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The research in this paper mainly includes as follows: for the principle of action recognition based on the 3D diffusion model
convolutional neural network, the whole detection process is carried out from fine to coarse using a bottom-up approach; for
the human skeleton detection accuracy, a multibranch multistage cascaded CNN structure is proposed, and this network
structure enables the model to learn the relationship between the joints of the human body from the original image and
effectively predict the occluded parts, allowing simultaneous prediction of skeleton point positions and skeleton point
association information on the one hand, and refinement of the detection results in an iterative manner on the other. For the
combination problem of discrete skeleton points, it is proposed to take the limb parts formed between skeleton points as
information carriers, construct the skeleton point association information model using vector field, and consider it as a feature,
to obtain the relationship between different skeleton points by using the detection method. It is pointed out that the
reorganization problem of discrete skeleton points in multiperson scenes is an NP-Hard problem, which can be simplified by
decomposing it into a set of subproblems of bipartite graph matching, thus proposing a matching algorithm for discrete
skeleton points and optimizing it for the skeleton dislocation and algorithm problems of human occlusion. Compared with
traditional two-dimensional images, audio, video, and other multimedia data, the 3D diffusion model data describe the 3D
geometric morphological information of the target scene and are not affected by lighting changes, rotation, and scale
transformation of the target and thus can describe the realistic scene more comprehensively and realistically. With the
continuous updating of diffusion model acquisition equipment, the rapid development of 3D reconstruction technology, and
the continuous enhancement of computing power, the research on the application of 3D diffusion model in the detection and
extraction of a human skeleton in sports dance videos has become a hot direction in the field of computer vision and
computer graphics. Among them, the feature detection description and model alignment of 3D nonrigid models are a
fundamental problem with very important research value and significance and challenging at the same time, which has
received wide attention from the academic community.

1. Introduction 1.1. Describe the 3D Geometric Morphological Information of

the Target. Traditional 2D images describe the appearance of
With the rapid development of 3D Sensors, such as structured the external scene, losing 3D spatial information. Diffusion
light coding and LiDAR, the acquisition of 3D diffusion model =~ model data describe the 3D geometry of the target surface
data has become increasingly convenient and fast in recent ~ and thus can more directly inform computer vision tasks
years. Diffusion model data is mathematically abstractly such as feature extraction and matching.

described as a collection of three-dimensional coordinates of ;5 {7, affected by Changes in External Light. Most of the
points, which is essentially a discrete sampling of geometric ~ common 3D imaging sensors use active imaging, such as
information of the external world in a specific coordinate sys- structured light sensors and LiDAR. Therefore, the change
tem. Compared with traditional 2D images, 3D diffusion  of light in the external world does not affect the acquisition
model data have the following significant advantages. of diffusion model data.
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1.3. Less Influenced by Imaging Distance. The traditional 2D
image imaging process is susceptible to changes in imaging
distance, resulting in changes in the scale of the imaged tar-
get. The diffusion model data is a discrete sampling of the
3D geometry of the target surface in the external scene,
and the imaging distance does not change the scale of the
imaged target, but only affects the accuracy and resolution
of the acquired data, and thus is more suitable for computer
vision tasks.

In recent years, along with the rapid development of 3D
reconstruction technology, it has become increasingly con-
venient to obtain 3D models through 3D data [1]. Since
there are many nonrigid objects in the real world, the study
of 3D nonrigid models is receiving widespread attention and
has become a research hotspot in the fields of computer
vision and computer graphics.

The study of human skeleton detection in sports dance
video images has been a very popular research direction in
image processing and computer vision [2]. The human
skeleton information can greatly help people analyze the
behavior of the target human body in pictures or videos
and lay the foundation for further processing of images
and videos [3]. The human skeleton detection algorithm
divides the human skeleton into multiple joints, such as
head, shoulder, and wrist and then analyzes the position,
direction, and movement of each joint to obtain the human
skeleton information. The human skeleton is drawn to fur-
ther analyze the posture and behavior of the human body
to obtain the activity and motion information of the human
body in the image [4].

