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ABSTRACT 
 

This study proposed various machine learning and deep learning techniques to integrate and 
analyze varieties of data in precision agriculture systems. Agricultural systems have undergone a 
digital transformation, which has resulted in the evolution of many management components into 
artificially intelligent systems to better value the ever-increasing amounts of data. In the process of 
putting in place farming systems that are based on knowledge, several obstacles can be overcome 
using machine learning. The data obtained are transmitted to on-site storage, where extraction, 
loading, and transformation are performed. The data is preprocessed and transferred to the AWS 
(Amazon Web Services) cloud (Amazon S3 Bucket). The best model is deployed such that new 
data can be fit into the model to make adequate prediction or classification. Such a solution can be 
adapted by building an algorithm to simulate the AWS machine learning technique. A small-scale 
pilot project can be executed, and the output of the prediction or classification model can be 
displayed using a web-based software or mobile app. 
 

 
Keywords: Data fusion; deep learning; intelligent system; machine learning; remote sensing. 

 
1. INTRODUCTION 
 
IoT-based devices are used in the discipline of 
precision agriculture, which aims to boost 

profitability and make farming more intelligent [1]. 
In most cases, Internet of Things (IoT)-based 
irrigation helps to keep the field's water level in 
equilibrium and prevents the excessive use of 
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groundwater in a comprehensive system. The 
system is responsible for water management and 
will irrigate the crops when it is necessary to do 
so. The productivity of crops and the quality of 
groundwater can both suffer when fertilizers are 
used in excess [2]. One may monitor previous 
fertilizer application sequences using an internet-
of-things-based fertilizer doze suggestion system 
and then use that information to make 
predictions about the actual dose of fertilizer that 
will be administered in the future. 
 

Agricultural systems have undergone a digital 
transformation, which has resulted in the 
evolution of many management components into 
artificially intelligent systems to better value the 
ever-increasing amounts of data. In the process 
of putting in place farming systems that are 
based on knowledge, several obstacles can be 
overcome using machine learning [3]. As crop 
picture databases continue to expand, the 
application of deep learning will assist in 
identifying irregularities that may be present in 
them [4]. Image classification is more 
straightforward using pre-trained Convolutional 
Neural Network (CNN) models like VGG16, 
VGG19, InceptionV3, and ResNet50 [5]. The 
models can either automatically foretell or detect 
the earliest stages of the onset of plant illnesses 
or damage. Also, input-level feature fusion based 
Deep Neural Networks (DNN-F1), intermediate-
level feature fusion based Deep Neural Networks 
(DNN-F2), Partial Least Squares Regression 
(PLSR), Random Forest Regression (RFR), and 
Support Vector Regression (SVR) help to predict 
crop yield based on multimodal information such 
as thermal and texture features, canopy spectra, 
and structure. This is accomplished by fusing the 
elements at diverse levels of the network [6]. 
 

In agriculture, incontrovertible progress 
advancements have been made to the 
convergence of sensor networking, machine 
learning, and deep learning. Khelifi [7] conducted 
an experiment on an agricultural area by utilizing 
a wireless sensor network to collect data on the 
soil and air parameters. A cross-level fusion 
method was used by Kong et al. [8] to increase 
the overall performance of a multi-steam hybrid 
architecture when it came to grain recognition. 
Dasika et al. [9] evaluated the accuracy and 
precision of two widely utilized technologies 
(LiDAR and Photogrammetry) in remote sensing 
to simulate the physical quality of alfalfa. Then 
they connected the outcome with the quality of 
feed. 
 

Similarly, Maimaitijiang et al. [10] utilized a low-
cost multi-sensor Unmanned Aerial Vehicle 

(UAV) to gather hyperspectral photos of soybean 
plants to predict the yield, contribute to plant 
phenotyping, and improve precision agriculture. 
They discovered that using multimodal data to 
fuse together can accurately estimate crop yield 
regardless of genotype. According to the findings 
of these types of studies, using sensor networks, 
drones, and satellite photos to analyze the 
physical and biological aspects of crops 
optimizes agricultural processes in terms of the 
management of labor, cost, and time [11]. This 
study proposed various machine learning and 
deep learning techniques to integrate and 
analyze varieties of data in precision agriculture 
systems. 
 

