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Abstract

This paper considers a new risk model with a constant dividend barrier, which the claim
amount affected by a threshold value. The hypothesis of the model is presented and the
integro-differential equation for the Gerber-Shiu penalty function is given. Then the linear
solution of the Gerber-Shiu discounted penalty function is figured out. The paper also derives
the integro-differential equation and the linear solution of the expected discounted dividend
payments. An example is given too.

Keywords: Gerber-Shiu penalty function; integro-differential equation; linear solution; expected
discounted dividend payments.

1 Introduction

Ruin probability and related problems in the classical risk model have been studied extensively.
But in the theory, the classical compound Possion risk model are independence between the claim
amount and the interclaim time. It is not common in the real world for such an assumption. For
example, in the natural catastrophic events, the total claim amount and the time elapsed since the
previous catastrophes are dependent. See Boudreault [1] and Nikoloulopoulos and Karlis[2].

Since then, many authors focused themselves on the dependent structure. Albrecher and Boxma
[3]studied a dependency structure, in which the distribution of the time between two adjacent claims
depends on the amount of the previous claim. M. Boudreault et al.[4] thought about a reverse
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dependence structure, that is, the time elapsed since the last claim determines the distribution
of the next claim size. And Albrecher and Teugels [5] gave an arbitrary dependence structure
expressed by a copula function. S. Vrontos et al.[6] focused themselves on a renewal risk process,
which is dependence under a Farlie-Gumbel-Morgenstern copula function and follows the Erlang(n)
distribution. Guan and Hu [7] considered the risk model with INAR(1) (2021) processes.

Some authors studied the model with a constant dividend barrier. De Finetti [8] proposed the
dividend strategies for insurance risk models initially. After this, many good papers focused on
finding the optimal dividend strategy. Barrier strategies for the compound Poisson risk have been
considered by Dickson and Waters [9] and Lin et al.[10]. Li and Garrido [11] considered a renewal
risk process in the presence of a constant dividend barrier in which the claim waiting times are
generalized Erlang(n) distributed. There are some papers studied the constant dividend barrier in
an interclaim-dependent risk model and some papers studied the discrete dividend barrier for the
Gerber-Shiu discounted penalty function and so on. Some other papers thought about the constant
dividend too. See Liu and Dan [12] and Zhang Lianzeng and Liu He [13].

In real life, the amount of claims may also be affected by other factors. In this paper, the risk model
in which the distribution of the claim size is controlled by a threshold value M. If the claim arrive
times T is smaller than M, then the following claim size X; has density function fi(z), otherwise
its density function is fa2(z).

The paper is organsized as follows. The risk model with a threshold value in the presence of a
constant dividend barrier is introduced in section 2. In section 3, we derive an integro-differential
equation for the Gerber-Shiu penalty function and the linear solution to Gerber-Shiu penalty
function. We analyze the expected discounted dividend payments in section 4. In section 5, explicit
results are given.

2 The Model

We introduce the model in this part. The new surplus process {U(t),t > 0} defined as follows

N(#)
Ult)=u+qt — ZX“
i=1

where u = U(0) > 0 is the initial surplus and g(g > 0) is the premium rate. The claim number
process {N(¢),t > 0} is a homogeneous Possion process. {W;}{2; is a sequence of independent and
identically distributed(i.i.d.) interclaim times and the claim arrival times is T;,7 € Nt which
T; = Wi+ ...+ Wj, and the random variable (r.v.) W; has an Erlang(2) distribution with
expectation 1/k, k > 0. The probability distribution function (p.d.f.) gives

fw(t) =kte™™t>0

The random variable(r.v.) X; represents the size of the ith claim. We assume that M;, i =1,2,...
is a sequence of i.i.d. non-negative random variables. It is distributed as M with exponentially
distribution with expectation 1/1,1 > 0 and p.d.f. given by

z(t) =1le” "t >0.
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Then the claim sizes X; are determined as follows: If T; is smaller than M;, then the following claim
size X; has density function fi(z), otherwise its density function is f2(z). Here M;,i = 1,2,... are
independent of T; and X;. From above notations, we get that

P(M<T)=1-¢",
P(M >T)=e".

