_{iu}^3 = 0, \sum X_{iu} X_{ju}^3 = 0, \sum X_{iu} X_{ju} X_{ku}^2 = 0, \sum X_{iu} X_{ju} X_{ku} X_{lu} = 0, \text{etc. for } i \neq j \neq k \neq 1;
$$
\nB.
\n(i)
$$
\sum X_{iu}^2 = \text{constant} = N\lambda_2
$$
\n(ii)
$$
\sum X_{iu}^4 = \text{constant} = cN\lambda_4, \text{ for all } i \neq j
$$
\n(2.2)

where c, λ_2 and λ_4 are constants.

The variances and covariances of the estimated parameters are

$$
V(\hat{\beta}_0) = \frac{\lambda_4 (c+v-1)\sigma^2}{N[\lambda_4 (c+v-1)-v\lambda_2^2]}
$$

\n
$$
V(\hat{\beta}_i) = \frac{\sigma^2}{N\lambda_2}
$$

\n
$$
V(\hat{\beta}_i) = \frac{\sigma^2}{N\lambda_4}
$$

\n
$$
V(\hat{\beta}_i) = \frac{\sigma^2}{(c-1)N\lambda_4} \left[\frac{\lambda_4 (c+v-2)(v-1)\lambda_2^2}{\lambda_4 (c+v-1)-v\lambda_2^2} \right]
$$

\n
$$
Cov(\hat{\beta}_0, \hat{\beta}_i) = \frac{-\lambda_2 \sigma^2}{N[\lambda_4 (c+v-1)-v\lambda_2^2]}
$$

\n
$$
Cov(\hat{\beta}_i, \hat{\beta}_j) = \frac{(\lambda_2^2 - \lambda_4) \sigma^2}{(c-1)N\lambda_4 [\lambda_4 (c+v-1)-v\lambda_2^2]}
$$
 and other covariances vanish. (2.3)

An inspection of the $V(\hat{\beta}_0)$ shows that a necessary condition for the existence of a non singular second order design is

D.
$$
\frac{\lambda_4}{\lambda_2^2} > \frac{v}{c+v-1}
$$
 (Non-singularity condition) (2.4)

For the second order model (2.1), we have

$$
\frac{\partial \hat{Y}}{\partial X_i} = \hat{\beta}_i + 2\hat{\beta}_{ii}X_{iu} + \sum_{j \neq i} \hat{\beta}_{ij}X_{ju}
$$
\n(2.5)

Ravikumar and Victorbabu; AJPAS, 19(3): 1-12, 2022; Article no.AJPAS.90873

$$
V\left(\frac{\partial \hat{Y}}{\partial X_i}\right) = V\left(\hat{\beta}_i\right) + 4X_{iu}^2 V\left(\hat{\beta}_{ii}\right) + \sum_{j \neq i} X_{ju}^2 V\left(\hat{\beta}_{ij}\right)
$$
\n(2.6)

The condition for R.H.S of the equation (2.6) to be a function of $d^2 = \sum_{i=1}^{V} X_i^2$ alone (for slope rotatability) is

$$
4V(\hat{\beta}_{ii}) = V(\hat{\beta}_{ij})
$$
 [cf. Hader and Park [15]] (2.7)

On simplification of (2.7), using (2.3) we get,

E.
$$
\lambda_4 \left[v(5-c)-(c-3)^2 \right] + \lambda_2^2 \left[v(c-5)+4 \right] = 0
$$
 [cf. Victorbabu and Narasimham [16]] (2.8)

Therefore A, B, C of (2.2), (2.4) and (2.8) give a set of conditions for slope rotatability in any general second order response design.

3 Second Order Rotatable Designs of Second Type Using Central Composite Designs

Kim [1] developed second type of rotatable central composite designs (CCD) in which the positions of axial points are indicated by two numbers (a_1, a_2) for 2≤v≤8. Chiranjeevi et al. [13] extended the results of Kim [1] and developed SORD of second type using CCD for 9≤v≤17. Chiranjeevi and Victorbabu [14] studied SORD of second type using BIBD.

