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'is research paper deals with a numerical method which is modified and applied, by the authors to derive an eigenvalue of a thick
plate having cut-out in which geometries of plate and cut-outs are different, through a deflection matching condition by including
shear deformation and rotary inertia effects, with less computational efforts and high accuracy. 'e modified Independent
Coordinate CouplingMethod (ICCM) is validated with FEM package (ANSYS) and applied to know the change in eigenvalues for
a plate with cut-out by varying various parameters like aspect ratios, cut-out size, and thickness ratios. Trigonometric functions
considered at the boundary level conditions of a simply supported plate should be satisfied. Free vibrational exploration on a thick
isotropic plate with various aspect ratios and an elliptical plate with various sizes is carried out through the modified ICCM.
Independent coordinates are applied for a plate domain and for a hole domain individually followed by equating the deflection
condition of hole and plate, a reduced mass to express with cut-out from which eigenvalues can be obtained. 'e deflection
matching condition facilitates the analysis even though the geometries of plate and cut-outs are different.

1. Introduction

A plate with a cut-out is a commonly existing structure in the
domain of aeronautics, civil, marine, and mechanical engi-
neering to accommodate mountings or accessories under the
action of various forces. In dealing with such cases, knowledge
on dynamics of plates plays a vital role. Plates with cut-outs are
subjected to free vibration. Eigenvalues of thin plates may be
calculated using classical plate theory and easily obtained,
whereas they cannot be applied directly in thick plate analysis
due to the effect of rotary inertia.'is leads to an overestimation
of results.'e expression of strain and potential energies of plate
must contain the terms of shear and rotary inertia to improve the
accuracy of eigenvalues while computing.

From the literature available on the Mindlin plates, Senja-
novic et al. [1, 2] derived exact formulas for a plate by reducing a

three-equation system to one equation expressing a potential
function in terms of bending deflection. Xiang et al. [3] analyzed
Mindlin plates by implementing delta type of kernel wavelet in
lateral vibration of plates.Merneedi et al. [4, 5] applied the ICCM
method of elliptical and rectangular thin plate by changing the
size, position, and number of holes at all possible ways. Aksu [6]
applied an energy approach along with a finite difference in a
Mindlin’s dynamic analysis approach of plate having cut-outs.
Rui et al. [7] applied a rational method of superposition in the
symplectic space forMindlin plate’s vibration analysis. Xing and
Liu [8, 9], implemented a new two-eigenfunction theory to
obtain vibrational solutions of a rectangular Mindlin plate, in
which amplitude and generalized curvatures are considered as
functions.

Liew et al. [10–13] minimized energy function of Mindlin’s
theory by using the Rayleigh–Ritz method to formulate the
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governing eigenvalue equations. Dawe and Roufaeil [14] derived
by assuming that plate deflection and rotations are a sequence.
'eRayleigh–Ritz approachmay be used to compute the natural
frequencies of flexural vibrations of a square plate using products
of appropriate Timoshenko beam functions. Leissa [15, 16]
investigates the free vibrational exploration for twenty-one cases
of various rectangular plates through precise analytical tech-
niques. Sayyad and Ghugal [17], proposed a displacement-based
theory inwhich thickness coordinates are used as an exponential
function so that transverse shear stress can be obtained directly
without any shear correction factor. Kanak and Salil [18] and
Merneedi et al. [5] consider the nine-node isoparametric ele-
ment. 'e natural frequencies of thin and thick plates with cut-
outs were analysed using the first-order shear deformation
theory. Prasad et al. [19] utilized the Rayleigh–Ritz approach to
apply a three-term deflection function on clamped and simply
supported elliptical plates. Leissa [20] calculated the precise
fundamental natural frequencies of a simple sup. Maurizi et al.
[21], derived fundamental natural frequencies for a vibration of
elastic plate using simple static in the presence of a clamped
boundary condition. Lam et al. [22] created a computational tool
to determine the natural frequencies of circular and elliptical
plates; the researchers used the Rayleigh–Ritzmethod using a set
of orthogonal functions called acceptable functions. Shibaoka
[23] creates a fundamental normal mode of flexural vibration of
an elliptical plate under clamped-clamped boundary conditions.
Mcnitt [24] utilized the Galerkin method and an ordinary
product solution by ignoring the impact of rotational inertia in
the investigation of free vibration of an elliptical plate under
clamped boundary conditions using traditional small-deflection
theory. Kwak and Han [25] used ICCM to do a free vibrational
exploration on a rectangular plate with a hole obtaining energy
linked to the hole with plate separately and equated bymatching
condition of deflection. Hasheminejad et al. [26] formulated the
analytical expression for the elliptical plate with an eccentric cut-
out. 'e solution is derived using Helmholtz’s decomposition
theorem, and this technique is based on Navier’s displacement
equation of motion. Mathieu functions of translational addition
theorems are used to separate the variables.

