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ABSTRACT 
 

Adsorption is one of the most widely applied techniques for the removal of contaminants from the 
environment. The effectiveness of an adsorbent is dependent on its kinetics. There are lots of 
studies on adsorption kinetics, and several mathematical models have been developed to describe 
this process based on certain perceived underlying mechanism. However, most models which 
have been used to fit the kinetic data have shown a moderate level of correlation or no fit at all. 
This is mainly because of error in assuming the governing equation and erroneous assumptions 
when finding solutions to the governing equations. In this research an exponential model is 
proposed. It is believed that adsorption of an adsorbate onto an adsorbent follows essentially two 
stages. There is a rapid stage that tends towards a first phase pseudo-equilibrium (Qr(0)) at a rate 
of kr and transits at a time ‘tr’ and rate ktr to a slow stage which tends towards a second phase 
pseudo-equilibrium (Qs(0)) at a rate of ka which marks the climax of the process. Mathematical 
equations were used to describe this process and solved analytically to obtain the new exponential 
model. The model was used to estimate kinetic data and compared with the first and second order 
equations with an R

2
 of 0.994, 0.999 and 0.998 respectively. The new adsorption parameters Qr(0) , 

Qs(0), kr, ks, ktr and tr  were also extracted from the calibrated model. 
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1. INTRODUCTION 
 
“One technique widely applied for the removal of 
pollutants from a contaminated media is 
Adsorption. The common adsorbents include 
activated carbon, molecular sieves, polymeric 
adsorbents, and some other low-cost materials. 
When adsorption is concerned, thermodynamic 
and kinetic aspects should be involved to know 
more details about its performance and 
mechanisms. Except for adsorption capacity, 
kinetic performance of a given adsorbent is also 
of great significance for the pilot application. 
From the kinetic analysis, the solute uptake rate, 
which determines the residence time required for 
completion of adsorption reaction, may be 
established. Also, one can know the scale of an 
adsorption apparatus based on the kinetic 
information. Generally speaking, adsorption 
kinetics is the base to determine the performance 
of fixed-bed or any other flow-through systems” 
(Hui et al. 2009). 

 
At present, adsorption reaction models have 
been widely developed or employed to describe 
the kinetic process of adsorption [1-15] 
Adsorption kinetics are required for selecting 
optimum operational conditions of water and 
wastewater treatment facilities for full-scale 
processes. “Numerous adsorbents (carbon, clay, 
polymer, activates sludge, and zeolite) have 
been developed to remove solute form 
wastewater” [16-18]. These adsorbents have 
large surface area and pore volume, thermal 
stability, with low acid/base reactivity. This 
makes them suitable to remove a wide range of 
organic and inorganic dissolved pollutants from 
wastewater and air. 

 
“The utmost parameter to consider while 
designing the adsorption system is adsorption 
kinetics; kinetics determines the rate at which the 
adsorption occurs. Kinetics are influenced by the 
surface complexity of the adsorbent, solute 
concentration and flow. Pseudo-First-order 
(PFO), Pseudo-Second-order (PSO), Elovich, 
and Intra-particle (IP) model are some of the 
kinetics that foretells the adsorbent-adsorbate 
interaction. The first two models have been 
widely applied in almost every sorption process. 
The suitability of any model depends on the error 
level—correlation coefficient (R

2
) or Sum of 

Squared Errors (SSE). To study adsorption 
kinetics, the linear forms have been applied; a 
linear form of PSO has been favoured over PFO 
model for the last 2 decades” [19].  
 

It is thought that instead of assuming order of the 
reaction as 1 or 2, the direct calculation of rate 
constant and order of the adsorption reaction is a 
more appropriate method [20]. Thus, nth-order 
kinetic model can be used. The model is 
expressed as Equation (1) [21]: 
 

           
 

             
 
       

              (1) 

 
where Qe is the amount of solute adsorbed on 
the surface of the adsorbent at equilibrium, 
(mg/g); Qt is the amount of solute at any contact 
time, (mg/g); kn is the rate constant and its unit 
depends on the order of the reaction, (1/min) 
(mg/g)1–n, βn is related to impurities pre-
adsorbed on the surface (βn = 1/(1 − θ0)n−1), θ0 
is surface coverage at pre-adsorbed stage (θ0 = 
Q0/Qe), dimensionless. 
 
Chiron, et al., [22] proposed a double exponential 
model that describes the adsorption process with 
respect to both chemical and mathematical 
points of view, correlating the two-step 
mechanism as rapidly and slowly adsorbed 
fractions [23]. The model is expressed by 
Equation (2): 
 

         
  

    
         

  

    
              (2) 

 

Where D1 and D2 are the amount of rapidly and 
slowly adsorbed fraction of solute (mg/l), 
respectively, and KD1 and KD2 are rapid and slow 
rate constants (min

–1
). It should be noted that the 

sum of D1/mads and D2/mads has the same 
physical meaning as the calculated value of Qe, 
and KD1 is greater than KD2. 
 

