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ABSTRACT 
 

The present study was carryout to review the antigens of three (3) medically important 
Schistosomes namely: Schistosoma mansoni, S. haematobium, and S. japonicum. The parasites-
host relationship, the antigens, the species that produce the antigens, and the functions of the 
antigens were discussed.  Identified antigens include: Sm-24 kDa, Sm108 kDa, Polymorphic 
mucins, 28/30 kDa Protease, 47 kDa protease, 60 kDa protease, Cercarial Elastase (CE) also 
called 28/30 kDa, Cathepsin, 22.6 kDa, 23 kDa, 16 kDa/SLP/SPO-1, Prostaglandin E2 (PGE2), 
SmEnolase, SmCalp1, 28-kD GST (rSh28GST), 29-kDa, Calpain (Sp80) and SG3PDH. The above 
mention antigens of the parasites were found to be much important since they enable them to 
compete with body immunity while carrying out their metabolic activities, reproduction, growth, 
defense, resistance, and so many other things within the host.  Therefore, these antigens are very 
important in immunological studies; hence, it was recommended that, Since some parasite 
antigens were found to be promising candidates for developing a vaccine to protect against 
Schistosoma infection, more parasite antigens should be searched for the best planning and 
development of numerous strategies that aid in the prevention and control of schistosomiasis. 
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1. INTRODUCTION 
 
Schistosomes are dioecious parasitic flukes 
related to the kingdom Animalia and the phylum 
Platyhelminthes that inflict Schistosomiasis 
/Bilharziasis, also referred to as Snail fever, in 
humans and other animals [1]. Schistosomiasis 
is divided into two types: intestinal and 
urinary/urogenital schistosomiasis [2]. 
 
Infected individuals passed Schistosoma eggs in 
their feces or urines in a freshwater ecosystem 
containing snails of the genus Bulinus or 
Biomphalaria [3]; under perfect circumstances, 
they lay eggs and discharge miracidia, which 
swim and enter a specific snail intermediate host 
[4]; the miracidia inside the snails developed two 
generations of sporocysts before emerging to 
infective [5]. The infectious cercariae swim and 
penetrate the skin of human hosts while carrying 
out their activities in the polluted water once the 
cercariae out from snails are released into the 
water body [6]. 
 
As a result of larger growth in schistosomiasis 
cases, the global health burden of 
schistosomiasis is increasingly being compared 
to that of malaria or tuberculosis in certain 
analyses [1,5]. Due to the parasites' harboring of 
numerous resistance antigens, Schistosoma 
infections can cause lasting damage to different 
organs, as well as substantial morbidity and 
disastrous effects on early childhood, adult 
productivity, and in some cases, death [7]. 
 
Because of the sluggish formation of naturally 
adaptive immunity against pathogens in human 
bodies, S. haematobium causes varying levels of 
resistance to re-infection in people [8]. This has 
been ascribed to the need for the immune 
system to be exposed to enough parasite 
antigens, as well as the parasites' efficient 
immune avoidance tactics [9]. 
 
Because the primary strategy for schistosomiasis 
control is the treatment of infected individuals 
with antihelminth drugs, and praziquantel, which 
has been widely used, is not 100 percent 
effective against the three primary Schistosoma 
species affecting humans (i.e., S. mansoni, S. 
japonicum, and S. haematobium) [10] it is there 
for important to review on the antigens of 
schistosomes with their functions as this might 
help in designing best research that could help in 
the development of strong and complementary 
methods of prevention and control of 
schistosomiasis globally. 

2. ANTIGENS OF SCHISTOSOMES 
DURING PARASITES-HOST RELA- 
TIONSHIP 

 
An antigen is any agent that causes an 
organism's body produces antibodies against it; 
the substance that causes the immune system to 
produce antibodies (such as chemicals, bacteria, 
viruses, or pollen) can come from the outside 
environment of organisms or even from within 
the organism's body; antigens can activate 
lymphocytes, which are the body's infection-
fighting white blood cells [11]. Foreign antigens 
(heteroantigens) come from outside the body, 
and include parts of or substances produced by 
parasites (such as bacteria, protozoa, and 
helminths), as well as substances in snake 
venom, specified protein molecules in foods, and 
components of serum and red blood cells from 
other individuals; while, autoantigens, on the 
other hand, come from within the body                  
[12].  
 
The body can normally distinguish self from non-
self, but in people with autoimmune illnesses, 
normal physiological substances trigger an 
immunological response, resulting in the 
production of autoantibodies; thus, any antigen 
that triggers an immune response is referred to 
as an immunogen [13].  
 
Antigenic determinants are areas on the surface 
of antigens that fit and bind to receptor molecules 
on the surface of antibodies that have a 
complementary structure [14]. Antibodies multiply 
and immune responses such as the formation of 
new antibodies, the activation of cytotoxic cells, 
or both against the antigen are triggered when 
lymphocyte receptors bind to the antigens' 
surface molecules [15]. 
 