Assuming that the insurance company needs dividends, we consider the Barrier strategy in this
paper. That is, if the surplus reaches b, all this part will be distributed to shareholders, if the
surplus is less than b, no dividend will be distributed. Let D(t) denote the dividend from time 0 to
time t, and Uy (t) denotes the surplus process at time t under this barrier strategy,

Let u is the initial capital, that is u = Uy(0). Corrected surplus process satisfied

(D) :{ qdt —dS(t), Up(t) <b

—dS(t), Up(t) =0
where S(t) = Zf\gf) X;.
We ask p = infi>o{t,Us < 0} to be the ruin time which p = oo if X; > 0. The deficit at ruin

is denoted by |U,| and U,— is the surplus just prior to ruin. The Gerber-Shiu discounted penalty
function me(u) is defined as

me(u) = E[e_epw(Up—v [Up)1p<oolUo = ul,

where # > 0,w : R™ x R™ — R™ is the penalty function. And the expected discounted dividend
payments function is defined as

Vbﬂ(t) = E[DL

where

T
D:/ e’ dD(t).
0

3 The Integro-differential Equation of the my(u)

In this section, we want to derive the integro-differential equation of the Gerber-Shiu penalty
function mpg(u). This equation utilizes the continuous property of the continuous distribution
process and then derive the integro-differential equation and identify its boundary condition under
the barrier strategy. In order to do so, we should obtain my g(u) at first. For 0 < u < b, we have

where
G = [ wle - 0,
and

() = / o (u— ) (@) + Ci(u), (1)
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for i=1,2. Simple modifications of (1) lead to
kP —(O4i4k) =
mao(u) = Z (t—ue T (npe(t) —y2.6(t))dt

k‘2 b PRy
* qﬁ/ (t —u)e” Ty 4 o (t)dt

| e _ t—u
* 672/ (t —u)e” T (41 4,0(b) — 2..0(b)) dt
b
[ e —(tk) i
+ Z (t—u)e T y2,p,0(b)dt
b
K2 [ —(0+1+k) L2
= qu (t — u)e q (’}/1,5,9(15 A b) — ’yz,b,g(t A b)) dt
k> [ —(O+k) =
+ Z / (t—wue 7 yo,b,0(t A D), (2)

for 0 < u < b where t A b= min(t,b).
In the following, for simiplicity we denote I and D to be the identity and the differential operators.

Theorem 1. Let ~v1,,0(u) be differentiable with respect to (w.r.t.) u. In the risk model with the
claim amount affected by a threshold value and a constant dividend b, the Gerber-Shiu expected
discount penalty function my, ¢(u) satisfies the following integro-differential equation:

(ZELk o p) (ks p) Tk p) (SR D) )
q q ¢ I

2 2 2
_ K K@““) = 2(9+"")D+D2%1(mb) ¥ k—f{wf— QD}’yz(t/\bL 3)
q q q q 9 q
for 0 < u < b < oo with boundary conditions:
m;,a(b) = m;;,,a(b) =0,
3) K
mb,e(b) = ?’71,17,9(5),
2 2 2
@, k72(k+6) k=20 k< n
b’g(b) = —?T’Ym,e(b) - qu’YQ,b,e(b) + qj’h,b,e(b)-

(4)

Proof. By looking at the equation above, we can differentiate Eq(2) and put (2) into the result, we
have

dmpo(u) 1+k+06 B2l [ k40
p = o (u) 5
U q q9° q Ju

(t—u)e d (tfu)’yg,byg(t Ab)dt

k2 O k40 4y,
- — / e (W) {’ylybyg(t A b) — va.,0(t A b) dt

e J,
k2 o] o] 7@(757“)
— ? / / e 4 Y2,b,0 (t A b) dt.
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From Eq(5), let fpo(u) = #mg(u) — my (u) and differentiating f»0(u) w.r.t. u, then we have