According to the literature, eigenvalues of a thick
rectangular plate with a hole were estimated using several
numerical tools such as the Rayleigh–Ritz methodology,
FEM, and finite difference techniques and the plate is same.
It is identified that if hole and plate are of different ge-
ometries, the RRM may lead to complex integrals with te-
dious numerical computations because of its integral limits
[27]. Keeping in view of this, in the present work, the authors
proposed a novel modified ICCM to determine the natural
frequencies of a structure with cut-out of different shapes by
implementing a deflection matching condition along with
closed-form integrals to reduce the computational efforts.
Shear deformation and rotational inertia effects are among
them. Even if the shape of the plate and hole differs, the
deflection matching condition simplifies the analysis, which
is a key benefit of the ICCM. Using the ICCM, a Mindlin
elliptical and rectangular plate’s first six natural frequencies
with various sizes of cut-outs under simply supported
boundary conditions were derived to show the variation of
natural frequencies with respect to various hole sizes, and the
same is validated through ANSYS software including mode
shapes, which was not covered in the literature in view of the
authors.

1.1. Free Vibrational Exploration of Rectangle Plate with Cut-
Out. Separate energy expressions are formulated for a hole
domain and for a plate domain exploration of a plate with
hole, and hence deflection matching condition is essential to
establish a kinematic relation between these independent
coordinate domains. It will also enable us to unify these two
independent energies.

1.1.1. Expressions for Rectangular Plate. Consider a thick
rectangular plate with a cut-out in x − y plane, having di-
mensions of a × b and ac × bc, respectively. Expressions for
rectangular plate strain energy and kinetic energy from
Reference [11] are as follows:
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where h� plate thickness, ρ�mass density, ϑ �E�modulus
of elasticity, w �transverse displacement, G� shear modu-
lus, μ �Poisson’s ratio, ψx � −zw/zx � rotation about y di-
rection, ψy � −zw/zy � rotation about x direction, κ� shear
correction factor� 5/6, and ω� angular frequency.

Introducing a non-dimensional parameter, thickness to
width ratio β � h/b, aspect ratio α � a/b, and non-dimen-
sional variables ξ � x/a, η � y/b, the energy expression of
plate is a non-dimensional representation of plate which can
be written as follows:
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where w∗ � w/b.

Admissible functions are considered to expand trans-
verse deflection and the rotations in equations (2a) and (2b)
as

w(ξ, η, t) � Ai(ξ, η)Ω(t),

ψx(ξ, η, t) � Bi(ξ, η)Ω(t),

ψy(ξ, η, t) � Ci(ξ, η)Ω(t),

(3)

where Ai(ξ, η) � A1 A2 A3 A4 . . . Am􏼂 􏼃 is a (1 × m)

matrix and Ωi(ξ, η) � Ω1 Ω2 Ω3 Ω4 . . . Ωm􏼂 􏼃
T is (m ×

1) generalized coordinate vector, where “m” denotes ad-
missible functions required for the approximating the de-
flection curve.

Substituting equation (3) in equations (2a) and (2b)
yields
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In equations (6a) and (6b), stiffness matrices are rep-
resented by M, K, respectively, along with non-dimensional
variables. Equation of motion of plate is obtained by
substituting equation (3) in Lagrange’s expression, and its
eigenvalue can be computed from

K − ω2
M􏽨 􏽩Λ � 0. (7)

Using non-dimensional matrices introduced in equa-
tions (4a) and (4b), the above eigenvalue problem in non-
dimensional form

K − ω2
M􏽨 􏽩Λ � 0 (8)

will give non-dimensional eigenvalues of a plate, in which
“Λ” is an eigenvector. In equation (7),
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􏽲

(9)

is known as the frequency parameter which represents the
flexural rigidity in D � Eh3/12(1 − μ2), which is known.