The design plan of SORD of second type using CCD in which the positions of the axial points are indicated by two numbers a_1 and a_2 ($a_2 \ge a_1 > 0$). The CCD are constructed by adding suitable fractional combinations to those obtained from $\frac{1}{2} \times 2^{\nu}$ $\frac{1}{2^p} \times 2^{\nu}$ fractional factorial design, (here $2^{\nu(\nu)} = \frac{1}{2^p} \times 2^{\nu}$ $2^{t(v)} = \frac{1}{2^p} \times 2^v$ denotes a suitable fractional replicate of 2^v), in which no interaction with less than five factors are confounded. In coded form CCD has the points of 2^{v} ($2^{t(v)}$) factorial with coordinates $(\pm 1, \pm 1, ..., \pm 1)$ and 4v axial points with coordinates 2^{v} ($2^{t(v)}$) factorial with coordinates $(\pm 1, \pm 1, ..., \pm 1)$ and $4v$ axial points with coordinates $(\pm a_1, 0, ..., 0), (0, \pm a_1, ..., 0), ..., (0,0, ..., \pm a_2, ..., 0), ..., (0,0, ..., \pm a_2)$ and if necessary n_0 central points may be replicated. Thus the total number of experimental points $N=2^{t(v)}+4v+n_0$.

For the design points generated from CCD, simple symmetry conditions A, B and C of equation (2.2) are true. Condition (A) of equation (2.2) is true obviously, condition (B) and (C) are true as follows.

B. (i)
$$
\sum X_{iu}^2 = 2^{t(v)} + 2a_1^2 + 2a_2^2 = N\lambda_2
$$

\n(ii) $\sum X_{iu}^4 = 2^{t(v)} + 2a_1^4 + 2a_2^4 = 3N\lambda_4$
\nC. $\sum X_{iu}^2 X_{ju}^2 = 2^{t(v)} = N\lambda_4$ (3.1)

From $B(i)$ and C of equation (3.1), we get

$$
2^{(iv)} + 2a_1^4 + 2a_2^4 = 3(2^{(iv)}) \Rightarrow a_1^4 + a_2^4 = 2^{(iv)}
$$
\n(3.2)

3.1 Example (3.1)

We illustrate the method of SORD of second type using CCD for $v=6$. The design points We illustrate the method of SORD of second type using CCD for v=6. The design points $(\pm 1, \pm 1, ..., \pm 1)2^{t(6)}U(\pm a_1, 0, ..., 0)2^tU(\pm a_2, 0, ..., 0)2^tU(n_0=1)$ will give a SORD of second type in N=57 design points with $n_a = 1$.

For the design points generated from SORD of second type using CCD, simple symmetry conditions A of equation (2.2) are true.

Here B and C of equation (3.1) are

B. (i)
$$
\sum X_{iu}^2 = 32 + 2a_1^2 + 2a_2^2 = N\lambda_2
$$

\n(ii) $\sum X_{iu}^4 = 32 + 2a_1^4 + 2a_2^4 = 3N\lambda_4$
\nC. $\sum X_{iu}^2 X_{ju}^2 = 32 = N\lambda_4$ (3.3)

From B (ii) and C of equation (3.3), we get $a_2 = 2.3596$ (taking $a_1 = 1$).

4 A New Method of Slope Rotatable Central Composite Designs of Second Type

Kim and Ko [2] introduced slope rotatability of second type using CCD for 2≤v≤5 by taking $n_a=1$. Ravikumar and Victorbabu [30] developed SOSRD of second type using CCD for $6 \le v \le 17$ with $n_a=1$.

The design plan of SOSRD of second type using CCD in which the positions of the axial points are indicated by two numbers a_1 and a_2 ($a_2 \ge a_1 > 0$). The CCD are constructed by adding suitable fractional combinations to those obtained from $\frac{1}{2} \times 2^{\nu}$ $\frac{1}{2^p} \times 2^{\nu}$ fractional factorial design, (here $2^{i(\nu)} = \frac{1}{2^p} \times 2^{\nu}$ $2^{t(v)} = \frac{1}{2^p} \times 2^v$ denotes a suitable fractional replicate of 2^v), in which no interaction with less than five factors are confounded. In coded form CCD has the points of 2^v (2^{w}) factorial with coordinates $(\pm 1, \pm 1, ..., \pm 1)$ and 4v axial points are replicated n_a times with coordinates $(±a₁,0,...,0), (0,±a₁,...,0),..., (0,0,...,±a₁);(±a₂,0,...,0), (0,±a₂,...,0),..., (0,0,...,±a₂)$ and if necessary $n₀$ central points may be replicated. Thus the total number of experimental points $N=2^{t(v)}+4n_a v+n_0$.