' k 9 k21 ko
Jo,o(u) = as - **/ / =) s b0 (t A b) dt
IcQ 1 kRt o, K?
e ¢ () {’yl’byg(t A b) — ’yzybye(t A b) dt — 771@9(11).
?q q
(6)
From Eq(6), let gy o(u) = %fb,g (u) — J‘;;G(u)7 and differentiating gs,0(u) w.r.t. u, then we have
/ k+6 K211 [ _ikto,_,
gro(w) = Egnaw) = oo [ e T (A~ et A b dt
q 9”94 Jy
Kl—-k-0 k* 1 K*
+ q*QT’Yl,b,Q(U) - 2(72572#;,9(10 + qj’h,b,e(u)

(7)

From Eq(7), let hyo(u) = £2 gy o(u) — g;ﬂ(u), and differentiating he,o(u) w.r.t. u, then we have

/ _l+k+6 " k* (k+06)* K2 (1 4 2k + 20)

hyo(u) = hy,o(u) — pel T’Yl,bﬁ( u) — Z - ~Y2,6,0 (1)
k*2(k+0) - K21 K -
+ ?7( 7 )71,b,9(u) + 2?572,1),9(@ - ?’h,b,e(u)-
(8)
From Eq(8), let pyo(u) = #hb,g(u) — h;,g(u), then we have
El(k+0)?2 2k+0
pb,e(U) = qu {( ;_2 ) I— ( + )D+D2}71,b,9(u)

K? [1(1 + 2k + 20) l

q7 [TI — 26D} ’)/27579(?,0.
9)

Above all, using the identity and differentiation operators, we can easily get the Eq (3) and the
boundary condition when u = b.

3.1 Linear solution to my(u)

We can know that Eq (3) doesn’t depend on the dividend boundary b, so we can obtain the Gerber-
Shiu expected discount penalty function meo,¢(u) with no dividend boundary satisfies the following
inhomogeneous integro-differential equation:

(M[ D)(9+kl D>(MI—D)(MI—D>7R@,9(U)
q q

q
:%Ké)—i—k) z(e:k)
+kj£{(0+k) ny
q

D+ DQ} (/Ou Moo,0(u — ) f1(z)dz

I-— QD} /Ou Meoo,0(u — ) fo(x)dx. (10)
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The defective equation can be obtained by Laplace transform of the meo,0(u) when 0 < u < oco.
From Theorem 1, we can see that the my g(u) can be expressed as a combination of a particular
solution and four linearly independent solutions, where the four linearly independent solutions
satisfy the following integro-differential equation:

(49+l+k*I_D)<0+k]_D)(9+k1_D>(9+é+k1_D)y(u)
q q q

_ K Kﬂf} — %HTWD-kDﬂ /Ou y(u — z) f1(x)dz

q q
2 u
+%ﬂw1_2p}/o y(u — ) fa(z)da. (11)
Let
Ai _ e —s.'ni d, :1,2
fi(s) /0 e *Ffi(x)dz, i
and

<l+k+0 )(k+9 >(k+9 )(l-l—k-i—@ )
G = — s — s — s — 5
q q q q

K (k+0)2_2(k+6)5 2] 7 (s CRPTII 42k +20)  2Us] , .
e e IO | | o).

q> q

In order to get the four solutions, we take the Laplace transform of the Eq(11):
i) = [yt
0
Let’s say the four linearly independent solutions as {y1,6(u)}, {y2,6(w)}, {ys,e0(w)}, {ya,6(u)}, where

G*iro(s)=s"—2

1+ 2k + 26 k+0)?  k+0l+k+0  (I+k+0)°
+ +82+[(+2)+4+ +++(+2+)s
q q q q
kOl k+01+2k+20
q q q

2 2
2 G2k 420 [(kt 0+ (L4 kt0)? (k) tk+0)

Gxgop(s)=s
(s) q q? q?