To obtain in terms of admissible function matrices in the
X and Y directions, an admissible function matrix from
equation (3) has to be changed.
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Ai(ξ, η) � Ai(ξ)ai(η),

Bi(ξ, η) � Bi(ξ)bi(η),

Ci(ξ, η) � Ci(ξ)ci(η),

where, i � 1, 2, 3 . . . m.

(10)

1.1.2. Boundary Conditions. A thick simply supported plate
is considered and its eigenvalues are derived by considering
an individual eigenfunction in each direction for each ad-
missible function.
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Admissible functions in equation (11) are taken into
account in such a way that they meet the assumed boundary
conditions of the plate. All geometrical end points of (ξ, η) in
equation (3) along with equation (11) will result in a zero
deflection.

1.1.3. Energy Expressions for Rectangular Plate with Cut-Out
Using ICCM. Kinematic relations are formulated for a plate
having cut-out using ICCM; by matching the plate’s de-
flection to the hole’s deflection, these relationships may be
used to produce updated mass and stiffness matrices as well
as distinct plate and hole domains having their own coor-
dinates. Fixing local coordinates to the hole domain is
presented for rectangular hole in rectangular plate as il-
lustrated in Figure 1.

Taking non-dimensional coordinates into account, dis-
placement and rotations are expressed as ξh � xc/ac and
ηh � yc/bc.
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Equations (12) and (13) represented the potential and
kinetic energies.
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where thickness to width ratio βc � h/bc, aspect ratio
αc � ac/bc, and non-dimensional variables ξh � xc/ac and
ηh � yc/bc.

Equations (17) and (18) have a distinctive advantage that
the integral bounds range from 0 to 1, allowing for a closed-
form solution. In terms of plate domain, the displacement

matching requirement of the hole may be represented as
follows:

wh ξh, ηh( 􏼁 � w(ξ, η),

ψhx ξh, ηh( 􏼁 � ψx(ξ, η),

ψhy ξh, ηh( 􏼁 � ψy(ξ, η).

(19)

'e non-dimensional global and local coordinates have
the following relationship:

ξ �
rx

a
+

ac

a
ξh,

η �
ry

b
+

bc

b
ηh.

(20)

Considering equations (3), (10), (12), and (13) and by
plugging them into equation (19), we can get

􏽘

mh

i�1
Ahi ξh, ηh( 􏼁Bhi ξh, ηh( 􏼁Chi ξh, ηh( 􏼁Ωhi(t) � 􏽘

mh

i�1
Ahi ξh( 􏼁ahi ηh( 􏼁Bhi ξh( 􏼁bhi ηh( 􏼁Chi ξh( 􏼁chi ηh( 􏼁Ωhi(t)

� 􏽘
m

k�1
Ak(ξ, η)Bk(ξ, η)Ck(ξ, η)Ωk(t)

� 􏽘
m

k�1
Ak(ξ)ak(η)Bk(ξ)bk(η)Ck(ξ)ck(η)Ωk(t).

(21)

Multiplying equation (21) by
Ahj(ξh)ahj(ηh)Bhj(ξh)bhj(ηh)Chj(ξh)chj(ηh) and perform-
ing integration,

􏽘

mh

i�1
􏽚
1

0
􏽚
1

0
Ahi ξh( 􏼁ahi ηh( 􏼁Bhi ξh( 􏼁bhi ηh( 􏼁Chi ξh( 􏼁chi ηh( 􏼁Ahj ξh( 􏼁ahj ηh( 􏼁Bhj ξh( 􏼁bhj ηh( 􏼁Chj ξh( 􏼁chj ηh( 􏼁dξhdηhΩhj(t)

� 􏽘
m

k�1
􏽚
1

0
􏽚
1

0
Ahi ξh( 􏼁ahi ηh( 􏼁Bhi ξh( 􏼁bhi ηh( 􏼁Chi ξh( 􏼁chi ηh( 􏼁Ak(ξ)ak(η)Bk(ξ)bk(η)Ck(ξ)ck(η)dξhdηhΩk(t).

(22)

Using orthogonal property, equation (22) may be
expressed as eigenfunctions of beam

� 􏽘
m

k�1
􏽚
1

0
Ahi ξh( 􏼁Ak(ξ)dξh 􏽚

1

0
ahi ηh( 􏼁ak(η)dηh 􏽚

1

0
Bhi ξh( 􏼁Bk(ξ)dξh

􏽚
1

0
bhi ηh( 􏼁bk(η)dηh 􏽚

1

0
Chi ξh( 􏼁Ck(ξ)dξh 􏽚

1

0
chi ηh( 􏼁ck(η)dηhΩk(t)

� 􏽘
m

k�1
Th( 􏼁ikΩk(t), i � 1, 2, 3, 4 . . . mh.