For CCD simple symmetry conditions A, B and C of equation (2.2) are true for any n_a . Condition (A) of equation (2.2) is true obviously, condition (B) and (C) are true as follow:

B. (i)
$$
\sum X_{iu}^2 = 2^{i(v)} + 2n_a a_1^2 + 2n_a a_2^2 = N\lambda_2
$$

\n(ii) $\sum X_{iu}^4 = 2^{i(v)} + 2n_a a_1^4 + 2n_a a_2^4 = cN\lambda_4$
\nC. $\sum X_{iu}^2 X_{ju}^2 = 2^{i(v)} = N\lambda_4$ (4.1)

From $B(i)$ and C of equation (4.1) , we have $\frac{2^{t(v)} + 2n_a a_1^4 + 2n_a a_2^4}{2^{t(v)}}$ $c=\frac{2+2a_0}{2}$

Substituting
$$
\lambda_2
$$
, λ_4 and c in equation (2.8) and on simplification, we get the following biquadratic equation
\n
$$
\left[2N(n_a)^2 - 4v(n_a)^3\right] \left(a_1^8 + a_2^8\right) - 8v(n_a)^3 \left(a_1^6 a_2^2 + a_1^2 a_2^6\right) + 4\left[N(n_a)^2 - 2v(n_a)^3\right] a_1^4 a_2^4 - 2^{t(v)+2}v(n_a)^2 \left[a_1^6 + a_1^4 a_2^2 + a_1^2 a_2^4 + a_2^6\right]
$$

Ravikumar and Victorbabu; AJPAS, 19(3): 1-12, 2022; Article no.AJPAS.90873

Ravikumar and Victorbabu; AJPAS, 19(3): 1-12, 2022; Article no.AJPAS.90873
\n
$$
-2^{t(v)} \Big[v(n_a) 2^{t(v)} + 8(1-v)(n_a)^2 + N(4-v)(n_a) \Big] (a_1^4 + a_2^4) + 2^{t(v)+4} (v-1)(n_a)^2 a_1^2 a_2^2 + 2^{2t(v)+3} (v-1)(n_a) (a_1^2 + a_2^2)
$$
\n
$$
-2^{2t(v)+1} (1-v)(2^{t(v)} - N) = 0
$$
\n(4.2)

If at least one positive real root exists for the above equation (4.2) , then the design exists. Given the values of v, n_a and n_0 there are countless combinations of a_1 and a_2 that satisfy the equation (4.2).

4.1 Example (4.1)

We illustrate the new method SOSRD of second type using CCD for $v=6$. The design points We illustrate the new method SOSRD of second type using CCD for v=6. The design points $(\pm 1,\pm 1,...,\pm 1)2^{((6)} \text{Un}_a (\pm a_1,0,...,0)2^1 \text{Un}_a (\pm a_2,0,...,0)2^1 \text{U}(n_0=26)$ will give a SOSRD of second type in N=106 design points with $n_a = 2$, $a_1 = 1$.

For the design points generated from SOSRD of second type using CCD, simple symmetry condition A of equation (2.2) are true for any n_a .

Here B and C of equation (4.1) are

B. (i)
$$
\sum X_{iu}^2 = 32 + 4a_1^2 + 4a_2^2 = N\lambda_2
$$

\n(ii) $\sum X_{iu}^4 = 32 + 4a_1^4 + 4a_2^4 = cN\lambda_4$
\nC. $\sum X_{iu}^2 X_{ju}^2 = 32 = N\lambda_4$ (4.3)

From B (ii) and C of equation (4.1), we have $c = \frac{32 + 4a_1^4 + 4a_2^4}{32}$

Substituting
$$
\lambda_2
$$
, λ_4 and c in equation (2.8) and on simplification, we get the following biquadratic equation
\n $656(a_1^8+a_2^8)+1312a_1^4a_2^4-384(a_1^6a_2^2+a_1^2a_2^6)-3072(a_1^6+a_1^4a_2^2+a_1^2a_2^4+a_2^6)+6400(a_1^4+a_2^4)+10240a_1^2a_2^2$
\n $+81920(a_1^2+a_2^2)-757760=0$

Substitute $a_1 = 1$ in the above equation and on simplification, we get

$$
656a_2^8 - 3456a_2^6 + 4640a_2^4 + 88704a_2^2 - 671856 = 0
$$
\n
$$
(4.4)
$$

Equation (4.4) has only one positive real root $a_2^2 = 5.5686 \Rightarrow a_2 = 2.3598$.