21—|—2k—|—20

Gx73p(s) =s—
Us,0(8) ,

G*ga0(s) =1.
Theorem 2. One expression for the Gerber-Shiu expected penalty function mp g(u) is:

Mp,o(U) = Moo,o(u) + S1y1,0(u) + Say2,0(u) + Ssys.e(u) + Savae(u), 0<u<b, (12)
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where S1, S2, 53,54 are the solutions of the following linear equations:

’

S191.0(b) + 2y 6(b) + S3ys,0(b) + Says 6(b) = —1mg (b)

(13)
S1y1.0(b) + S2y2.6(b) + S3y3,6(b) + Sayae(b) = —mig o(b)
(14)
2 u
S50 = 550 [T oo - o)) do]
+32{y§3g D/ Yy2,0(b— ) f1(z)d }
+53{y3 —*D/O y3,0(b — ) f1(x) }
IC2 u
45410 - 0 [Cna0 -2 p@) a
]f2 u k2 ,
_qﬁp/o Mo ob = 2) fa() dy + 3G (0) = m, 0).
(15)
2
s+ 52D [N - on@ e+ 52D [* s - e ds
2
f];—ZDQ/O y1,0(b — ) f1(z) dx
+ 5[0 + 200D [y - p ) de+ 2D [ - o)) o
2
—%D2/ y2,0(b — ) f1(z) dz
+ 5[0 + 200D [y -y de+ B2 [ oo - o) e
—%DQ/ y3,0(b — ) f1(z) dz
2
5[0 + 520D [y - apwde+ B2 [Ty - o) o
_I%DQ/ ya.o(b— o) f1 (x) do
= Moo - ) do+ 07 [T nstu— i) e - 2D G
2 2
+ %gl (b) = m{y(b).
(16)

Proof. Since the my ¢(u) satifies the the boundary condition (4), then we can get the Eq(13) and
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Eq(14). Differentiating the Eq(1), we have
Do) = D[ [ mnotu =)o)t + Gw)
0
= SlD/u y1,0(u — ) fi(z)dx + SQD/U y2,0(u — ) fi(z)dz
0 0
+ SgD/ ys,0(u — ) fi(z)dy + S4D/ ya,0(u — ) fi(x)d
0 0

+ D/u Meo,0(u — ) fi(z)dy + DG (u),
0

and
D*vi,0(u) = D ( /Ou meo(u — ) fi(z)dr + Ci(U))

— §,D? /Ou yio(u— @) fi(2)de + So D’ /Ou yro(u — z) fi(x)de

+ S3D? /Ou ys.0(u — ) fi(x)dx + S4D? /Ou Yao(u — ) fi(zx)dz

+D? /u Moo, (u — ) fi(w)dy + D?Ci(u).
0

Then using them, we can get Eq(15) and Eq(16) at u=b.

4 Analysis of the Expected Discounted Dividend Payments

In this section, we analyze the expect discounted dividends Vj¢ before ruin. In order to find
condition Vj ¢ on the first time T and the amount of the claim X, when 0 < u < b, we get that

b—u
—u u—+ct
Vi,o(u) = /0 9 g2~ OFR)tpay > t)/o Vi.o(u + qt — @) f1 (x)dadt

b—u
e . +et
+/0 4 k2te_(6+k)f’P(M <t) /Ou ¢ V.o (u + qt — z) fo(x)dzdt

b _g(b=u
+ /boju K2te Rt p(M > z)/o (qe 055 =i eV, o (b — z))fl(:v)dzdt
Tq Tq

b—u

+/; K2te Rt p(M < ¢) /Ob (qe’e(T)a = +e_gtvb$9(bfz))f2(z)dzdt
q

—u‘

-ﬁ-/bOQ k2tefktP(M > 15)/0<D (qeie( q )Eﬁ)h(m)dwdt
b b =224

@) fo(z)dzdt.

oo _ oo 9
+/b K2te k"P(I\/I < t)/ (qe ( 1 ’'a
%“ b t—

k2 oo _Lbkd0
= q—z / (t—u)e 4q [al’b,g(t/\b)—ozzyb’g(t/\b)} dt
Ju

k2 oo _k+6 t—
+q—2/ (t—we @ Ty ot Ab)dt
Ju

+[(&- kie)(b_“H (%)2 - (kieﬂei%e(bﬁ)’

17)
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where

aibo(u /Vbeu— Y fily)dy, i=1,2.