(23)

If we write equation (23) as a matrix, we get
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Figure 1: Rectangular plate opening with cut-out.
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in which Th is the mh × m matrix for transforming coor-
dinates. Inserting equation (24) in to equations (15a) and
(15b), we can derive
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Kr �
D

b
2Kr,

whereMr � M − b
2
c􏼒 􏼓T

T
h MhTh,

(26a)

Kr � K −
1

bc
2􏼠 􏼡T

T
h KhTh, (26b)

in which bci � bci/b i � 1, 2, 3, . . . n.
Hence,

Kr − ω2
Mr􏽨 􏽩Λ � 0. (27)

From equation (23), ‘Th’ is the transformation matrix
because of the integral limits. In equation (25), the eigen-
value of the plate with cut-out can be derived. Equation (26)
is used to find the natural frequencies.

1.2. Free Vibrational Exploration of an Elliptical Plate Using
ICCM. In the previous section, ICCMwas used to evaluate a
rectangular plate with a rectangular cut, where the plate and
hole geometry were identical. In this section, the natural
frequencies of an elliptical plate with a cut-out are computed
using ICCM, with the hole and plate geometries modified.
An elliptical plate with a hole is assumed in the plane. 'e
semi-major axis “a” and semi-minor axis “b” are considered
in direction. 'e border of an elliptical plate is written as
ξ2 + η2 � 1.

'e strain energy and kinetic energy of an elliptical plate
is

Vp � 􏽚
1

ξ�0
􏽚

���
1−ξ2

√

η�0

1
α

zψx

zξ
+

zψy

zη
􏼠 􏼡

2

− 2(1 − μ)
1
α

zψx

zξ
zψy

zη
−
1
4

zψx

zη
+
1
α

zψy

zξ
􏼠 􏼡

2
⎡⎣ ⎤⎦

⎧⎨

⎩

+
6(1 − μ)κ

β2
ψx +

1
α

zw

zξ
􏼠 􏼡

2

+ ψy +
zw

zη
􏼠 􏼡

2
⎡⎣ ⎤⎦

⎫⎬

⎭abdξdη,

Tp � 􏽚
1

ξ−0
􏽚

���
1−ξ2

√

η−0
w
∗2

+
1
12
β2 ψ2

x + ψ2
y􏼐 􏼑􏼔 􏼕abdξdη.

(28)

Deflection and rotation terms in the energy expressions
(26a) and (26b) of an elliptical plate, to get the non-di-
mensional parameters, may be written in terms of acceptable
functions that are introduced in equation (3) of an elliptical
plate. Using relationship between local and global coordi-
nates of hole and plate in equation (20), transformation
matrix can be derived by applying an orthogonal property
on eigenfunctions. Reduced non-dimensional and elliptical
plate with hole stiffness matrices with hole are obtained from
equation (25). Equations (26a) and (26b) give the non-

dimensional eigenvalues of the plate with cut-out. Figure 2
shows the elliptical plate with a rectangular cut-out.

Table 1 shows the frequency parameter for a supported
elliptical plate a/b� 2 and h/b� 0.2 of various sizes. Tables 2
and 3 show various sizes of h/b� 0.4 and h/b� 0.6.

1.3. Numerical Study. 'e ICCM is validated with the
available literature for a rectangular plate with various aspect
ratios and a thickness of h/b� 0.2 in Table 4. 'e current

yc

ry

bc

ac rx

xc

Figure 2: Elliptical plate with a rectangular cut-out.
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ICCM results seem to match the available data with a high
degree of precision.

'e results of a square plate with a cut-out of various
sizes are validated with literature in Table 5.