From the examples of (3.1) and (4.1), it can be noted that the value of $a_2 = 2.3598$ in SOSRD of second type using CCD which is approximately nearer to the value of a_2 =2.3596 in SORD of second type using CCD by taking $n_a = 2$.

Note: For v=6 factors in SOSRD of second type using CCD the design points are N=57 and the value of $a_2 = 2.9593$ with $n_a = 1$. (cf. Ravikumar and Victorbabu [30]).

5 Conclusion

In this paper, second order slope rotatable designs (SOSRD) of second type using central composite designs (CCD) with $2\leq n \leq 4$ are suggested for $2\leq v \leq 17$. It is observed that the value of level a₂ for the axial points in CCD required for slope rotatability of second type is appreciably larger than the value required for second order rotatable designs (SORD) of second type using CCD. And also noted that if we replicate axial points (n_a) in SOSRD of second type using CCD then the value of a_2 is approximately nearer to SORD value a_2 of second type using CCD.

The table gives the appropriate SRCCD values of the parameters a_2 with $a_1 = 1$ for designs using second type of CCD with $2 \le n_a \le 4$ for $2 \le v \le 17$ given in the Appendix.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Kim Hyuk Joo. Extended central composite designs with the axial points indicated by two numbers. The Korean Communications in Statistics. 2002;9(3):595-605.
- [2] Kim Hyuk Joo, Ko Yun Mi. On slope rotatability of central composite designs of second type. The Korean Communications in Statistics. 2004;11(1):121-137.
- [3] Box GEP, Hunter JS. Multifactor experimental designs for exploring response surfaces. Annals of Mathematical Statistics. 1957;28(1):195-241.
- [4] Das MN, Narasimham VL. Construction of rotatable designs through balanced incomplete block designs. Annals of Mathematical Statistics. 1962;33(4):1421-1439.
- [5] Draper NR, Guttman I. An index of rotatability. Technometrics. 1988;30(1):105-112.
- [6] Khuri AI. A measure of rotatability for response surface designs. Technometrics. 1988;30(1):95-104.
- [7] Draper NR, Pukelshein F. Another look at rotatability. Technometrics. 1990;32(2):195-202.
- [8] Park SH, Lim JH, Baba Y. A measure of rotatability for second order response surface designs. Annals of the Institute of Statistical Mathematics. 1993;45(4):655-664.
- [9] Victorbabu BRe, Vasundharadevi V. Modified second order response surface designs, rotatable designs using balanced incomplete block designs. Sri Lankan Journal of Applied Statistics. 2005;6:1-11.
- [10] Victorbabu BRe, Surekha ChVVS. A note on measure of rotatability for second order response surface designs using balanced incomplete block designs. Thailand Statistician. 2013;13(1):97-100.
- [11] Jyostna P, Sulochana B, Victorbabu BRe. Measure of modified rotatability for second order response surface designs using central composite designs. Journal Mathematical and Computational Science. 2021;11:494-519.
- [12] Jyostna P, Victorbabu BRe. Evaluating measure of modified rotatability for second degree polynomial using balanced incomplete block designs. Asian Journal of Probability and Statistics. 2021;10(4):47-59.
- [13] Chiranjeevi P, John Benhur K and Victorbabu BRe. Second order rotatable designs of second type using central composite designs. Asian Journal of Probability and Statistics. 2021;11(1):30-41.
- [14] Chiranjeevi P, Victorbabu BRe. Second order rotatable designs of second type using balanced incomplete block designs. Journal of Mathematical and Computational Science. 2021;11(2):2341-2361.
- [15] Hader RJ, Park SH. Slope rotatable central composite designs. Technometrics. 1978;20(4):413-417.