Because the immune systems of infected hosts 
have several life cycle stages of Schistosoma 
parasites that it must confront [16], schistosomes 
as helminths internal parasites must rely on and 
interact with the host for their survival. Cercariae, 
schistosomula, adult schistosomes, and the eggs 
generated by adult worms are the life cycle 
stages that challenge host immunity, and these 
stages must express various antigens to fit in 
with the host environment for their metabolic 
activities [17]. “Many of these antigens may also 
easily detect and induce cellular, humoral, and 
immunological responses; some of these 
responses remain elevated during acute and 
chronic infection, while others are significantly 
reduced” [18]. 
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“Even though immunodiagnostics, immunology in 
Schistosoma afflicted people to ascertain 
resistance to infection or re-infection, 
immunopathogenesis, and its immunoregulation 
are the main areas that emerge when looking at 
human immune responses during schistosomes 
and host interactions” [19], “such regions mostly 
focuses on responses to eggs that are either 
exiting the body via the excreta or are caught in 
bodily tissues such as the intestine, liver, bladder 
or blood”, [20].  
 
“The availability of urine experimental infection 
models has aided much understanding of human 
immune responses to schistosomes” [21]. “S. 
haematobium infections have been less 
instructive since adult worms do not migrate to 
the venous plexus and deposit eggs in the 
bladders of mice, but the development of an S. 
haematobium egg injection model has begun to 
yield insights into the pathogenesis of this 
parasite” [22,23]. 
 
“Parasite migrations in humans are unknown, but 
they are expected to be identical to those in 
experimental animals, with the same end result: 
adult worm pairs at certain sites, worms that live 
in those favored venous settings appear to be 
immune-resistant, multiple mechanisms are 
thought to be responsible for their long-term 
survival in an immunological milieu that is hostile 
(but ineffective). Some of these could be 
attributed to the schistosomes' ability to replenish 
their outer tegument through distinct somatic 
stem cells, as well as their ability to masquerade 
through molecular mimicry or the acquisition of 
host antigens” [24].  
 
Some features of Schistosoma species survival, 
such as isotopic alterations in antigen 
specificities and immunoregulation, may also 
include modifications of the host's immunological 
responses [25]. The protective immune response 
to schistosome infections has already been 
extensively studied using mouse models, 
especially using S. haematobium as the infecting 
species, and it has been discovered that both 
antibodies and T-cells are required for extra 
safety [26]. Exposure to reduced cercariae that 
die before reaching maturation provides excellent 
protection; single exposure to attenuated 
cercariae results in limited protection, which is 
principally connected with the generation of IFN-, 
whereas antibody responses become more 
essential in the protection of mice that have been 
treated to attenuated parasites multiple times 
[27]. 

“Adult worms generate eggs in their venous sites 
that are supposed to be taken out of the body via 
feces or urine and discharged into the 
environment (from the worms' perspective). 
However, venous blood flow transports many of 
the eggs in the opposite direction or makes it 
difficult for them to leave; the eggs contain a 
range of proteases antigens, and other 
potentially harmful moieties, which can cause 
necrosis once lodged in the tissues” [28]. 
“Granuloma production is the host's defense 
against this tissue insult, and it serves to wall off 
and contain the egg and the proteolytic antigens 
it releases; immunomodulation of anti-egg 
antigen responses (granuloma development) 
develops efficiently in mice and most people 
during persistent infections to prevent them from 
overwhelming tissue locations or limiting venous 
blood flow” [29].  
 
“Soluble worm antigen (SWA) of S. mansoni was 
utilized as a good control; experimental S. 
mansoni infections in T cell defective mice 
revealed key roles for the immune response in 
worm maturation and granuloma formation” [30]. 
Mice have a balanced or Th1 immune response 
to parasite antigens during the early stages of 
infection; however, once egg deposition begins 
around 6 weeks after infection, a dramatic shift to 
a Th2-type response occurs, this immunologic 
shift is caused in part by specific schistosome 
egg antigens interacting with dendritic cells, and 
in part by the action of certain carbohydrate 
epitopes [31]. “In humans, uncontrolled 
production of the Th2 cytokine IL-13 leads to 
extensive liver fibrosis, which is the functional 
cause of hepatosplenic disease” [32]. 
 
However, “because depletion of Th2 responses, 
particularly IL-4, leads to internal necrosis and 
host mortality as a consequence of increased 
pro-inflammatory Th1-type responses, Th2 
reactions also serve as a host protective role, 
and their proper control reduces overall host 
pathology. Activated macrophages and IL-10, on 
the other hand, are part of the Th2-type 
regulatory feedback that limits the initial 
granulomatous inflammation, which peaks in size 
and severity at 8 weeks after S. mansoni 
infection” [33]. “As the infection progresses, 
these and other immunomodulatory mechanisms 
further limit granuloma formation, resulting in 
smaller granulomas and less fibrosis in newly 
deposited eggs after 12 weeks of infection” [34]. 
 

