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We reported a general transition metal-free transformation to access C3-

carbamoylated 2H-indazoles via visible light-induced oxidative

decarboxylation coupling, in the presence of oxamic acids as the coupling

sources, 4CzIPN as the photocatalyst, and Cs2CO3 as the base. The great

application potential of this mild condition is highlighted by the late-stage

modification of drugs, N-terminal modification of peptides, and the good

antitumor activity of the novel desired product.
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Introduction

Nitrogen heterocycles are the essential structural elements widely ubiquitous in

pharmaceutical chemistry, (Vitaku et al., 2014; Bhutani et al., 2021; Ma et al., 2021a),

organic chemistry, (Chen et al., 2021; Darroudi et al., 2021; Jiang et al., 2021; Meng et al.,

2021; Qu et al., 2021; Wang and Wang, 2021; Chen and Xuan, 2022; Gao et al., 2022; Wu

et al., 2022; Zhang et al., 2022), and material chemistry (Huang and Yu, 2021). Among

these, 2H-indazole is one of the most important heterocycles, existing in various drugs

and bioactive molecules (Figure 1). The drug Niraparib with this scaffold is approved to

treat various tumors including advanced epithelial ovarian carcinoma and primary

peritoneal carcinoma. (Jones et al., 2009). The derivative Pazopanib has become the

first-line anti-advanced renal cell carcinoma via inhibiting the activity of vascular

endothelial growth factor receptor VEGFR. (Harris et al., 2008). The 3C-like protease

inhibitor S-217622 has entered into clinical trials and exhibits antiviral activity against the

coronavirus disease 2019 (COVID-19). (Unoh et al., 2022). Therefore, direct and site-

selective incorporation of diverse functional groups into 2H-indazole is of broad interest

in organic synthesis and the pharmaceutical industry.
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Recent decades have witnessed the impressive

achievement of direct C-H functionalization of

2H-indazoles via radical reactions. (Ghosh et al., 2020;

Wang et al., 2022a; Ghosh et al., 2022). The C3-

phosphonylation, (Singsardar et al., 2018), oxyalkylation,

(Singsardar et al., 2019), trifluoromethylation, (Murugan

et al., 2019; Wei et al., 2021), amination, (Neogi et al.,

2020; Sun et al., 2021a), alkoxylation, (Sun et al., 2021b),

arylation, (Aganda et al., 2019; Vidyacharan et al., 2019;

Saritha et al., 2021), alkylation, (Liu et al., 2020; Ma et al.,

2021b; Ma et al., 2022a), sulfonylation, (Kim et al., 2020;

Mahanty et al., 2020), and selenylation (Lin et al., 2022) of

2H-indazole were reported. However, the development of

sustainable strategies to introduce other pharmacophores

FIGURE 1
The drugs and bioactive molecules with 2H-indazoles.

Scheme 1
Synthetic approaches to C3-carbamoylation of 2H-indazoles.
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into 2H-indazole is still highly desirable. Amide groups

represent a fundamental class of functional groups widely

spread in most drugs, bioactive compounds, and peptides.

Compared with the traditional condensation method, the C-H

carbamoylation protocol provides the desired product without

prefunctionalization of the 2H-indazole and wasteful coupling

reagents. Nevertheless, the direct carbamoylation of

2H-indazole is rarely reported. Only recently, Lee’s group

reports an elegant carbamoylation reaction of 2H-indazole

using oxamic acid as a carbamoylating source under an

elevated temperature in the presence of the strong oxidant

(NH4)S2O8. (Bhat and Lee, 2021). However, the heating

process which is essential for the radical generation results

in the consumption of fossil fuels and the potential safety

hazard. Meanwhile, a great quantity of strong oxidant might

be detrimental to the sensitive functional groups.

TABLE 1 Optimization of reaction conditionsa.