- [16] Victorbabu BRe, Narasimham VL. Construction of second order slope rotatable designs through balanced incomplete block designs. Communications in Statistics-Theory and Methods. 1991a;20(8):2467-2478.
- [17] Victorbabu BRe, Narasimham VL. Construction of second order slope rotatable designs through a pair of incomplete block designs. Journal of the Indian Society of Agricultural Statistics. 1991b;43:291-295.
- [18] Park SH, Kim HJ. A measue of slope rotatability for second order response surface experimental designs. Journal of Applied statistics. 1992;19(3):391-404.
- [19] Victorbabu BRe. Modified slope rotatable central composite designs. Journal of the Korean Statistical Society. 2005;34(2):153-160.
- [20] Victorbabu BRe. Modified second order slope rotatable designs using BIBD. Journal of the Korean Statistical Society. 2006;35(2):179-192.
- [21] Victorbabu BRe. On second order slope rotatable designs A Review. Journal of the Korean Statistical Society. 2007;33(3):373-386.
- [22] Victorbabu BRe, Surekha ChVVS. Construction of measure of second order slope rotatable designs using central composite designs. International Journal of Agricultural and Statistical Sciences. 2011;7(2):351-360.
- [23] Victorbabu BRe, Surekha ChVVS. Construction of measure of second order slope rotatable designs using balanced incomplete block designs. Journal of Agricultural and Statistics. 2012;19:1-10.
- [24] Rajyalakshmi K, Victorbabu BRe. An empirical study on robustness of second order slope rotatable designs using symmetrical unequal block arrangements with two unequal block sizes. Thailand Statistician Journal. 2014;12(1):71-82.
- [25] Rajyalakshmi K, Victorbabu BRe. [Construction of second order slope rotatable designs under tri](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=Y27mFaoAAAAJ&citation_for_view=Y27mFaoAAAAJ:hCrLmN-GePgC)[diagonal correlated structure of errors using balanced incomplete block designs.](https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=Y27mFaoAAAAJ&citation_for_view=Y27mFaoAAAAJ:hCrLmN-GePgC) Thailand Statistician. 2019;17(1):104-117.
- [26] Rajyalakshmi K, Sulochana B, Victorbabu BRe. [A note on second order slope rotatable designs under](https://scholar.google.com/scholar?cluster=17457848144036452875&hl=en&oi=scholarr) [intra-class correlated errors using pairwise balanced designs.](https://scholar.google.com/scholar?cluster=17457848144036452875&hl=en&oi=scholarr) Asian Journal of Probability and Statistics. 2020;8:43-54.
- [27] Sulochana B, Victorbabu BRe. A Study of Second Order Slope Rotatable Designs under Intra-class Correlated Structure of Errors Using Partially Balanced Incomplete Block Type Designs. Asian Journal of Probability and Statistics. 2020a;15-28.
- [28] Sulochana B, Victorbabu BRe. Second order slope rotatable designs under tri-diagonal correlation structure of errors using a pair of incomplete block designs. Asian Journal of Probability and Statistics. 2020b;6:1-11.
- [29] Victorbabu BRe, Jyostna P. [Measure of modified slope rotatability for second order response surface](https://ph02.tci-thaijo.org/index.php/thaistat/article/view/242825) [designs.](https://ph02.tci-thaijo.org/index.php/thaistat/article/view/242825) Thailand Statistician. 2021;19(1):195-207.
- [30] Venkata Ravikumar B, Victorbabu BRe. Second order slope rotatable designs of second type using central composite designs. Journal of the Oriental Institute. M.S. University of Baroda. 2022;71(2):12- 25.
- [31] Victorbabu BRe, Venkata Ravikumar B. Second order slope rotatable designs of second type using balanced incomplete block designs. Communicated.
- [32] Park SH. A class of multi-factor designs for estimating the slope of response surface. Technometrics. 1987;29(4):449-453.