Applications related to human posture estimation are
based on the premise of obtaining a clear and accurate
human skeleton in the image, and inaccurate skeleton
extraction will lead to incorrect analysis of human behavior
and movements, with incalculable consequences [5]. For
example, in the field of sports dance, inaccurate skeleton
extraction may lead to incorrect analysis of action, which
may even endanger the lives of athletes or performers in
serious cases. Therefore, it is of great importance to improve
the accuracy of human skeleton detection. In recent years,
the rapid development of the hardware field makes the
computer’s computing power increase, increasingly excellent
human skeleton detection algorithms emerge, and the
human skeleton detection accuracy is continuously
improved. As the basis of human pose recognition, human
skeleton detection technology will play an increasingly
important role in increased fields.

2. Related Work

Since the 1970s, the study of geometric morphological infor-
mation of target 3D diffusion models has been receiving
attention, and a series of results have been achieved in the
1980s and 1990s. The detection of saliency regions for 3D
diffusion geometry models is a complex problem, especially
for 3D diffusion models with isometric transformations
[6]. In recent years, the problem has been intensively inves-
tigated in the fields of computer vision and computer
graphics. The literature [7] first started to address the prob-
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lem of 3D deformable model region detection by describing
it abstractly as finding the most stable component on the
model. To have invariance to isometric transformations,
the method uses diffusion geometry to derive weighting
functions and proposes two representations of mesh sur-
faces, namely, mesh vertex-based and edge-weighted graph
structures, respectively [8]. Experimental results are realized
that the edge-weighted graph structure-based representation
is more general than the vertex-weighted graph and exhibits
superior performance [9]. The algorithmic framework has
been extended to handle shapes with volumes. Inspired by
cognitive theory, the literature [10] considers saliency
regions as “key components” on the model and considers
that they contain rich and distinguishable local features.
According to this theory, saliency regions correspond to
parts of the model with high protrusions and can be detected
by a clustering process in geodesic space. However, this
method is an incomplete decomposition of the model and
many regions of saliency are not detected [11]. The method
based on diffusion geometry has achieved remarkable suc-
cess in the analysis of 3D nonrigid models due to the reflec-
tion of the model’s intrinsic properties [12]. The literature
[13] combined the eigenfunctions of the Laplace Beltrami
operator with homology consistency theory to generate a
hierarchical segmentation method for the model. The litera-
ture [14] first calculates the global signature of each point on
the model, then maps the model into its eigenspace, and
finally uses a clustering algorithm in that space to achieve
the segmentation of the model. All the above algorithms
use the eigenfunctions of the Laplace Beltrami operator for
model segmentation; however, the eigenfunctions are prone
to problems such as significant change or eigenvector
switching, especially when the differences between the corre-
sponding eigenvalues are small [15]. The literature [16]
introduces the idea of consensus clustering into this domain
to achieve stable segmentation. First, multiple clusters are
computed in the global point signature space to generate a
heterogeneous set of model partitions. The literature [17]
argues that a stable model segmentation can be obtained
by extracting statistical information from these segmenta-
tions. This method has the best current results in the case
of model data receiving various disturbances.

Human skeleton detection in images can be divided into
two directions: 2D human skeleton detection and 3D human
skeleton detection. 3D human skeleton detection is the pro-
cess of obtaining the 3D shape or coordinates of human
skeleton points by analyzing the images obtained from 3D
cameras such as Kinect.

3. Application of THE Three-Dimensional
Diffusion Model in the Detection and
Extraction of a Human Skeleton in Sports
Dance Videos

3.1. Principle of Action Recognition Based on THE 3D
Diffusion Model Convolutional Neural Network. The 3D dif-
fusion model neural network is one of the first deep learning
methods to achieve great success in the fields of image
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FiGURE 1: The traditional two-dimensional convolution process.

analysis, target detection, and so on. It applies trainable fil-
ters (trained by backpropagation algorithm), local domain
pooling operations (to prevent overfitting), etc. in the origi-
nal input to extract gradually complex and highly abstract
input features, and the network model can achieve very good
discriminative effects through long training with a large
amount of data [18]. And it also has lighting, background,
pose extraction invariance, and other characteristics, which
are very popular.