“Initial reports on schistosome molecular mimicry 
in host species was presented in 1965, when it 
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was discovered that B. glabrata had antigens 
that were similar to those identified in maturing S. 
mansoni larvae” [35].” Polyclonal antibodies to 
hemolymph from S. mansoni resistant (10-R2) 
and susceptible (M-line) B. glabrata strains later 
proved this, with both interacting extensively with 
the surface of S. mansoni miracidia and 
sporocysts” [32]. “This relationship lasted for at 
least 48 hours after the larvae were changed 
from miracidia to sporocyst, implying that the 
working to develop larvae share at least certain 
surface antigens during the first 48 hours of 
infection, when they are most likely to be 
targeted by the snail immune response; cross-
reactive immunoglobulin tests also suggest some 
form of molecular mimicry, but such studies lack 
the specificity required to examine shared 
antigens” [36]. 
 
Glycan mimicry is thought to be aided by larval 
transformation products (LTPs) generated by the 
Schistosoma parasite during miracidium-to-
sporocyst transformation, however, host 
hemolymph proteins and systemic hemocytes 
can react with LTPs because far-western blotting 
revealed a distinct binding pattern between LTPs 
and hemolymph proteins isolated from B. 
glabrata strains with varied compatibility with S. 
mansoni. This shows that S. mansoni uses 
various glycan epitopes antigens during larval 
metamorphosis [37].  

 
When Cercaria intends to penetrate an 
individual's skin, the process of penetration                 
may be aided by both mechanical movement   
and antigen that breaks down cell-to-cell 
adhesions [38]. The head gland, sub-tegumental 
cell bodies, and acetabular glands are all 
potential sources of antigen [39]. While each of 
these sources may play a role in parasite 
penetration, the acetabular glands, which contain 
lengthy duct-like cytoplasmic extensions 
extending to the parasite anterior and are filled 
with proteases, are the most plausible suspect. 
Acetabular gland secretions are produced during 
migration through the skin's collagen-rich 
basement membrane and have been confirmed 
to secrete for up to three days after infection [16]. 

 
Proteolytic factors responsible for skin 
penetration have been discovered to use a wide 
range of serine protease antigens to degrade 
host structural components [40]. During 
penetration, S. mansoni creates many serine 
proteases, which are discharged from its 
acetabular glands [41]. 

3. SCHISTOSOMA ANTIGENS AND THEIR 
FUNCTIONS 

 
Antigens from schistosomes are thought to play 
a role in the pathological physiology of 
schistosomiasis, Numerous schistosomes 
antigens have been studied, with the majority of 
them derived from S. mansoni, S. haematobium, 
and S. japonicum; categorization of schistosome 
antigens recognized by monoclonal antibodies 
(MoAbs) could improve schistosomiasis influence 
for two main reasons [42]. Initially, those very 
antigens may contain specific markers that serve 
as targets for immune attack, making them 
possible future candidates for vaccine 
development; second, where the antigen has the 
diagnostic possibility, it can be investigated to 
improve diagnosis and provide useful information 
on schistosome evolution and classification [43]. 
 
When S. mansoni enters the snail, it releases 
venom allergen like protein 9 named SmVAL-9, 
which causes the up-regulation of B. glabrata 
matrix metalloprotease; this is an important 
metalloprotease in remodeling tissue, and it is 
maybe hypothesized that this facilitates parasite 
entry and penetration into host tissue [44]. A 
study of excretory/secretary (E/S) product 
synthesis by sporocysts in vitro identified two 
more immune modulators. The first is a 
polypeptide of around 24 kDa that was found to 
be capable of inhibiting protein synthesis by snail 
hemocytes in vulnerable M-line snails, but not in 
the more resistant 10-R2 strain [45]. The 
existence of a Sperm-coating protein/Tpx-
1/Ag5/PR-1/Sc7 (SCP/TAPS) domain in the S. 
mansoni genome was demonstrated to feature 
29 of these proteins, which are characterized by 
the presence of a venom allergen-like protein 
family [46]. 
 
Using mass spectrometry, the SmVALS 4, 
SmVAL 10, and SmVAL 18 were discovered in 
the E/S components of cercaria, accounting for 
around 3% of the normalized proteins detected 
there [47]. SmVAL24 has been found in the 
acetabular glands using whole-mount in situ 
hybridization, although only two of the SmVAL 
proteins have been functionally described to date 
[48]. SmVAL4 has the ability to bind lipids and 
cholesterol, albeit it has yet to be determined 
how this can affect the host immune response 
[49]. 
 
SmVAL18, on the other hand, has been 
demonstrated to bind plasminogen and aid in its 
breakdown into plasmin, a protein involved in 



 
 
 
 

Suleiman et al.; AJRIZ, 5(3): 11-27, 2022; Article no.AJRIZ.89167 
 
 

 
15 

 

complements element degradation, extracellular 
protein denaturation, and fibrinolysis. As a result, 
SmVAL18 could potentially aid parasite migration 
through the epidermis and prevent blood clotting 
after venule penetration [50]. Only one VAL, Sj-
VAL-1, has been studied in S. japonicum, and it 
has been found to localize to cercariae 
penetration and head glands, suggesting a 
probable role in migration into host venules 
(Chen et al., 2018). 
 
108 kDa is protein that was demonstrated to be 
able to scavenge superoxide anions produced by 
phagocytosis-stimulated M-line of B. glabrata 
hemocytes, thus shielding the parasite from this 
harmful oxygen species [51].  
 