Theorem 3. In this risk model with a constant dividend barrier b, the expect discounted dividends
V4,6 satifies the following integro-differential equation:

(M D)(w] D)(M[ D)(#[_D)Vb,e(u)
[(9+k) 20K, /0 Voo ) ()

!

q

[MI—QD] /qu,g(u—x)fg(x)d% 0<u< oo, (18)

L
q
k2
a

where the boundary condition is:

/ 0
Vio(®) = 73

» 0>

‘/b,e(b) ﬁa

k= 16
Vb(,::;)(b) = 7a1,b,9( ) q7k7
E22(k+6) kK22l K2 .

V;)(,L;)(b)**qj ( p ) 1,6,0(D) el 2,6,0(0) + 1,5,0(D)

(19)

Proof. By looking at the equation above, we can differentiate Eq(18) and put Eq(18) into the result,

we have

dV0(u)
du
2 oo
:#Vbﬁ(u)_%é (t—u)e k+9(7u>0(2b9(t/\b)d

2 oo
k / e H—H—a(t u){albg(t/\b)—azbg(t/\b)} dt

’“2/ / ) 0 (t A b) dt

—{é(%—%w)@—mé[(%f—(rieﬂ+(%—%+9)}6*%’“” @
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From Eq(20), let fy0(u) =

/ lk+0 )
foo(u) = —5——— t—u)e ¢
b9( ) q2q q " ( )
kQka 9/ k0 gy
k2 I+ k +6 S ES S N {
P R e ¢
q

B Vo (w)

Vb/,g(u) and differentiating fp(u) w.r.t. u, then we have

_u)azyb,g(t A b) dt

o 7b79(t A b) dt

o1,6,6(tAD) — azpa(t A b)} dt

- o)l
_q—2a1(t/\b)+ _6 E_m e 4

k+9{l(,_i)
+ q q\k k+9 U

44 (et st

k‘ +0 k+9
fo,0(u / / “yy p0(t Ab)dt
k;2 l © 14+k46 —u k2
+ q—26 s G {051,1,,9(1‘, A b) — Ozz,b,g(t A b)} dt — ?al’b’g(u).
Liq q kO
_Q(E_kw)e e 2y
From Eq(21), let gpo(u) = %fb,e(u) - f;,g(u), and differentiating gy,¢(u) w.r.t. u, then we have
/ k+0
gn0(u) = gb,6(u)
K211 [ _ikkto_,
- ?551 e 0 T oy a(t Ab) — aspe(tAD)dt
K l—k—0 2 E*
+ qﬁTal,b,G(U) — 2qjga2,b,9(u) + qﬁal,b,e(u)-
(22)
From Eq(22), let hpo(u) = k+egb o(u) — g,',’g(u), and differentiating hp,o(u) w.r.t. u, then we have
E2l1l+k+60 [ _itkto, ,
hyo(u) = — =" T2T7 [ om0 W g (EAD) — anpo(t A D] dE
?qq q w
K211 l—k—0 /
- qj**[m b a(u) —Q2p e(u)} q2 Tal b9( )
2 l , k2 N
+ 2*250527&9(’&) — ?al,b g(u).
I+k+0 K (k +0)* K? 1(1 + 2k + 20)
= q hb,e( ) - qual,b,e(U) - ?T’W,b,e(u)
kK2 2(k+0) K1 K .
qﬁgal,b,e(u) + 2(72&042 bo(u) ZY bo(u)

(23)
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From Eq(23), let pyo(u) = #hb,g (u) — h;,g(u), then we have

k* (k+0)? k? 1(1 + 2k + 20) k*2(k+0)
Pb,@(u) = qual,b,e(U) - ?TQZbﬁ(U) + ?Tal(u)
K1 K .
- 2(725062,17,0(70 - q7a1,b,9(u)
E2 [ (k+60)2 2(k+0
= —2{( +2 ) I — ( + )D+D2}Oélybye(u)
q q q
K2 [1(1+ 2k + 20 l
+ ? {%I — 25D:| OtQﬂbﬂ('LL).