As an exemplary end-to-end network model, convolu-
tional neural networks can produce effects directly on the
original input, which makes the traditional manual extrac-
tion of features outdated. However, currently, such convolu-
tional neural networks are still only heavily used in fields
such as input recognition of 2D images, and Figure 1
illustrates the traditional 2D convolution process. To make
greater use of its power, some groups extended it to the 3D
domain, generating a new 3D diffusion model and applying
it to the subject of human action recognition, producing very
good results. Its main feature is that it is not only able to
extract features in space but also combines feature extraction
in the temporal dimension, using 3D convolution to capture
human motion information in consecutive frames.

The main difference between 3D convolution and 2D
convolution is the difference between the perceptual field
and the convolution kernel. 3D convolution takes the same
frame parts of multiple consecutive frames and forms a spe-
cial cube and then performs a convolution operation in the
cube using a 3D convolution kernel. This means that in a
multilayer convolution operation, the input feature map of
the next layer is related to the multiple video frames that
form the cube in the previous layer to capture information
in the temporal dimension of the video frames. As shown

in Figure 2, its input feature map consists of the same local
images from three adjacent video frames in the upper layer
together. Like 2D convolution, 3D convolution also requires
several different convolution kernels to extract different
feature information in the spatiotemporal features. As the
number of convolution layers increases, we can extract more
types of high-level abstract features from multiple combina-
tions of primary feature maps.

Suppose [k, by, -+, h;, b;] is a given training sample with
labels, a total of m, h, and b, are the output value of the net-
work, i.e., one prediction of the model for the input sample x
. The purpose of training the neural network is to make the
predicted value h,, b, as close as possible to the true value y.
The error between the two can be represented by the loss
function. For a single sample (x, y), the variance loss func-
tion can be expressed as

For the entire training sample set, the cost function is

A+1
2 Z(wi]')z’

.
J(W.b)= lim 2D J(wb) + 2)

where i is the number of network layers, and j is the
number of nodes in the jth layer. The loss function includes
both mean squared deviation and weight decay, and the
purpose of introducing the weight decay term is to prevent
overfitting during the training process. The loss function
represents the difference between the true value and the
predicted value, and the smaller the difference represents,
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FIGURE 2: The traditional 3D convolution process.

the more accurate prediction of the network. The final train-
ing goal of the neural network is to solve the weight param-
eter W and the bias parameter b such that the loss function
J(w, b) is minimized. The gradient descent algorithm (GDA)
is a common algorithm for finding the optimal solution of
parameters in neural networks, and its parameter iterative
update process is

W, = oy YD), ()

ob

where « is the learning rate, which indicates the magnitude
of each update of the parameters. The core of the gradient
descent algorithm is to derive the network parameters and
spread the gradient upward layer by layer. Taking a single
sample (x, y) as an example, its loss function J(w, b;x', y')
is biased concerning W and b as

—a Ly N i 1
BWijlj(w’b):Enﬁnm;](w’b;x’y)+(A_1)Wij' (5)

0, is obtained by calculating a weighted average of the
errors of the nodes at the (1+ 1)st level, it represents the
number of nodes at the Ith level. From Equations (6) and

7, the partial derivatives of the loss function J(w, b) concern-
ing each parameter are

oJ(w, b)
V t > b 5 X = 181+1 = 7
l.b3y) =0 S (©)

Vi J(w, b;x,y) =8l+1M +)tocijl. (7)
ob;;

In the traditional method of extracting a 3D skeleton
from a single depth map, the general steps are firstly extract-
ing the body features, secondly classifying the body features
by different parts, and finally locating the joint points to gen-
erate the 3D skeleton of the human body. Unlike 2D skele-
ton extraction, the depth map is better able to deal with
problems such as body self-occlusion because it contains
depth information, but it is still more challenging to accu-
rately predict the fixed positions of different joint points in
3D space. Extracting specific image features from the depth
map is an important part of the whole process. To be able
to shorten the computing time as much as possible, the
extracted image dimension should not be too large, and
the features should have strong representational characteris-
tics that can well distinguish different classes of samples.
Common depth map features somewhat features include
SIFT, SUREF, gradient features such as Canny operator, and
gradient histogram with direction, etc. In the literature, the



Advances in Mathematical Physics

authors creatively combined point features and gradient fea-
tures, and this method cannot only reflect the surrounding
information of the feature pixel points without losing the
depth of feature information.