S. mansoni up-regulated an invadolysin 33.2-fold 
in B. glabrata hemocytes 12 hours post infection, 
and this invadolysin, identified as SmLeish, was 
revealed to be capable of reducing the velocity of 
susceptible M-line B. glabrata hemocytes. This 
function is important for reducing the frequency 
with which sporocysts are encapsulated by 
hemocytes in vitro, and it was also discovered to 
be important for B. glabrata survival [52]. S. 
mansoni's mimicry goes beyond surface 
epitopes, since sporocysts can create host-like 
adrenocorticotropic hormone, which is converted 
by host hemocytes into melanocytestimulating 
hormone, causing hemocytes to circle up 
towards the sporocyst [53]. 
 
Polymorphic mucins (SmPoMucs) of S. mansoni 
are also group of antigens that were discovered 
as part of a proteomics screen to find 
preferentially abundant proteins produced by B. 
glabrata-compatible and incompatible strains of 
S. mansoni, and have since become one of the 
most intensively studied constituents of 
resistance polymorphism in the S. mansoni 
system; these antigens have variability that 
should be considered as a key mechanism [54].  
 
A 28/30 kDa protease capable of cleaving 
casein, gelatin, C3, C3b laminin, fibronectin, 
keratin, and collagens IV and VIII; a 47 kDa 
protease capable of cleaving gelatin, casein, 
collagen type VI, and elastin; and a 60 kDa 
protease capable of cleaving casein and gelatin 
are among these proteases [55]. 
 
SmCE (Schistosoma mansoni Cercarial 
Elastase) which is also called 28/30 kDa variant 
antigen, is the most important, accounting for 
around 36% of the total volume of acetabular 
gland contents [56]. The presence of SmCE 

throughout the intra-mammalian section of the S. 
mansoni life cycle emphasizes its relevance. 
Cercariae, lung stage schistosomulae, and adult 
worms all have a membrane-bound version of 
the protein [57]. Although S. haematobium has a 
protease similar to SmCE antigen that fulfills the 
same role as S. mansoni, it was long assumed 
that S. japonicum did not produce any serine 
protease during first penetration events because 
SmCE antibodies did not react with S. japonicum 
cercarial extracts [58].  
 
Proteomic analysis of the host/parasite molecular 
interface during S. japonicum penetration into 
mouse skin revealed a single S. japonicum 
cercarial elastase (SjCE2b) produced in cercaria 
and localized to the acetabular glands, though 
levels of this protein are low compared to those 
found in S. mansoni and S. haematobium [59].  
 
Sm16/SmSLP/SmSPO-1 antigens is an anti-
inflammatory protein discovered in S. mansoni, it 
makes up around 3–4% of the protein released 
by cercariae within the first 3 hours after 
infection, implying a role in parasite survival [57]. 
Sm16.8 kDa was shown to change cytokine 
profiles by inhibiting Il-1a production in 
keratinocytes, lowering ICAM-1 expression in 
endothelial cells, preventing LPS-induced 
neutrophil migration into the dermis, and 
decreasing LPS-mediated IL-6, TNF-a, and IL-1b 
production [60]. It reduces the ability of mouse 
bone marrow derived macrophages to produce Il-
12p40, IL-10, and IFN-ginduced NO 2, as well as 
decreasing antigen processing by phagocytic 
cells in mice [61]. 
 
Sj16 is the Sm16.8 kDa counterpart found in S. 
japonicum that has also been shown to have 
immunomodulatory properties, including a 
reduction in macrophage maturation and 
modulation of cytokine production in 
thioglycolate-induced peritoneal mouse cells by 
upregulating IL-10 and IL-1RA while 
downregulating MIP-2, IL-1b, and IL-12p35 [62]. 
Sj16.8 kDa has the ability to increase the number 
of CD4+ CD25+ Foxp3+ regulatory T cells, 
implying that it can not only suppress 
inflammatory responses but also help to 
generate a regulatory response [63]. 
 
It was discovered that Schistosome E/S fractions 
containing a 23 kDa antigen have been shown to 
specifically target T lymphocytes for apoptosis, a 
process thought to be mediated by causing an 
up-regulation of both the Fas Ligand and Fas 
receptor on CD3+ cells [64]. The inability of 
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vaccinated mouse lymphocytes to recognize the 
E/S products of invading parasites may be partly 
due to the loss of T lymphocytes during early 
penetration, as a functional T cell driven 
response would be significantly impeded [65]. 
 
S. mansoni can produce prostaglandin E2 
(PGE2), as well as an E/S product of less than 
30 kDa in size that can up-regulate the 
production of PGE2 and IL-10 from human 
keratinocytes; this appears to be important for 
infection kinetics, as IL-10 deficient mice are able 
to slow schistosomula travel through the skin and 
into the lungs [66]. The 23 kDa and 30 kDa 
immunomodulatory antigens were discovered 
through filtration of schistosome E/S products, 
although their specific molecular identities have 
yet to be determined. Yet, the usage of 
prostaglandins is not restricted to PGE2, as 
PGD2 produced by the parasite prevents 
epidermal Langerhan cells from migrating to 
neighboring lymph nodes. Given that the 
generation of PGD2 by S. mansoni requires a 28 
kDa Glutathione S-transferase, the possibility of 
using such a factor as a vaccine candidate was 
investigated in the early 1990s. Sadly, recent 
phase 3 clinical trials of the S. haematobium-
derived rSh28GST (Bilhvax) vaccine have shown 
that it is ineffectual in providing considerable 
immunity [67]. 
 