From the Tables 4 and 5, it is clear that the improved
ICCM produces correct results when compared to tech-
niques such as RRM, FEM, and FDM, all of which have a

faster convergence time. As a result, the ICCM is used to find
the natural frequencies of a thick rectangular plate with
different aspect ratios and a cut-out elliptical plate by in-
creasing the size of hole, in foregoing tables. Graphs are
plotted in Figures 3 and 5 to show how these natural fre-
quencies are varying with increase in size of cut-out for a
rectangular plate and for an elliptical plate, respectively.

Table 1: 'e frequency parameter, ω � (ωb2/π2)
������
(ρh/D)

􏽰
, for a simply supported elliptical plate a/b � 2, h/b� 0.2 of various sizes,

ac/a � bc/b � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

ω 0 0.1 0.2 0.3 0.4 0.5 0.6
ω1 0.3253 0.3129 0.2959 0.2889 0.2949 0.3145 0.3399
ω2 0.5684 0.5662 0.5524 0.5312 0.5229 0.4819 0.4272
ω3 0.8997 0.8927 0.8539 0.6602 0.5459 0.5419 0.5966
ω4 1.0784 1.0427 0.9019 0.8999 0.8395 0.7653 0.7087
ω5 1.3124 1.3003 1.2652 1.2487 1.1474 1.1067 1.1334
ω6 1.4224 1.4026 1.3512 1.2959 1.3654 1.3101 1.2237

Table 2: 'e frequency parameter, ω � (ωb2/π2)
������
(ρh/D)

􏽰
, for a simply supported elliptical plate a/b � 2, h/b� 0.4 of various sizes,

ac/a � bc/b � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

ω 0 0.1 0.2 0.3 0.4 0.5 0.6
ω1 0.3043 0.2926 0.2761 0.2674 0.2677 0.2731 0.2636
ω2 0.5096 0.5062 0.4902 0.4679 0.4377 0.3699 0.2972
ω3 0.7724 0.7683 0.6883 0.5339 0.4562 0.4654 0.5002
ω4 0.9099 0.8634 0.7714 0.7505 0.6786 0.6036 0.5544
ω5 1.0776 1.0643 1.0387 1.0138 0.9216 0.8561 0.7968
ω6 1.1531 1.1379 1.0987 1.0647 1.0865 0.9821 0.8469

Table 3: 'e frequency parameter, ω � (ωb2/π2)
������
(ρh/D)

􏽰
, for a simply supported elliptical plate a/b � 2, h/b� 0.6 of various sizes,

ac/a � bc/b � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

ω 0 0.1 0.2 0.3 0.4 0.5 0.6
ω1 0.2785 0.2685 0.2531 0.2427 0.2371 0.2296 0.2017
ω2 0.4473 0.4431 0.4269 0.4058 0.3470 0.2823 0.2155
ω3 0.6528 0.6509 0.5541 0.4296 0.3935 0.3964 0.4160
ω4 0.7562 0.7066 0.6495 0.6171 0.5464 0.4831 0.4504
ω5 0.8802 0.8673 0.8499 0.8199 0.7345 0.6549 0.5630
ω6 0.9319 0.9212 0.8909 0.8715 0.8560 0.7395 0.5994

Table 4: Frequency parameter ω � (ωb2/π2)
�����
ρh/D

􏽰
of various aspect ratios having a plate thickness of h/b� 0.2.

Aspect ratio (a/b) 0.4 0.8 1 1.5 2
Present method 5.18318 2.20114 1.768 1.3164 1.15218
Ref. [1, 11] 5.1831 2.2011 1.7679 1.3164 1.1521
% error — — — — —

Table 5: Frequency parameter ω � (ωb2/π2)
�����
ρh/D

􏽰
of a square plate with a cut-out thickness of h� 0.2.

ac/a � bc/b � 0.2 ac/a � bc/b � 0.4 ac/a � bc/b � 0.6 a/3 × a/3

Present method 1.718 1.8355 2.324 5137.428 (rad/sec)
Ref. [18] 1.716 1.8345 2.323 —
Ref. [6] — — — 5136.5 (rad/sec)
% error 0.11% 0.054% 0.043% 0.02%
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Figure 3: Aspect ratio variation of nondimensional eigenvalues. (a) Aspect ratio a/b� 0.4 and h/b� 0.2. (b) Aspect ratio a/b� 0.8 and h/
b� 0.2. (c) Aspect ratio a/b� 1 and h/b� 0.2. (d) Aspect ratio a/b� 1.5 and h/b� 0.2. (e) Aspect ratio a/b� 2 and h/b� 0.2.
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Figure 4: Comparison of transverse displacement of various mode shapes of a rectangular plate (a� 2, b� 1, and h/b� 0.2) with a concentric
cut-out (ac/a � bc/b � 0.1) using MATLAB and ANSYS.
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cut-out (ac/a � bc/b � 0.1) using MATLAB and ANSYS.