The specific operation is similar to CNN convolution,
with a pixel point x in the depth map as the center, f,(p, x),
f4(¢,7), and x, y is the depth value at that point, then there
are 8-pixel points adjacent to it, representing 8 different
directions, with the horizontal to the right direction as the
reference, Ay denotes the angle between any direction vector
and its, for each vector pair ¢, and the feature calculation for-
mulas are

fopsx)=d, [ x— /\01 +d [ x— AGZ , (8)
¢ ? dp(x)) 7 dp(x)

Ay Ao
f¢(q’)’) =d, (}’— m) +d, <y— dq(;)) +A. (9)

This feature is not only computationally small but also
has displacement-invariant spatial characteristics, which
can be used to extract features from the images in the training
set.

To make the network order invariant for unordered 3D
data, Point Net uses simple symmetric functions to obtain
global features in 3D. For the asymmetric function, the
output value does not change with the order of the input
variables, e.g., the function g(x, y,z) =x+ y + z is symmet-
ric, and the final function value is the same regardless of
the order of the independent variables. The formula for
calculating the 3D global features in Point Net is

J({xp x5

X, }) = g(h(x) +h(xp)+-+h(x,)).  (10)

The commonly used activation functions are the Sigmod
function, ReLU function, Tanh function, etc. The activation
functions are mainly used to introduce nonlinear factors
into the neural network; otherwise, the neural network is just
a linear combination of inputs [19]. In this paper, we mainly
use the Sigmod activation function and the ReLU activation
function. The expression of the Sigmod function is shown in
Equation (11), which can map the input values between 0
and 1 and can be used in the attention mechanism for
weight assignment, and the Sigmod function is derivable
and can be optimized with the gradient backward iteration
algorithm. Its derivative is shown in Equation (12).

f(x) =min (x, 0), (11)

1
f(x)=min (x, 0){ . (12)

2

However, from Equations (8)-(12), the derivative
becomes smaller as x becomes larger and converges to 0 as
x tends to infinity. Therefore, when training with the back-
propagation algorithm, the gradient becomes smaller and

smaller as the network deepens, causing the gradient to
vanish.

The boundary area of the 3D CAD model described here
is the triangular mesh. The inertia tensor of the object is

A= (35) 5 (13)

The equation for the center of mass of an object is

2 (s
(%y,2) = lim - (; Alityi+z),  (14)

: 2 G+ Bity
(“’ﬁ”’)zk@mmlz( 3 > =

i=1

The rigid transformation of the 3D geometric model can
be represented by using a matrix, while the no-rigid trans-
formation of the model can only be described by point
matching; so, the 3D nonrigid model alignment is essentially
a combinatorial optimization problem with high complexity.
Meanwhile, in real scenarios, 3D geometric model data may
be subject to various disturbances, such as isometric trans-
formations, holes, small holes, scale transformations, local
scale transformations, resampling, noise, scattered grain
noise, and topological transformations, which requires the
alignment algorithm to have strong robustness.