SmKK7, a protein with considerable resemblance 
to K+ channel blockers in scorpion venom, is 
another possible immunomodulator that has yet 
to be functionally defined. This might potentially 
work in limiting the activation of surrounding 
lymphocytes [48]. While mechanical movement 
throughout the epidermis aids in the loss of the 
glycocalyx, the close interaction of SmCE has 
been indicated as a possible assistance during 
this process [64]. While the glycocalyx is shed, 
schistosomulae go through a complex 
remodeling of their outer membrane, transitioning 
from a trilaminate to a heptalaminate form that 
lasts until adulthood [68]. This freshly created 
heptalaminate membrane then begins to exhibit 
a number of surface-bound components aimed at 
preventing complement and immunoglobulin-
based attacks. Paramyosin, a chemical found in 
both schistosomula and adult worms, is one of 
these molecules. On schistosomulae exposed to 
human serum, paramyosin has been 
demonstrated to bind complement components 
C1, C8, and C9, preventing the membrane 
assault complex from polymerizing and 
depositing [69]. 

Two antigens found in S. mansoni namely, 
SmEnolase and SmCalp1, are thought to aid in 
tissue disintegration at least in part. Their 
presence in the eggs is thought to aid in 
fibrinolysis [70]. Furthermore, the egg is thought 
to aid its own survival by producing SmKI-1 as a 
means of surviving neutrophil elastase-mediated 
death, as well as a chemokine binding protein 
(SmCKBP) that reduces inflammation and 
inflammatory cell recruitment via the binding of 
CXCL8 and CCL3; these immune modulating 
and immune evading tactics allow the egg to 
migrate through the host intestine/bladder, 
eventually being excreted in order to begin the 
[71]. 
 
Cathepsin B is one of the schistosomes’ 
portentous antigens that relates to the cysteine 
proteases, a group of lysosomal cysteine 
proteases that has been discovered to play a 
significant role during intracellular proteolysis 
[72]. A heavy chain ranging from 25 to 26 kDa 
and a light chain of 5 kDa are found in mature 
cathepsin B, and these chains are linked by 
disulfide dimers [73]. 
 
Cathepsin B is involved in the control of IL-12 
production as well as the expression of antigen-
presenting MHC class II molecules [74]. It also 
boosts the activity of other proteases such matrix 
metalloproteinase, urokinase (serine protease 
urokinase plasminogen activator), and cathepsin 
D, therefore it's crucial for extracellular matrix 
proteolysis, intercellular communication 
disruption, and reduced protease inhibitor 
expression [75]. It is also engaged in autophagy 
and catabolism, both of which are beneficial in 
tumor malignancy. It was recently discovered to 
have minimal ligase activity, allowing it to bind 
peptide fragments via an amide bond, and it may 
be implicated in particular immunological 
resistance [76]. 
 
S. mansoni cathepsin B1 (SmCB1), one of 
substantial worm extract peptides and also 
Excretion Secretion Proteins (ESPs), has been 
recognized as a critical anti-schistosome vaccine 
candidate with the ability to initiate Th17 
responses in addition to Th1 and Th2 responses 
in various studies conducted on Schistosomes 
[77, 78]. Major hemoglobin-digesting enzymes 
found in S. haematobium include SmCB1 and S. 
mansoni cathepsin L1 (SmCL1, CL) [79] (Wendt 
et al., 2020). SmCB1 is mainly expressed in 
cercariae's caecum and protonephridia, whereas 
SmCL1 is found in the gastrodermis and 
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tegument of mature worms [80]. SmCB1 and 
SmCL1 are both important ESPs [81].  
 
Recent research has found that vinyl sulfone 
inhibitors enzymes of the SmCB1 target may 
have the ability to affect parasiteic growth, as 
well as that interfering RNA of SmCB1 inhibited 
parasite development both in culture and in an 
animal study of transmission [79,82].  
 
In CD-1 mice and Syrian hamsters, adjuvant-
free, enzyme active SmCB1 or FhCL1 in 
recombinant version alone or in combination with 
another vaccine candidate SG3PDH/PRX-MAP 
were seen to stimulate greater protection with an 
increase in IgG1 isotype titers (no IgE was 
detected) and Th2 cytokines against S. mansoni 
and S. haematobium infection [79,80]. 
Immunization of CD-1 mice and Syrian hamsters 
with active rSmCB1 and SmCL3 alone or in 
combination with rSG3PDH resulted in significant 
protection against S. mansoni and S. 
haematobium challenge infection, indicating that 
the efficacious trivalent vaccine should now be 
tested in nonhuman primates for evaluation as a 
potential vaccine to control human schisto- 
somiasis [79]. 
 