Table 6: 'e frequency parameter, ω � (ωb2/π2)
������
(ρh/D)

􏽰
, for a simply supported rectangular plate with a/b � 0.4 and h/b� 0.2 with a

concentric cut-out of various sizes, ac/a � bc/b � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

ω 0 0.1 0.2 0.3 0.4 0..5 0.6
ω1 5.1831 5.0256 4.7675 4.5761 4.4598 4.3551 4.1113
ω2 6.7212 6.6799 6.5428 6.3699 5.7165 4.9671 4.3116
ω3 8.9138 8.8913 8.6299 6.7994 6.2705 6.3248 6.5839
ω4 11.4875 11.3366 8.8808 8.6475 8.0246 7.4310 7.2052
ω5 12.7040 11.5864 11.1545 11.4103 10.8954 9.6713 8.5177
ω6 13.6145 13.5469 13.2805 12.3054 11.8309 10.799 9.2534
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Table 7: 'e frequency parameter, ω � (ωb2/π2)
������
(ρh/D)

􏽰
, for a simply supported rectangular plate with a/b � 0.8 and h/b� 0.2 with a

concentric cut-out of various sizes, ac/a � bc/b � 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

ω 0 0.1 0.2 0.3 0.4 0.5 0.6
ω1 2.2011 2.1688 2.1314 2.1517 2.2574 2.4669 2.7971
ω2 4.2113 4.1600 3.9625 3.6882 3.4964 3.4614 3.4616
ω3 5.1831 5.0662 4.6087 4.0433 3.6548 3.4749 3.6022
ω4 6.7212 6.6538 6.5398 6.3630 5.7270 5.0472 4.6080
ω5 6.8703 6.8504 6.8794 6.5353 6.1591 6.0669 6.2075
ω6 8.8381 8.7715 8.3998 8.2281 8.0359 7.7668 7.4985

Table 8: Frequency parameter for supported elliptical plate with a/b � 1 and h/b� 0.2.

ω 0 0.1 0.2 0.3 0.4 0..5 0.6
ω1 1.7680 1.7446 1.7180 1.7402 1.8355 2.0222 2.3245
ω2 3.8667 3.8089 3.5668 3.2336 2.9938 2.9118 2.9903
ω3 3.8667 3.8093 3.5674 3.2342 2.9941 2.9121 2.9905
ω4 5.5892 5.5317 5.4308 5.2881 4.9846 4.3669 3.9942
ω5 6.6046 6.5418 6.3772 5.8040 5.1319 5.0782 5.2457
ω6 6.6046 6.6107 6.9262 7.4488 7.1699 6.7593 6.5139

Table 9: Frequency parameter for supported elliptical plate with a/b � 1.5 and h/b� 0.2.

ω 0 0.1 0.2 0.3 0.4 0.5 0.6
ω1 1.3164 1.2892 1.2549 1.2577 1.3146 1.4388 1.6507
ω2 2.3612 2.3441 2.2673 2.1496 2.0686 2.0764 2.1431
ω3 3.5119 3.4285 3.0505 2.5884 2.2852 2.1470 2.2043
ω4 3.8659 3.8465 3.8823 3.8363 3.5104 3.1620 2.9547
ω5 4.3406 4.2991 4.2203 4.0807 3.9096 3.8168 3.8947
ω6 5.5881 5.4895 5.2256 5.1161 5.0262 4.9138 4.8277

Table 10: Frequency parameter for supported elliptical plate with a/b � 2 and h/b� 0.2.

ω 0 0.1 0.2 0.3 0.4 0.5 0.6
ω1 1.1521 1.1167 1.0688 1.0528 1.0810 1.1622 1.3106
ω2 1.7680 1.7606 1.7244 1.6674 1.6338 1.6604 1.6913
ω3 2.7027 2.6848 2.7079 2.1736 1.8632 1.7208 1.7764
ω4 3.3858 3.2700 2.7181 2.7295 2.6171 2.4452 2.3393
ω5 3.8667 3.8222 3.7156 3.5897 3.3512 3.1934 3.1870
ω6 3.8667 3.8378 3.7652 3.7843 4.0480 4.0253 3.8016

Table 11: Various aspect ratios of plate.