3.2. Human Skeleton Detection Based on THE 3D Diffusion
Model Algorithm. Usually, if we can infer 3D skeleton infor-
mation from 2D skeleton information, it must be driven by
high dimensional knowledge, e.g., anthropometric, kine-
matic, and kinetic constraints. Some groups transformed
this problem into a regression problem by learning a regres-
sion mapping model for 3D poses by integrating spatiotem-
poral integration features in sequential pictures. Many
authors have converted this problem into a typical con-
strained optimization problem to minimize the main error
in mapping an unknown 3D pose to a 2D pose at an
unknown observation angle. This optimization problem is
subject to the corresponding application constraints and
sometimes requires the assumption that the 3D pose has a
better optimization state in the lower dimensional subspace,
but this optimization-based approach can be sensitive to ini-
tialization and local minima and often require expensive
constraint solvers [20]. With the rapid development of deep
learning, we are more pleased to find that many algorithmic
effects change qualitatively when the amount of data reaches
a certain level. Inspired by this data-driven architecture, we
can improve the constraints of previous algorithms by
changing them to a simple nonparametric encoding of
high-level constraints. This approach is implemented thanks
to the availability of a large sample of 3D skeleton informa-
tion dataset, and the whole algorithm flow is as follows:
given a 3D pose library, we generate many 2D projections
(from a virtual camera view) and build a paired (2D, 3D)
human pose library. The process of using a virtual camera
to obtain the 2D projections, which draws on the 3D skele-
ton extraction method based on a monocular camera, is
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achieved by linking the 3D skeleton, the 2D skeleton to the
original picture, and the depth information to the sparse
representation. With these paired (2D, 3D) data, and the
2D skeleton extraction results obtained from the pictures
by the general 2D pose evaluation algorithm, using the cor-
responding matching algorithm, we can invert the paired
items that are closest to the 2D samples from the paired
database and obtain their corresponding 3D skeleton data
information. Therefore, the whole algorithm process can be
briefly summarized into two parts: the first part extracts
the corresponding 2D skeleton from the image by deep
learning method, and the second part finds the correspond-
ing 3D skeleton data information from the 3D action data-

base by using the matching algorithm. The specific process
is shown in Figure 3.

Thus, we can shorten the time of the whole matching
process by reducing the matching range at each matching,
thus improving the efficiency of the whole matching algo-
rithm while still considering the accuracy rate. At the same
time, as the human body is in motion, there is a faster move-
ment, when the direct use of the above algorithm will lead to
a larger recognition error. Considerin, to ensure the reliabil-
ity of the algorithm operation, every L frame, we research
the whole sample space; that is, we can get a more accurate
3D pose. The 14 specific nodes after recognition are shown
in Figure 4.
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The bottom-up pipeline for 3D skeleton point detection
also consists of two parts: skeleton point detection and skel-
eton point clustering. It is a “fine to coarse” process, i.e., all
skeleton points in the image are first detected, and then the
detected skeleton points are clustered by some related strat-
egies to form individual by individual [21]. The difference is
that the skeleton point detection here needs to detect all
skeleton points of all categories in the image at once.

The bottom-up detection process is straightforward. It
detects the skeleton points only once for the whole image;
so, the running time is independent of the number of people
in the image. However, this method has a discrete point
aggregation process, which requires finding which person
all skeleton points belong to. This is an NP-Hard problem
for solving integer linear programming on a fully connected
graph, with an average processing time of several hours (e.g.,
Deepcut, which is a bottom-up approach, takes 50,000 sec-
onds to process a single image). Compared with the top-
down method, the bottom-up method is not affected by
the number of bodies in the image, has faster detection speed
and stronger robustness, and its detection results are supe-
rior to the top-down method if the relationship between
skeleton points can be effectively constructed, which is the
proposed detection method in this paper.

4. Experiments and Result Analysis

The experimental platform used in this paper is TensorFlow
1.6, and the training is performed with a single graphics
card, NVIDIA Tesla V100 (16G). The first stage subnetwork
uses a batch size of 16 and converges after 40 epochs for the
UBC3V dataset and 6000 epochs for the dataset provided in
this paper. The second stage subnetwork uses a batch size of
8 and converges after 30 epochs for the UBC3V dataset and
4000 epochs for the dataset provided in this paper. The ini-
tial learning rate is set to 0.001, and the learning rate
decreases to 90% of the original rate after every 5000 itera-
tions. In this paper, data augmentation is adopted during
training, 2048 points are randomly sampled from the human
3D model as the input of the network before each training,
and the 3D data are randomly rotated before the input,
where the rotation angle around the y-axis (vertical axis) is
randomly chosen from [-180°,180°], and the rotation angles
around the x-axis and y-axis are randomly chosen from
[-20°,20°]. For the UBC3V dataset, this paper conducts train-
ing, validation, and testing according to the training set, val-
idation set, and test set divided in advance by this dataset.
For the small-scale dataset provided in this paper, a five-
fold crossvalidation method is used in this paper to evaluate
the algorithm this paper. In the test, the human 3D model
containing 8192 points is randomly divided into 4 human
3D models containing 2048 points and then input to the first
stage subnetwork for disambiguation to obtain a nonambig-
uous human 3D model consisting of about 4000 points, and
it is randomly divided into 2 nonambiguous human 3D
structure groups containing 2048 points (by random repeti-
tive sampling to ensure the number of points). The node
prediction 3D model is then input to the second-stage sub-
network to obtain the node prediction 3D model. Finally,

the 3D human skeleton is obtained by filtering and aggregat-
ing the predicted 3D models.