Entry Photocatalyst (5 mol%) Base (2 equiv) Solvent Yield (%)

1 4CzIPN Cs2CO3 DMSO 56

2 Rhodamine B Cs2CO3 DMSO 0

3 Rhodamine 6G Cs2CO3 DMSO 0

4 Fluorescein Cs2CO3 DMSO 0

5 Na2-Eosin Y Cs2CO3 DMSO 0

6 Rose bengal Cs2CO3 DMSO 0

7 4CzIPN Na2CO3 DMSO 23

8 4CzIPN K2CO3 DMSO 17

9 4CzIPN LiOH DMSO 7

10 4CzIPN KOH DMSO 7

11 4CzIPN CsOH DMSO 32

12 4CzIPN Et3N DMSO 10

13 4CzIPN DIPEA DMSO 5

14 4CzIPN TMEDA DMSO 5

15 4CzIPN DABCO DMSO 6

16 4CzIPN Cs2CO3 DCM 22

17 4CzIPN Cs2CO3 MeCN 0

18 4CzIPN Cs2CO3 DMF 3

19 4CzIPN Cs2CO3 DMAC 13

20 4CzIPN Cs2CO3 NMP 32

21 4CzIPN Cs2CO3 THF 0

22 4CzIPN Cs2CO3 DMC 0

23 4CzIPN Cs2CO3 EG 0

24 4CzIPN Cs2CO3 H2O 0

25b 4CzIPN Cs2CO3 DMSO 74

26c 4CzIPN Cs2CO3 DMSO 91

27d 4CzIPN Cs2CO3 DMSO N. R

28c – Cs2CO3 DMSO N. R

29c 4CzIPN – DMSO N. R

aReaction conditions: 1a (0.2 mmol), 2a (2 equiv), catalyst (5 mol%), base (2 equiv), solvent (2 ml), rt, LED, 12 h under O2 atmosphere. Isolated yields. N. R. = no reaction.
b2a (2.5 equiv).
c2a (2.5 equiv), DMSO (3 ml).
dWithout light.
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Photocatalysis has emerged as a strong strategy to the

functionalization of the nitrogen heterocycles. (Liu et al.,

2017; Bagdi et al., 2020; Yuan et al., 2020; He et al., 2021;

Qi et al., 2021; Yi and He, 2021; Ma et al., 2022b; Wang et al.,

2022b; Ma et al., 2022c; Ma et al., 2022d; Ma et al., 2022e; Shi

et al., 2022; Xiang et al., 2022; Yan et al., 2022; Yang et al.,

2022; Zhu et al., 2022). The mild reaction condition and the

visible light-induced neutral redox cycle may solve the above

problems. Herein, we reported a visible light-mediated strong

oxidant-free protocol to access the carbamoylated

2H-indazoles under mild conditions and the late-stage

modification of drugs and peptides (Scheme 1).

Results and discussion

We chose 2-phenyl-2H-indazole (1a) and 2-(hexylamino)-2-

oxoacetic acid (2a) as model substrates to investigate the

decarboxylative C (sp2)-C (sp2) coupling reaction under

405 nm purple LED irradiation at room temperature.

Consistent with the expected, when 4CzIPN was used as the

photocatalyst and Cs2CO3 as the base, 1a and 2a could be

converted into the carbamoylated 2H-indazole 3a in 56% yield

under O2 atmosphere (Table 1, entry 1). Other transition metal-

free photocatalysts including Rhodamine B, Rhodamine 6G,

Fluorescein, Na2-Eosin Y, and Rose bengal were catalytically

inactive, with no product detected (Table 1, entries 2–6). Then, a

systematic survey of bases were conducted. The results indicated

that replacing Cs2CO3 with other inorganic bases (Na2CO3,

K2CO3, LiOH, KOH, CsOH) or organic bases (Et3N, DIPEA,

TMEDA, DABCO) decreases the formation of the desired

product (Table 1, entries 7–15). A range of solvents, such as,

DCM, MeCN, DMF, DMAC, NMP, THF, DMC, EG, and H2O

were screened (Table 1, entries 16–24). We found that DMSO is

superior in this process. Increasing the amount of 2a to 2.5 equiv.