To further understand the chemisorption nature 
of adsorption, Elovich model developed by 
Zeldowitsch [24] is applied. This model helps to 
predict the mass and surface diffusion, activation 
and deactivation energy of a system. Although 
the model was initially applied in gaseous 
systems, its applicability in wastewater 
processes has been redeemed meaningful. The 
model assumes that the rate of adsorption of 
solute decreases exponentially as the amount of 
adsorbed solute increase. This is shown as 
Equation 3 
 

  

  
                                                           (3) 

 

where ‘q’ represents the amount of gas adsorbed 
at time ‘t’, ‘a’ the desorption constant, and ‘α’ the 
initial adsorption rate [25]. Integrating and 
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applying the limits for t (0, t) and qt(0, qt), the 
Elovich model can be linearized: 
 

    
   

 
               

   

 
                   (4) 

 
To examine the rate limiting step during 
adsorption, intra-particle difussion model has 
been widely applied. The adsorption of solute in 
a solution involves mass transfer of adsorbate 
(film diffusion), surface diffusion, and pore 
diffusion. Film diffusion is an independent step, 
whereas surface and pore diffusion may occur 
simultaneously. Crank [26] gave an exact 
solution for the “infinite bath” case where the 
sphere is initially free of solute and the 
concentration of the solute at the surface 
remains constant [19]. External film resistance 
can be neglected according to the constant 
surface concentration [27]. Then, Crank’s 
solution is written as Equation (5). 
 

 

  
    

  

  
 

     

 
    

   

 
     

    
    

    
      (5) 

 
where R is the total particle radius. Ds is 
intraparticle diffusion coefficient, r radial position, 
and q the adsorption quantity of solute in the 
solid varying with radial position at time t. 
Dumwald-Wagner proposed another intraparticle 
diffusion model as [28] 
 

   
  

  
    

 

    
 

             
                (6) 

 
Where K (min

−1
) is the rate constant of 

adsorption. 
 
If the system is characterised by poor mixing, 
small solute size, and low concentration, film 
diffusion becomes the rate controlling step; 
otherwise, IP diffusion controls the process [29]. 
 
In this research, the adsorption of an adsorbate 
onto an adsorbent is assumed to take place in 
two stages. The first stage is an initial rapid stage 
during which the adsorbate rapidly fills the 
adsorption sites because of availability of such 
sites. This process continues until a first stage 
pseudo-equilibrium is reached. The rapid 
adsorption rate constant is denoted as Kr. 
However, as contact time increases, the 
available site diminishes and most of the energy 
is used up filling these sites so the adsorption 
speed gradually reduces. The rapid adsorption 
gradually transits into slow adsorption until a 
second stage pseudo-equilibrium is reached. 
This is the second adsorption stage. The slow 

adsorption stage proceeds with a rate constant 
Ks. It is assumed that there is a transition phase 
during which the rapid adsorption becomes slow 
adsorption. The rate at which the rapid 
adsorption transits to slow adsorption is denoted 
as Ktr. 
 

2. MATERIAL AND METHODS 
 

2.1 Proposed Exponential Model 
 
The two stage phenomenon earlier described is 
represented mathematically as Equations (7) and 
(8) 
 

   

  
                                      (7) 

 
   

  
                     (8) 

 
Where Qs and Qr are the slow and rapid stages 
of the adsorption respectively. Ks, Kr and Ktr are 
slow, rapid and transition rate constants 
respectively. 
 
Integrating Equations (7) and (8) gives: 
 

   =       
                (9) 

 

   
    

         

     
                    (10) 

 
Where G is the constant of integration 
 
At t = tr (Start of transition) 
 

                                (11) 
 

G =       
      

         

     
                 (12) 

 

Then 
 

      (13) 
 

where       is the available adsorbent capacity 

for the slow phase at any time t (mg/g),       is 

the max adsorbent capacity available for slow 
phase (mg/g) and       is the maximum 

adsorbent capacity available for the rapid phase  
(mg/g). 
 

Since 
 

                               (14) 
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where    is the amount adsorbed at any time t 
(mg/g),       and   is the is the available 
adsorbent capacity at maximum time and any 
time t (mg/g), respectively.  
 

                                                          (15) 

 

 (16) 

                    
      

 

Therefore 
 

                                    (17) 

 

  (18) 
 

                           (19) 
 

Equation (18) can be rearranged to the form 
 

  (20) 
 

Thus Equation (20) can be regarded as the 
exponential model for adsorption kinetics. 
 

2.2 Experimental Setup 
 

Udeh and Amah [30], investigated the adsorption 
potential of ZnCl2 activated unripe musa 
paradisiaca peels for adsorption of phenol from 
aqueous solution. Unripe musa paradisiaca peels 
were cut into smaller pieces and thoroughly 
washed with distilled water to remove impurities 
and then sun-dried until it was very dry. The 
samples were chemically activated with zinc 
chloride (ZnCl2) at impregnation ratio of 1:2 and 
then carbonized in a muffle furnace at 400

o
C for 

2 hrs and then ground into powder after cooling 
in a desiccator. This was labelled as UPPAC. 
 