Appendix

Values of a_2 for SOSRD of second type using CCD for 2≤v≤17 with 2≤n_a≤4

v=2, **p**=0, $a_1 = 1$, $a_2^* = 1.3161$ **v**=3, **p**=0,

N	n_0	n_{a}	a_2	$\mathbf N$	n_0	n_{a}	a ₂
21	1	\overline{c}	1.7347	33		\overline{c}	1.
25	5	$\overline{2}$	1.5803	37	5	$\overline{2}$	1.
30	10	$\overline{2}$	1.4738	42	10	$\overline{2}$	1.
35	15	$\overline{2}$	1.4134	47	15	$\overline{2}$	1.
40	20	$\mathfrak{2}$	1.3755	52	20	$\overline{2}$	1.
45	25	\overline{c}	1.3499	57	25	$\overline{2}$	1.
50	30	$\overline{2}$	1.3315	62	30	$\overline{2}$	1.
55	35	\overline{c}	1.3178	63	31	$\overline{2}$	1.
56	36	\overline{c}	1.3154	64	32	$\overline{2}$	1.
29	1	3	1.6205	45		3	
33	5	3	1.4818	49	5	3	
38	10	3	1.3700	50	6	3	
41	13	3	1.3238	51	7	3	
42	14	3	1.3108	57	1	$\overline{4}$	
37	1	4	1.5473	58	\overline{c}	4	Ī.
41	5	$\overline{4}$	1.4213				
45	9	$\overline{4}$	1.3276				
46	10	4	1.3081				

v=4, **p**=0, $a_1 = 1$, $a_2^* = 1.9680$ **v**=5, **p**=1,

N	\mathbf{n}_0	n_{a}	a_2	N	n_0	$n_{\rm a}$	a ₂
49		◠	2.1666	57		◠	2.
53		∍	2.0991	61		ി	2.
58	10	◠	2.0482	66	10	⌒	2.
63	15	∍	2.0167	71	15		
68	20	◠	1.9956	76	20		
73	25	◠	1.9806	78	22	◠	
78	30	⌒	1.9694	79	23		
79	31	◠	1.9675	86	30	⌒	
65		3	1.9500	77		3	
81			1.8046	97			

v=6, **p**=1, $a_1 = 1$, a_2^*

$$
v=5, p=1, a_1=1, a_2^*=1.9680
$$

N	n_0	$\mathbf{n_{a}}$	a_2
57	1	2	2.0781
61	5	\mathfrak{D}	2.0368
66	10	$\overline{2}$	2.0061
71	15	$\overline{2}$	1.9868
76	20	$\overline{2}$	1.9736
78	22	$\overline{2}$	1.9694
79	23	$\overline{2}$	1.9675
86	30	$\overline{2}$	1.9567
77	1	3	1.8507
97			1.7009

 $v=7, p=1, a_1=1, a_2^*=2.8173$

v=8, p=2, $a_1 = 1$, $a_2^* = 2.8173$ **v**=9, p=2,

N	\mathbf{n}_0	$n_{\rm a}$	a_2	N	\mathbf{n}_0	n_{a}	a ₂
129		C	2.8858	201		↑	3.
133		$\overline{2}$	2.8674	205		2	3.
138	10	$\overline{2}$	2.8505	210	10	2	3.
143	15	$\overline{2}$	2.8380	215	15	2	3.
148	20	2	2.8283	220	20	\overline{c}	3.
153	25	2	2.8205	230	30	2	3.
155	27	2	2.8179	235	35	\overline{c}	3.
156	28	2	2.8166	240	40	2	3.
161		3	2.5789	245	45	$\overline{2}$	3.
193		4	2.3811	237		3	3.

v=10, **p**=3, a_1 =1, a_2^* =3.3570 **v**=11, **p**=4,

N	\mathbf{n}_0	n_{a}	a_2	N	\mathbf{n}_0	n_{a}	
209		2	3.4253	217		↑	
213	5	2	3.4114	221	5	↑	
218	10	2	3.3976	226	10	2	
223	15	2	3.3866	231	15	2	
228	20	2	3.3777	236	20	2	
233	25	2	3.3703	241	25	2	
238	30	2	3.3641	245	29	2	
243	35	2	3.3589	261		3	
245	37	2	2.3570	305		4	
249		3	3.0673				
289		4	2.8358				

v=12, **p**=4, $a_1 = 1$, a_2^*

v=11, p=4,
$$
a_1 = 1
$$
, $a_2^* = 3.3570$

 $v=13, p=5, a_1=1, a_2^*=3.9961$

v=14, **p**=6, $a_1 = 1$, a_2^*

$$
v=16, p=8, a_1=1, a_2^*=3.9961
$$

 $v=15, p=7, a_1=1, a_2^*=3.9961$

 $v=17, p=9, a_1=1, a_2^*=3.9961$

Note: a_2^* *indicates the value of* a_2 *in SORD of second type using CCD (cf. Kim [1])* __

© 2022 Ravikumar and Victorbabu; This is an Open Access article distributed under the terms of the Creative Commons Attribution License [\(http://creativecommons.org/licenses/by/4.0\)](http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) https://www.sdiarticle5.com/review-history/90873