So, we can get that the Eq(18), and the boundary condition (19) when u = b.

4.1 Linear solution to V;g(u)

Theorem 4. In this risk model which satisfying the preceding conditions, there is a fixed dividend
boundary b,

Vi,o = my1,0(u) + n2yz,0(w) + n3ys,e(u) + nayae(u), 0<u<b (25)

where constants 71, 72,73, 74 are solutions to the following system of linear equations:

’ ’ ’ ’ 0
My1o(b) + 1202,0 (8) + mayso () + mayae () = (26)
. . . . 6?
Mmy1,e(b) +112y2,0(b) +115Y3,0(b) + 14y (b) = 15
(27)
FOPL Y '
mye®) = =D | yeb—2)fi()de
i 0 ]
o 2 .
242,60 (0) = 2D | p2.0(b—2)fi(w) do
i 0 ]
o 2 i
+13 |Ys.5(b) — q*QD y3,0(b — ) f1(x) dz
i 0 ]
o 2 i
+14 | Yy 5(b) — ?D Y1,0(b — ) f1(x) dz
i 0 ]
19
-
(28)
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2
k2 (k+9 b
q

m |y + | ot —an@de+ 52D ["y - fota) da

kQ
- / (b — o) () de
(0]
k2 2(k +6) k22l
30 + 52D [* st -y p@ e+ 52D [y - 0) o) da

k2 u
_ ?DQ/ yao(b— 2) fr(x) d
0

(4) k*2(k+0)

e+ 52D [y - @ e+ 52D [M oo - ) do

—;%D2/0 y3,0(b— ) f1(z) dx
+U4{yi4g(b)+k72(k+9 D/ yao(b— ) fr (x) de 2’1)/ Daalb— 2 fa(e) e
—];—ZD"’/O ya,0(b— ) f1(z) dx
=0
(29)

Proof. It’s kind of a theorem 2.

5 An Example

In this section, we start with an example. We assume that the r.v. X representing the individual
claim amount follows two exponential distribution which affected by a threshold value, with parameter
I, lo, that is, fi(z) = Lie 1% fo(z) = lee 1%, fi(s) = hwfg( s) = 2. At first, We find
an explicit expression for Taking LTs in both sides of the equation (18) and using Lagrange

interpolation, we get that

Q4,5(s)

BO) = i+ )@ 9 (30
where
B = (5= THLEEY (o= SR B TR (i) o
and

Qas(s) = (i +5)(la +5) (5 + k —qs)* (6 + 1+ k — gs)*
— kL2 + 8) (6 + k — gs)® — kPla(ly + s)(—2gsl + > + 21(1 + k))

Since Q4,5(s) is a polynomial of degree 4 and then we have that Q4,5(s) = 0 has 4 roots in the
complex plane, says p1, p2, p3, pa with positive real part and two roots say —R; = —R;(9), with
Re(R;) > 0,i=1,2. Setting I; = 3,12 =1, g = 1.5, k = 2,b = 10, and according to (25), then we
have

Vi(u) = — 0.07113e* 701 4 0.1583e%%47™ — 0.1595¢" 3™ 4 0.4365¢° 027

+0.0823e 20735 4 .6327e 704124,
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6 Conclusion

In this paper, we have considered a new risk model with a constant dividend barrier, which the claim
amount affected by a threshold value. We derived the Gerber-Shiu penalty function at first, and then
the integro-differential equation has given. Then the linear solution of the Gerber-Shiu discounted
penalty function have been figured out. The paper also derived the integro-differential equation
and the linear solution of the expected discounted dividend payments function. An example gave
too.
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