The method in this paper takes the human body 3D
model as input; although it cannot process the depth image
directly, it can convert the depth image into point cloud
before processing; so, this section compares the method in
this paper with the traditional point cloud curve skeleton
extraction method and the human skeleton estimation
method based on the traditional method, respectively.

From the experimental results, the human skeleton
obtained by the LBC, L1, and MDCS algorithms is generally
correct for the human point cloud model with separate
limbs, but there are also a few missing branches, redundan-
cies, and broken skeletons. For the human pose with close
body parts, body contact, or limb crossing, the skeletons
extracted by LBC, L1, and MDCS algorithms contain more
errors. This is because these traditional point cloud skeleton
extraction methods are not able to perceive semantic infor-
mation, and when body parts are close or in contact, these
methods may ignore some human body structures or per-
ceive wrong structures; for example, the human arm natu-
rally drops down close to the body, when the traditional
methods cannot perceive the arm branches, resulting in the
missing arm in the extracted skeleton. In contrast, the deep
learning-based method proposed in this paper can perceive
the semantic information of body parts, and the correspond-
ing joint points are predicted for each body part; so, the
extracted skeleton is more accurate, where the semantic
information of joint points is represented by different colors.
The method in this paper can obtain a more accurate 3D
human skeleton for both simple and more complex human
body poses.

In addition, to verify the robustness of this method to
missing data, different algorithms are used to extract the
human skeleton on the point cloud data with missing points,
and the skeleton extraction results of different traditional
point cloud curve skeleton extraction algorithms and this
algorithm on the human point cloud with missing nonarti-
cular parts, partially missing joint parts and completely
missing joint parts. It can be seen that the skeleton extracted
by the three traditional algorithms will have the correspond-
ing branch missing or branch offset when the nonjoint part
is missing or the joint part is partially missing, but the
method in this paper can still get more accurate results
because the disambiguation strategy in the first stage of this
paper has removed the points far from the joint part, which
makes the data used in the second stage of subnetwork train-
ing. This makes the data used in the second stage subnet-
work training the human point cloud with a large number
of missing points in nonjoint areas. Therefore, if the missing
points occur in nonjoint areas, the impact on the method in
this paper is minimal. This is because there are multiple pre-
dicted values for each joint point, and even if the surface
points of a joint point are missing on one side, the surface
points on the other side will still shrink to the corresponding
joint point to obtain the predicted value for that joint point.
However, when all the points of a joint part are missing, the
skeleton extracted by the method in this paper will also show
branch missing.
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To reduce the difficulty of offset vector regression, this
paper decomposes the offset vector regression task into two
subtasks, unit vector regression, and vector modal length
regression. To verify the effectiveness of this strategy, direct
and indirect regressions are performed on the offset vectors,
respectively. Figure 5 shows the variation curve of Acc-1
with the number of training rounds (epoch) of the offset vec-
tor regression accuracy on the validation set of the hard-pose
subset of the UBC3V dataset. The strategy of decomposing
the offset vector regression task significantly improves the
accuracy of offset vector regression. The reason for the
unsatisfactory results of direct regression of offset vectors
mentioned in the literature is that the lengths of offset vec-
tors from surface points to joint points vary greatly from
one part to another, which makes the regression target have
a large variance, and offset vectors with larger lengths dom-
inate the training loss, resulting in a more difficult training.
The unit offset vectors have the same modal length; so, the
measures taken in this paper to regress the bit vectors and
vector modal lengths separately avoid the defects brought
by the direct regression of offset vectors and reduce the dif-
ficulty of offset vector regression.