At varying time intervals of 15 to 210 mins, the 
adsorption kinetics was conducted using initial 
phenol concentration of 22 mg/l at pH of 2. Fixed 
dosage (5 g) of the adsorbent was added to 50 
ml of phenol in different 100 ml containers and 
they were shaken at 200 rpm using the 
temperature-controlled incubator shaker. The 
samples were withdrawn at specific interval of 
time (t) and then filtered using Whatman paper. 
The filtrates were analyzed for phenol residual 
concentration (Ct) using HACH method. The 
adsorption capacity (qt) of the adsorbent at 
specific time intervals was calculated from 
Equation (21). 
 

  =
       

 
                                                  (21) 

 

where Co is the initial adsorbate conc. (mg/l), Ct 
is the final adsorbate conc. (mg/l), V is the 
volume of solution used (L) and W is the weight 
of adsorbent used (g). 
 

3. RESULTS AND DISCUSSION 
 

Table 1 presents the phenol adsorption rate unto 
the adsorbent at the various time intervals. With 
the aid of Excel solver, the result of the 
adsorption rate was modelled and shown as 
Figure 1 using Pseudo first order equation shown 
as Equation (22), second order equation shown 
as Equation (23) and the new model (Equation 
20). 
 

                   
   

     
                      (22) 

 

  
 

 

     
  

 

  
             (23) 

 

Where qe is the adsorption capacity at 
equilibrium (mg/g), qt is the adsorption capacity 
at time t (mg/g), kp1, is the rate constant of first 
order adsorption (mg/mins), kp2 is the rate 
constant of pseudo second order adsorption 
(mg/min). 

 

Table 1. Adsorption rate of phenol unto UPPAC 
 

t (mins) qt (mg/g) 

15 2.29 
30 2.30 
45 2.30 
60 2.30 
90 2.30 
120 2.31 
150 2.31 
180 2.31 
210 2.32 

Source: Udeh and Amah [30] 
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Fig. 1. Modelled adsorption rate of phenol onto activated unripe musa paradisiaca peels 
 
The adsorption parameters of Equation (20) from the modelled data were extracted and shown as 
Table 2. 

Table 2. Adsorption parameters 
 

ktr (t
-1

) ks (t
-1

) kr (t
-1

) tr (mins) Qs(0) (mg/g) Qr(0) (mg/g) 

0.623 0.0139 0.636 1.702 2.300 0.0158 

 
As observed in Fig. 1, the experimental result is 
seen to follow the assumption of a two phase 
process. The first and second order models 
follow the curve closely with a coefficient of 
determination ‘R

2
’ calculated to be 0.999 and 

0.998, respectively. The new exponential model 
is observed to be a smooth parabolic curve, with 
a steep initial phase (rapid phase) and it 
becomes less steep as it progresses indicating 
the slow adsorption phase. The coefficient of 
determination ‘R

2
’ was determined to be 0.994. 

This is significantly different from zero at 5 % 
level of significance for a two tailed test, an 
indication that the model estimates the 
experimental data closely. The rate of rapid 
adsorption is observed to be greater than the 
rate of slow and transition phases, as observed 
in Table 2. The time of transition ‘tr’ is observed 
to begin 1.702 mins from the start of the 
adsorption process. The slow phase pseudo-
equilibrium Qs(0) is further observed to be greater 
than the rapid phase pseudo-equilibrium Qr(0) , 
which is expected because at the onset of the 

adsorption process, the available sites are 
rapidly being filled but not completely. As time 
progresses, energy in filling those sites 
diminishes and so the process occurs much 
more slowly. Hence the available sites for slow 
adsorption are much greater than the rapid 
phase. 
 
It is the opinion of the authors that at the 
beginning of the transition phase, the rapid 
adsorption dominates the slow phase adsorption. 
However as the transition phase progresses, the 
rapid adsorption slows down and is dominated by 
the slow phase which becomes the general 
description of the adsorption process. However, 
the processes occurring within the transition 
phase requires further investigation. It is also 
opined that for the duration of the adsorption 
process to be optimized, the rapid phase will 
have to be optimized too. This will push the 
transition time farther into the entire adsorption 
process, thereby reducing the time for the slow 
phase adsorption. This might be accomplished 
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by optimized carbonization, chemical activation, 
increased adsorption area and so on. 
 

4. CONCLUSION 
 
The exponential model developed (Equation 20) 
is observed to compare favourably with the first 
and second order models in predicting the 
reaction kinetics of experimental data. The 
coefficient of determination ‘R

2
’ of the first order, 

second order and the new models were 
determined to be 0.999, 0.998 and 0.994, 
respectively. The new model clearly reveals the 
suggested two phases in the adsorption process, 
as can be observed in the smooth parabolic 
curve it produces. The model also reveals new 
adsorption parameters such as the rapid, slow 
and transition rate constants, the transition start 
time and the rapid and slow phase adsorption 
capacities. From the relationship between the 
rapid and slow phase adsorption, it can be 
deduced that for any adsorption process to take 
place within a shorter period of time, the rapid 
phase must be optimized, pushing the start of 
transition farther up the adsorption process. 
However, further studies should be done to 
investigate the transition stage and a possible lag 
phase due to the presence of impurities or other 
deterrents at the adsorption sites. 
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