2. METHODOLOGY 
 

2.1 Data Collection 
 

Before the development of models, data will be 
collected from all available systems. Fig. 1 shows 
the innovative irrigation system, which comprises 
soil moisture sensors, a satellite, and a drone 
that gathers information on soil moisture levels, 
soil type, canopy cover, crop diseases, and other 
useful information. Also, the fertilizer system, 
which has N-P-K sensors, collects information on 
the Nitrogen, Phosphorus, and Potassium 
content of the soil. The crop disease detection 
and damage prediction system use contents from 
drones, Geographic Information Systems (GIS), 
Global Positioning Systems (GPS), and Variable 
Rate Technologies (VRT). 
 

The data obtained are transmitted to on-site 
storage, where extraction, loading, and 
transformation are performed. The data is 
preprocessed and transferred to the AWS 
(Amazon Web Services) cloud (Amazon S3 
Bucket). The data will be processed further by 
AWS Sagemaker, and the clean data will be 
subjected to a machine learning algorithm. The 
output of the analyzed data is then sent to the 
farmer’s mobile device, and analytics monitor for 
decision making or the automatic control system 
senses the change and sends timely information 
to the irrigation system to activate or stop 
irrigation. 
 

2.2 Data Analysis 
 

The data obtained from all the systems are pre-
processed to ensure the raw data are suitable for 
use in a machine learning and deep learning 
algorithm. After that, the extraction or selection of 
features is made to create the most informative 
subsets of the learning model during the training 
phase. In the testing phase, split data that is not 
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part of the training data is fit into the model. The 
models can be validated using a new data set 
before making decisions. However, to actualize 
the research objectives, there is a need to design 
a pipeline for feature generation, modification, 
and output, as Benos et al. [3] described. The 
separation of the primary features will be done by 
calibrating a pre-trained Convolutional Neural 
Network model with data streams obtained from 
the field. 
 

In the modification phase, the concatenation of 
the elements of three layers will be incorporated 
with a dropout layer. The output phase takes the 
output generated from the modification phase 
into the dense layer. Benos et al. [3] used 
sigmoid for the activation function and trained the 
model with 30 epochs for similar research. The 
number of epochs (a hyperparameter 
representing the number of times the learning 
algorithm will work through the training dataset) 
can be adjusted to improve the model's 
performance on non-training data. For crop 
damage prediction, classification models such as 
Decision Tree (DT), Random Forest (RF), Light 
Gradient Boosting Machine (LGBM), Extreme 
Gradient Boost (XGB), and K Nearest Neighbor 
(KNN) can be used. 
 

2.3 Evaluation of the Models 
 

The models will be evaluated based on precision, 
recall, accuracy, and F1 score as expressed in 
the Equations (1-4). 
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Where tp = true positive, tn = true                       
negative, fp = false positive, and fn = false 
negative. 

 
2.4 How does the Research Create a 

Solution? 
 

Integrating all the data obtained from the entire 
intelligent systems into a smart solution for end-
users (farmers) requires detailed data collection 
and analysis phase observation. Once data are 
obtained, pre-processed, and used to train a 
model, the model can be deployed for use in the  

 

 
 

Fig. 1. On-site and cloud-based pipeline for precision irrigation using multimodal remote 
sensing 
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cloud. For instance, when raw data are stored in 
an on-site data store and the AWS S3 bucket, 
data integration is done with AWS Glue 
Databrew, and models are trained with AWS 
SageMaker, then deployed. The best model is 
deployed such that new data can be fit into the 
model to make adequate prediction or 
classification. Such a solution can be adapted by 
building an algorithm to simulate the AWS 
machine learning technique. A small-scale pilot 
project can be executed, and the output of the 
prediction or classification model can be 
displayed using a web-based software or mobile 
app. 
 
3. CONCLUSION 
 
The implementation of an on-site and cloud-
based pipeline for precision irrigation that makes 
use of multimodal remote sensing and a variety 
of machine learning and deep learning 
techniques to integrate and analyze the many 
different types of data collected would make 
irrigation, crop production, and farming system 
more productive and profitable. 
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