We can shorten the time of the whole matching process
by reducing the matching range at each matching, thus
improving the efficiency of the whole matching algorithm
while still taking into account the accuracy rate. At the same
time, as the human body is in motion, there is a faster move-
ment, when the direct use of the above algorithm will lead to
a larger recognition error. All things considered, to ensure
the reliability of the algorithm operation, every L frame, we
research the whole sample space; that is, we can get a more
accurate 3D pose.

To verify the reliability and feasibility of the whole inter-
action system, we conduct experimental verification by two

indexes: accuracy and real-time. By comparing the response
time of the proposed interaction method with the traditional
point-of-view gaze interaction method, the reliability of the
whole interaction system is illustrated and because the
action recognition the new VR interaction method has its
advantages because the interaction method discards the
problems of fixed buttons and rigid interaction in the tradi-
tional interaction method. Since four common body move-
ments and their corresponding command operations were
proposed in the experimental design, the four body move-
ments were investigated separately, as shown in Figure 6.
Therefore, 50 interaction experiments were conducted for
each of the four body movements, and the number of suc-
cessful interactions and the average interaction time for each
action were recorded. We can see that the accuracy rate of all
the movements exceeded 70%, which shows the feasibility of
VR interaction with body movements, but we can see that
the accuracy rate of different movements varies greatly,
and the recognition accuracy is better for the movements
with larger amplitude and left-right expansion, while the
recognition accuracy is worse for the movements with a
smaller amplitude and front-back expansion, and the speed
and frequency of the switching between different move-
ments are lower. When switching between different actions,
the speed and frequency are not easy to be too fast,other-
wise, it will easily lead to possible misoperation or reduce
the accuracy of the command operation.

The 3D diffusion model human identification method
has a better effect on the detection of difficult joints such
as wrists, knees, and ankles. It is analyzed that this is because
the difficult joints such as wrist, knee, and ankle are prone to
occlusion and distortion, while the 3D diffusion model
human recognition approach uses the similarity between
global regions to assist in inference; so, it can improve the
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accuracy of these joints very well. Meanwhile, the average
PCKh curves of the conventional model network without
the 3D diffusion model human recognition approach (and
the multi-scale pyramidal network based on the attention
mechanism using the 3D diffusion model human recogni-
tion approach) are plotted, as shown in Figure 7.

Since the interaction system needs to pay attention to its
real-time nature, otherwise it has a great impact on the inter-
action experience and reduces the interaction efficiency, we
compared the average time of the VR interaction process
based on the 3D diftusion model human recognition action

with the traditional point-of-view gaze interaction process
time, and the experimental results are shown in Figure 8.
The time is the average time after 50 experimental mea-
surements, and the experimental results show that the recog-
nition time of the human skeleton recognition method based
on the 3D diffusion model is mostly shorter than that of the
recognition method using the point-of-view gaze system,
which illustrates the advantages of the 3D diffusion model
recognition method of the human skeleton proposed in this
paper. Moreover, because the point-of-view gaze interaction
system needs to arrange fixed operation buttons in VR
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space, it is extremely inconvenient to use and affect the
immersive experience of the whole VR space, while the
interaction method based on 3D diffusion model action rec-
ognition perfectly avoids these shortcomings and makes the
whole interaction process smoother and more efficient.

5. Conclusion

Thanks to the unique advantages of the 3D diffusion model
itself, the development of point cloud acquisition technol-
ogy, and the enhancement of hardware computing power,
the research on human skeleton detection and extraction
has become a new research hotspot in recent years. As a core
task in the field of computer vision and computer graphics,
the detection description and model alignment of key points
have made some research progress, but there are still a lot of
problems to be solved. In this paper, we propose a complete
set of keypoint detection, key point description, saliency
region detection, and model alignment algorithms for
human skeleton detection and extraction from local features.
This paper mainly does the following work: (1) proposes to
build a skeleton point detection model using an improved
bottom-up scheme, which first detects all the skeleton point
positions of the human body in the picture, and then reorga-
nizes individual instances according to the association infor-
mation, and the whole picture only needs to be entered once
from the prediction network, thus eliminating the impact of
uncertainty of the human body; (2) proposes to use the
existing skeleton point and (2) propose to use the existing
skeleton points to construct the association information
between the skeleton points as a new feature to be provided

to the CNN for training, so that the association information
between the skeleton points can be obtained as a detection
problem; and (3) use the multiscale equalization module to
equalize the features of different scales separately and
dynamically assign different attention weights to the features
of different scales according to the loss function when
detecting different joints, so that the features of different
scales can be used more. The features at different scales are
dynamically assigned different attention weights according
to the loss function when detecting different nodes so that
the features at different scales can be used more efficiently.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the University-Level Founda-
tion Project of Guilin University of Aerospace Technology:
Research on Design of the Way of Expression in Virtual
Space from the Perspective of Semiotics, No. XJ20KT22.