improved the yield to 74% (Table 1, entry 25). Because the

Scheme 2
The scope of 2-aryl-2H-indazoles.
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insoluble residue existed in the reaction system, the volume of

DMSO was increased to 3 ml, along with the generation of

products in 91% yield (Table 1, entry 26). In the absence of

visible light or photocatalyst, no product was detected, which

confirms the photochemical nature of this method (Table 1,

entries 27–28). The reaction was completely inhibited in the

absence of Cs2CO3, indicating the essential role of the base in the

transformation (Table 1, entry 29). Taken together, the optimal

reaction conditions were established as follows: 1a (0.2 mmol), 2a

(2.5 equiv), 4CzIPN (5 mol%) as a catalyst, Cs2CO3 (2 equiv) as a

base, DMSO (3 ml) as a solvent, at 35°C under O2 atmosphere

and the irradiation of purple LED (λmax = 405 nm) for 12 h.

With the optimal conditions for the construction of

carbamoylated 2H-indazoles in hand, we further explored

the scope and generality of this reaction. Firstly, the scope

of aryl-2H-indazoles was examined. As shown in Scheme 2,

the substitutions on the phenyl group exhibited good

tolerance. The electron-donating groups (p-Me and m-Me)

could give the desired products 3b-3c in 72% and 64% yields,

respectively. The derivatives with electron-withdrawing

groups (p-Cl, m-Cl, p-Br, m-Br, and p-CF3) were also

effective substrates for this transformation, affording the

corresponding products 3d-3h in moderate to good yields.

Moreover, both the electron-donating substitution (5-OMe)

and the electron-withdrawing groups (5-F, 5-Cl, and 5-Br) on

the heteronucleus were well tolerant to the standard

conditions (3i-3l). The 2H-indazoles with disubstitution

were also evaluated to react with 2a under the optimal

condition, delivering the corresponding products 3m-3o in

49–59% yields.

Subsequently, we investigated the reactivity profile of a

variety of oxamic acids 2. As depicted in Scheme 3, oxamic

acids with different length alkyl chains reacted well with 1a,

affording the desired products 3p-3s in 58%–94% yields. The

Scheme 3
The scope of oxamic acids.
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benzyl group was also compatible with the method, giving the

product 3t in 42% yield. Both the secondary carbon (cyclopentyl

and cyclohexyl group) and tertiary carbon (2-phenylpropyl

group) substituted oxamic acids were successful in providing

the corresponding products 3u-3w in 80%–93% yields.

Meanwhile, the substrates containing primary aromatic

amines reacted well with 1a and produced the desired

products 3x-3aa in 54%–93% yields. The oxamic acids bearing

secondary amine also showed good reactiveness and could be

smoothly converted into the carbamoylated products 3ab and

3ac. Moreover, the oxamic acid without N-substitution was

tolerated to generate the desired product 3ad in 55% yield.

To evaluate the synthetic utility of this decarboxylative

carbamoylation transformation in the pharmaceutical

industry, the late-stage modification of drugs and natural

products was conducted. Delightfully, the non-sulfonylureas

antibiabetic drug Nateglinide, the lipid regulator Gemfibrozil,

and the antiviral drug amantadine could be successfully

connected with 2H-indazole, affording the desired products

4a-4c in 35%–76% yield (Scheme 4). The natural product

dehydroabietylamine was also suitable and gave the products

4d in 40% yield. The N-terminal modificated of peptides play an

important role in drug development and biochemical research.