Despite producing less protein upon change to 
schistosomulae than S. mansoni, cathepsins 
have emerged as an alternate facilitator of 
penetration in S. japonicum cercaria, which have 
up to 40-fold higher cathepsin-B-like activity than 
their S. mansoni counterparts [58,59]. 
 
Cathepsins are still produced by S. mansoni, and 
two of them (Cathepsin L1 and Cathepsin B) are 
found in the parasite's post acetabular glands. 
Given the significance of post acetabular glands 
in creating mucous-like secretions to aid 
adhesion to host skin, these cysteine proteases 
could play a role in breaking down the skin's 
immunological barrier. Alternatively, the fact that 
cathepsin activity is involved in the adult 
schistosome gut suggests that the presence of 
cathepsins in cercaria could simply be evidence 
of the development of digestion-related elements 
in later life cycle stages [83]. 
 
Sm23, SG3PDH, calpain, Sm-TSP-2, saponin B 
domain-containing proteins, GST, Sm29, 
cathepsin domain-containing proteins namely 
cathepsin B and cathepsin L, proteases, and 
oxidants were previously announced to also be 
developed in worm generated 15 k (286 proteins) 
and 120 k (716 proteins) membrane proteins 
(EVs) [81,84,85]. 

Distinctive ESPs antigens were obtained from 
cercariae, lung-stage schistosomula, and adult 
worms from several schistosome species [86]; 
Tetraspanin, Sm/Sh22.6, Sm29, Sm200, and 
phosphadiesterase are Cathepsin B antigen 
family that are extensively expressed throughout 
the schistosomula phase (Gobert et al., 2010). 
Furthermore, research that used the RNAi 
approach to silence genes revealed the 
relevance of these certain proteins for parasite 
proliferation and survival [87]. Using mass 
spectrometry (MS)-based proteomics and 
information from the genome, transcriptome, and 
genetic maps, similar membrane protein was 
found in adult worm tegument preparations [88]. 
 
Previously, a proteomic findings show that Sm29 
and Sm200 are linked to the parasite cell 
surfaces via a GPI-anchor, while aquaporin, 
dysferlin, TSP-2, and ATP diphosphohydrolase 
are the most abundant proteins in adult worm 
tegument, among some of the investigated 
molecules. All of these proteins express a 
catalog of protein expressed in the schistosome 
tegument, and some of them have been 
evaluated as vaccine antigen in Castro-Borges et 
al., [89]. 
 
Sm22.6 is a tegumental protein that has a 
counterpart in S. japonicum (Sj22.6) and in 
endemic situations, S. haematobium (Sh22.6) is 
involved in re-infection resistance (Dunne et al., 
2017; Santiago et al., 2018)  with freund 
adjuvant had a 34.5 percent reduction in worm 
burden, whereas Sm22.6 formulated with alum 
did not induce protection against schistosomiasis 
but did induce a regulatory response that 
modulated allergic asthma in mice [90]. 
 
In both Ghanaian and Egyptian parasite strains, 
a 29 kDa S. haematobium species-specific 
antigen (ShSSA) was discovered. Despite the 
efficacy of a monoclonal antibody (MAb) to 
ShSSA in a field dipstick for the diagnosis of 
urinary schistosomiasis, ShSSA has not been 
completely described [91]. 
 
S. haematobium 28-kD GST (rSh28GST); S. 
mansoni 14-kDa (Sm14); S. mansoni 
tetraspanin; 9-kDa surface antigen; Sm-TSP-2; 
and S. mansoni calpain (Sm-p80) are among the 
recombinant antigens (Aya et al. 2021). Many of 
the above-mentioned antigen candidates, such 
as TSP-2, Sm23, GST, Sm29, and calpain, have 
recently been discovered in extracellular vehicles 
(EVs) of schistosome adult worms [81]; 
extracellular vesicles are membrane-enclosed 
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vesicles that are constantly secreted by different 
types of cells and play an important role in 
removing unnecessary cell components [92].  
 
The 28 kDa glutathione S-transferase of S. 
haematobium vaccine, commonly known as the 
28 kDa glutathione S-transferase (Sh28GST) 
vaccine, is a major ESP expressed in the 
tegument and sub-tegument of adult and larval 
schistosomes [80]. It plays a key function in fatty 
acid metabolism and prostaglandin D2 synthesis, 
and it may help parasites evade the immune 
system [93]. 
 
In chimpanzees and patas monkeys, 
recombinant S. haematobium glutathione S-
transferase (rShGST) vaccine mediated high 
levels of protection associated with intense 
specific IgG and IgA antibody responses; phase 
1 trial was done to examine the safety and 
tolerability of two or three intramuscular injection 
of 100 lg rSh28GST antigen with Alum as 
adjuvant in young, healthy, Caucasian male [67]. 
The vaccine's safety, tolerability, and 
immunogenicity were also demonstrated in 
adults and children living in endemic areas            
[94]. 
 