Aspect ratio a/b h/b Cut-out size at which lowest ω is obtained
ac/a � bc/b �

% of ω reduced, when compared with a plate without cut-
out

0.4 0.2 0.6 20.6
0.8 0.2 0.2 3.16
1 0.2 0.2 2.82
1.5 0.2 0.2 4.67
2 0.2 0.3 8.61
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Eigenvectors were also plotted to observe the deflection in Z-
direction for each mode of vibration, and it is validated with
the mode shape obtained from ANSYS in Figures 4 and 6.

Graphs were plotted for a numerical value in
Tables 6–10, as a function of cut-out size.

Case 1. Rectangular plate of different aspect ratios with
concentric rectangular hole with increase in its size.

Case 2. An elliptical plate of aspect ratio (a/b� 2) of various
thickness having a concentric rectangular hole with increase
in its size.

2. Results and Discussion

'is paper delves at the first six natural frequencies of a
thick, rectangular, and elliptical plate. A cut-out is derived
using ICCM. Based on the various combinations of aspect
ratios and cut-out sizes, the derived numerical results were
plotted in Figures 3 and 5. 'e frequency occurs due to a
large hole, and maximum variation was observed compared
to a plate without a cut.'ese observations were tabulated as
follows so that the designers can change the natural fre-
quency of a structure up to maximum limit of scope simply
by introducing a cut-out. Figure 6 shows the comparison of
transverse displacement of various mode shapes of an el-
liptical plate.

2.1. Rectangular Plate with Cut-Out. 'e eigenvalue of a
rectangular plate with a hole is lower when compared to a
rectangular plate without a cut-out, as seen in the images.
For an aspect ratio of a/b� 0.4 and h/b� 0.2, the lowest
natural frequency is obtained with a cut-out of size
ac/a � bc/b � 0.6. 'e cut-out frequency is reduced by
20.6%. Similarly, rectangular plates with cut-out frequency
are increased. 'e combination of aspect ratios and cut-outs
are as shown in Table 11.

2.2. Elliptical Plate with Cut-Out. For an aspect ratio of a/
b� 2 and h/b� 0.2, the lowest natural frequency is obtained
with a cut-out of size ac/a � bc/b � 0.3. 'e frequency is
reduced by 11.18%when compared to other combinations of
thickness ratios and cut-outs.'e lowest natural frequency is
obtained as shown in Table 12.

'is information is useful to the designers to vary the
natural frequency of a structure, up to a maximum limit of
scope simply by introducing a cut-out.

3. Conclusions

Numerical results, plotted as curves in Figure 3, reveal that
as aspect ratio of the plate is increased, natural frequencies
were decreased due to increase in mass without a significant
increase in stiffness and the behavior of fundamental
natural frequency is consistent with the variation of size of
cut-out. It is also observed that in every aspect ratio, 2nd
and 3rd mode of frequencies can be made same by including
an appropriate size of cut-out. In the same manner, 4th and
5th mode of frequencies can also be made same in every
aspect ratio of plate. Aspect ratio a/b � 0.8 with h/b � 0.2 has
a high-frequency range that significantly increased the
mass compared to aspect ratio 1. Due to the change in
stiffness, the variation of frequencies exists that is smooth
in manner. From Figure 5, it is worth noting that increasing
the thickness ratio has no discernible influence on the
plate’s basic natural frequency. In every thickness ratio,
mode 3 natural frequency can be made equal to mode 2
natural frequency by introducing a cut-out of size nearer to
0.4, and hence by introducing a cut-out, structure can be
made to vibrate in different modes for the same value of
natural frequency. From the analysis, for the study of a
thick plate with cut-outs, modified ICCM is an excellent
numerical tool that converges to the solution faster than
other traditional approaches.
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Table 12: Various thickness ratios of plate.

Aspect ratio
(a/b)

h/b Cut-out size at which lowest ω is obtained
ac/a � bc/b

% of ω reduced, when compared with a plate without cut-
out

2 0.2 0.3 11.18
2 0.4 0.6 13.37
2 0.6 0.6 27.57
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