Inspired by the good functional group tolerance of this

sustainable system, we then applied the photocatalytic method

in the modification of natural amino acids and peptides. As

shown in Scheme 4, the important amino acid in humans,

L-leucine, could be converted into the corresponding products

Scheme 4
The modification of drugs, natural products, and peptides.
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4e in 63% yield. What’s more, both the dipeptide

(L-phenylalanine-L-leucine) and the tripeptides (L-glycine-

L-proline-L-phenylalanine and L-glycine-L-phenylalanine-

L-leucine) reacted well with 2H-indazole, delivering the

coupling products 4f-4h in 40%–73% yields. The above results

indicate that this method could be used in the development of

peptidomimetic drugs and probe molecules.

To investigate the mechanism of this carbamoylation

reaction, a radical scavenge experiment was conducted

(Scheme 5). When 2,2,6,6-tetramethylpiperidinyl-1-oxyl

(TEMPO) was added to the standard conditions, the

reaction completely shuttled down. Moreover, the

carbamoyl radical trapped adduct 5 was detected by HRMS.

It indicates that this photocatalytic transformation occurred

via a radical pathway. Next, it was found that the yields of 3a

were decreased to 9% and 23% under N2 atmosphere or air

atmosphere, revealing that O2 is important in the

photocatalytic system.

We performed the Stern–Volmer luminescence-quenching

experiments by mixing the photocatalyst 4CzIPN with different

concentrations of 2H-indazole 1a, 2-(hexylamino)-2-oxoacetic

acid 2a, or the Cs salt of 2a (6). As depicted in Scheme 6A, the

fluorescence of photoredox catalyst 4CzIPN was quenched by the

addition of 1a and 6, and the linear relationships were observed

between I0/I and the concentration of 1a and 6 (see the

Supplementary Figure S2). The oxidative potential of 6 was

E1/2
ox = +0.9 V vs. SCE (Scheme 6B), indicating that the

excited state 4CzIPN (E1/2(P*/P
−) = +1.35 V vs. SCE) (Shang

et al., 2019) could be reductively quenched by 6 rather than 1a

(E1/2
ox = +1.4 V vs. SCE) (Ma et al., 2021b).

A plausible mechanism for this sustainable reaction was

proposed according to the above experimental results and the

previous reports (Scheme 7). Initially, 4CzIPN was activated into

the excited state 4CzIPN* under visible light irradiation. The

oxamic acid 2 was in situ converted into the Cs salt 6 in the

presence of the base Cs2CO3. 6 underwent the oxidization of

4CzIPN* via single electron transfer (SET) and fragmentation to

generate the key carbamoyl radical 7, along with the production of

the radical anion 4CzIPN•-. 4CzIPN•- was oxidated by O2 to

regenerate the ground state 4CzIPN and close the photoredox

cycle. On the other hand, radical 7 attacked the C3-position of 1a

to deliver intermediate 8. It underwent the 4CzIPN* mediated

Scheme 5
The radical scavenge experiment.

Scheme 6
The Stern–Volmer luminescence-quenching experiments
and CV experiment.
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oxidation and base mediated dehydrogenate to afford the desired

product 3.

To highlight this greener protocol in the pharmaceutical

industry, we evaluated the in vitro antitumor activity of these

carbamoylated 2H-indazole derivatives. As depicted in Scheme 8,

compound 4d possessed better antitumor activity against Ramos

cell than that of the FDA-approved drug 5-fluorouracil (5-FU,

IC50 = 36.0 × 10−6 mol/L), suggesting that this method could

provide novel chemical entries for anti-human B cell lymphoma

treatment.

Scheme 7
The plausible reaction mechanism.

Scheme 8
The antitumor activity of 4d against Ramos cell.
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Conclusion

In summary, we have developed a visible-light-promoted,

transition metal-free, strong oxidant-free method to achieve

the direct decarboxylation/carbamylation of 2-aryl-

2H-indazoles. This mild and general protocol is tolerant of

sensitive functional groups and sterically hindered groups. It

is highlighted by the successful application in the late-stage

modification of drugs, natural products, amino acids, and

peptides. Moreover, the good antitumor activity of compound

4d indicates that this strategy could be used in antitumor drug

development. Further activity studies and structural

modification are ongoing in our laboratory.
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