The only antigen for Bilharziasis that has 
reached Phase 3 clinical trials is rShGST; in 
Phase 3, 250 Senegalese children aged 6–9 
years old were cured of schistosome infection 
and randomized to receive three subcutaneous 
injections of either rSh28GST/Alhydrogel 
(Bilhvax group) or Alhydrogel alone (control 
group) at four-week intervals, followed by a 
booster one year after the first injection. In 
addition, students who receive the rSh28GST 
vaccine had higher levels of essential IgG1, 
IgG2, and IgG4 antibodies, but no IgG3 or IgA 
isotypes. Acquired immunity to Sh28GST is 
associated to IgG3 and IgA antibodies in human 
groups. The failure to achieve protection against 
urinary schistosomiasis could be due to an issue 
with antibody isotypes or the distorting effect of 
PZQ treatment prior to the first and last 
immunizations [47,95].  
 
The vaccination against S. haematobium 28 kDa 
glutathione S-transferase (Sh28GST) is exhibited 
in the tegument and subtegument of adult and 
larval schistosomes, and is the most common 
Ecretion Secretion Proteins [80]. It plays a key 
function in fatty acid metabolism and 
prostaglandin D2 synthesis, and it may help 
parasites evade the immune system [93]. Some 
many studies in rodents, primates, and cattle 

using the recombinant protein (expressed in 
Saccharomyces cerevisiae) revealed a partial 
protective effect against schistosome infection, a 
significant reduction in worm burden (40–60 
percent), and a substantial decrease in female 
worm reproductive capacity and eggs viability 
[96]. 
 
In rats and baboons, the Sm-p80 ortholog 
expressed in the tegument of S. japonicum and 
S. haematobium adult worms offered 
considerable cross-species resistance against S. 
mansoni, S. japonicum, and S. haematobium 
illnesses [97]. Recombinant Sm23 and other 
TSPs extracted from adult S. haematobium 
worms were shown to induce significant 
protection against challenge infection with S. 
mansoni, as measured by reductions in liver (47 
percent, 38 percent, and 41 percent) and 
intestinal (47 percent, 45 percent, and 41 
percent) egg burdens. These findings suggest 
that EV surface proteins could be exploited to 
develop anti-schistosome vaccines (Mekonnen, 
2020) 
 
The SG3PDH antigen is one of the most 
promising vaccine candidates for 
schistosomiasis, and it helps to prevent re-
infection [98]. However, because of its high 
homology (72.5%) with human G3PDH, the 
whole parasite proteins cannot be used as a 
vaccine for fear of inducing autoimmune 
responses. As a result, it is preferable to choose 
SG3PDH derived-peptides with the least 
resemblance to human peptides, and the 
peptides were chosen for the development of a 
safe synthetic peptide-based vaccination; These 
peptides were studied in serum and lymphocytes 
from humans resistant to re-infection with S. 
mansoni or S. haematobium after treatment with 
PZQ for previous infection, as well as BALB/c 
and C57BL/6 mice immunized with recombinant 
rSG3PDH (rSG3PDH); the findings revealed that 
SG3PDH-derived peptides contain human and 
murine T- and B-cell determinants, and immune 
responses to EL Ridi et al., [80].  
 
The 29 kDa protein is a glycosyl- 
phosphatidylinositol (GPI) integral protein found 
in the tegument of mammalian adults and lung-
stage schistosomula, but not in cercariae, 
suggesting that this antigen aids the parasite in 
adjusting to its new environment in mammalian 
hosts [99]. Sm29 may potentially assist the 
schistosome evade immunological responses by 
interacting with the human protein CD59, which 
suppresses the Membrane Attack Complex 
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Table 1. Summary of some schistosomes’ antigens, Species that produced them, Importance 
and References 

 
S/N Antigen(S) Species that 

Posses the 
Antigens 

Function of the Antigens Reference (s) 

1.  Venom 
Allergen-like 
(VAL) antigen 
family  

S. mansoni 
S. japonicum  

They promote the parasites access 
and entry into host tissue; they 
possess the capacity to combine lipids 
and cholesterol; they have ability to 
prevents blood clotting following 
penetration. 

Fernandes et al., [48]; 
Yoshino et al., [44]; 
Fernandes et al., 
2019 

2.  Sm-24 kDa S. mansoni Blocking snail hemocytes' ability to 
make protein 

Connors et al., [45] 

3.  Sm108 kDa S. mansoni The antigen has the capacity to 
scavenge superoxide anions produced 
by B. glabrata hemocytes' M-line 
driven phagocytosis; it protect the 
parasite from these damaging oxygen. 

Dinguirard et al., [51 

4.  Polymorphic 
mucins 
(SmPoMucs) 

S. mansoni It provide with resistance 
polymorphism components in the S. 
mansoni system 

Roger et al., [54] 

5.  28/30 kDa 
Protease 

S. mansoni Ability to break casein, gelatin, 
collagens IV and VIII, C3 and C3b, 
fibronectin, and laminin 

McKerrow and Salter, 
[55] 

6.  47 kDa 
protease 

S. mansoni Gelatin, casein, collagen type VI, and 
elastin can all be broken down by it. 

McKerrow and Salter, 
[55] 

7.  60 kDa 
protease 

S. mansoni These proteases include those that 
can cleave casein and gelatin. 

McKerrow and Salter, 
[55] 

8.  Cercarial 
Elastase (CE) 
also called 
28/30 kDa 

S. mansoni 
S. haematobium 
S. japonicum 

roughly 36% of acetabular proteins are 
elastase antigens 

Roger et al., [54] 

9.  Cathepsin S. mansoni 
S. haematobium 
S. japonicum 

Enhancing cercarial adherence to the 
host skin; Weakening the skin's 
immune system; growth of digestive 
components in later life cycle stages; 
drug-resistant in parasites; They were 
tested as potential vaccination 
candidates. 

Liu et al., [59]; Dalton 
et al., [83];  vor  et 
al., [58] 

10.  22.6 kDa S. mansoni 
S. haematobium 
S. japonicum 

Re-infection resistance; 
Vaccine candidates 

Dunne et al., 2017; 
Santiago et al., 2018; 
Pac'fico et al., 2016 

11.  23 kDa S. mansoni 
S. haematobium 
S. japonicum 

Selectively induce apoptosis in T 
lymphocytes 

Kumar and 
Ramaswamy, [65] 

12.  16 
kDa/SLP/SPO-
1 

S. japonicum 
S. mansoni 

It influences cytokine profiles and 
decreases the capacity of mouse bone 
marrow-derived macrophages to 
generate IL-12p40, IL-10, and IFN-
ginduced NO2; It also has a function in 
enhancing parasite survival. 

un et al., 2012; 
Curwen et al., [56]; 
Crosnier et al., [61] 
Salter et al., [60]; Hu 
et al., [62] 
 

13.  Prostaglandin 
E2 (PGE2) 

S. haematobium 
S. mansoni 
S. japonicum 

It stops the migration of epidermal 
Langerhan cells to nearby lymph 
nodes. 

Hervé et al., 2013; 
Riveau et al., [47] 

14.  SmEnolase 
and SmCalp1 

S. mansoni Aid in tissue deterioration; it is 
believed that their presence in eggs 
facilitates fibrinolysis 

Figueiredo et al., [70] 

15.  28-kD GST 
(rSh28GST);  

S. haematobium Removal of superfluous cell 
components; Use as a source for 
vaccines, and potential aid to 
parasites in evading the immune 

Tebeje et al., [93]; 
Pluchino and Smith 
[92]; Aya et al. 2021; 
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S/N Antigen(S) Species that 
Posses the 
Antigens 

Function of the Antigens Reference (s) 

system; It is crucial for fatty acid 
metabolism and the production of 
prostaglandin D2. 

16.  29-kDa S. mansoni It is believed to be an 
immunoregulatory molecule that 
regulates inflammatory mucosal 
illnesses; Plays a significant role in the 
removal of extracellular components; 
Aids parasite adaptation to 
mammalian hosts. 

Sotillo et al., [99]; 
Bear et al., [100]; 
Oliveira et al., 2016). 

17.  Calpain (Sp80) S. mansoni 
S. japonicum 
S. mekongi 
 

Act as a source of vaccination and 
play a significant function in 
eliminating extraneous cell 
components. 

Molehin et al., [97]; 
Mekonnen et al., 2020 

18.  SG3PDH S. mansoni 
 S. 
haematobium 

One of the most promising 
schistosomiasis vaccine options, and it 
aids in preventing re-infection 

McManus and Loukas 
[98]; EL Ridi et al., 
[80] 

 
(MAC) and hence aids the parasite in evading 
immune responses [100]. 
 
Sm29 kDa was prepared with alum or 
monophosphoryl lipid adjuvant (MPLA) and given 
to BALB/c mice re-infected with S. mansoni in 
another investigation. Sm29-alum produced 
protective effects against superinfection and 
decreased worm load by 29–37%, whereas 
Sm29-MPLA did not, demonstrating that Sm29-
alum can successfully prevent mice from S. 
mansoni re-infection [101]. 
 
In Swiss albino mice, the mixture of Sm29 and 
Sm14, identified as Sm14/29 alone or in 
conjunction with polyinosinic-poly cytidylic                 
acid adjuvant, resulted in significant reductions of 
adult worm burden by 48.4 percent and 44.7 
percent, liver egg burden by 82.8 percent and 
73.5, and intestinal egg count by 72.8 percent 
and 76.6 percent, respectively; similarly, Sm29 
[102-106]. The above mention antigens and their 
functions as well as the spp that produce them 
were summarized in Table 1. 

 
4. CONCLUSION AND RECOMMENDA- 

TIONS 
 
During the course of interaction between 
schistosomes and their hosts (definitive and 
intermediate hosts), the parasites produce many 
antigens which enable them to reproduce and 
survive within the hosts environment, the 
antigens performing particular importance in both 
the parasites and the hosts, some of the 
identified importance include: resistant, tissue 
damage, serve as a vaccine candidate, escape 

to the immune responses, mimicry, and many 
others. Therefore, we recommended that, many 
more antigens produced by parasite should be 
investigated because of their function in planning 
and creating many ways that help in prevention 
and control of schistosomiasis since some were 
observed to be good candidates for recovery of 
vaccine against Schistosoma infections. 
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