Advances in Mathematical Physics

References

(1]

(2]

(10]

(11]

(12]

(13]

(14]

(15]

L. Chen, N. Ma, P. Wang et al., “Survey of pedestrian action
recognition techniques for autonomous driving,” Tsinghua
Science and Technology, vol. 25, no. 4, pp. 458-470, 2020.

Z. Liu, Z. Lin, X. Wei, and S. C. Chan, “A new model-based
method for multi-view human body tracking and its applica-
tion to view transfer in image-based rendering,” IEEE Transac-
tions on Multimedia, vol. 20, no. 6, pp. 1321-1334, 2018.

H. Rahmani, A. Mian, and M. Shah, “Learning a deep model
for human action recognition from novel viewpoints,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 40, no. 3, pp. 667-681, 2018.

A. Nadeem, A. Jalal, and K. Kim, “Automatic human posture
estimation for sport activity recognition with robust body
parts detection and entropy markov model,” Multimedia Tools
and Applications, vol. 80, no. 14, pp. 21465-21498, 2021.

P. Pareek and A. Thakkar, “A survey on video-based human
action recognition: recent updates, datasets, challenges, and
applications,” Artificial Intelligence Review, vol. 54, no. 3,
pp. 2259-2322, 2021.

W. Yang, L. Qingtang, H. Haoyi et al., “Personal active chore-
ographer: improving the performance of the Tujia hand-
waving dance,” IEEE Consumer Electronics Magazine, vol. 7,
no. 4, pp. 15-25, 2018.

M. Ullah, M. Mudassar Yamin, A. Mohammed, S. Daud Khan,
H. Ullah, and F. Alaya Cheikh, “Attention-based LSTM net-
work for action recognition in sports,” Electronic Imaging,
vol. 2021, no. 6, pp. 302-1-302-6, 2021.

J. S. Im and J. H. Kim, “A quantification method of human
body motion similarity using dynamic time warping for key-
points extracted from video streams,” Journal of IKEEE,
vol. 24, no. 4, pp. 1109-1116, 2020.

S. K. Yadav, A. Singh, A. Gupta, and J. L. Raheja, “Real-time
yoga recognition using deep learning,” Neural Computing
and Applications, vol. 31, no. 12, pp. 9349-9361, 2019.

N. T. Thanh, L. V. Hung, and P. T. Cong, “An evaluation of
pose estimation in video of traditional martial arts presenta-
tion,” Journal of Research and Development on Information
and Communication Technology, vol. 2019, no. 2, pp. 114-
126, 2019.

O. AlShorman, B. Alshorman, and M. S. Masadeh, “A review
of physical human activity recognition chain using sensors,”
Indonesian Journal of Electrical Engineering and Informatics
(IJEEI), vol. 8, no. 3, pp. 560-573, 2020.

H. T. Chen, Y. Z. He, and C. C. Hsu, “Computer-assisted yoga
training system,” Multimedia Tools and Applications, vol. 77,
no. 18, pp. 23969-23991, 2018.

T. Singh and D. K. Vishwakarma, “Video benchmarks of
human action datasets: a review,” Artificial Intelligence Review,
vol. 52, no. 2, pp. 1107-1154, 2019.

H. Hegazy, A. Nabil, M. Abdelsalam et al., “Usability study of a
comprehensive table tennis AR-based training system with the
focus on players' strokes,” Journal of Ubiquitous Systems &
Pervasive Networks, vol. 13, no. 1, pp. 1-9, 2020.

A. Sharif, M. A. Khan, K. Javed et al., “Intelligent human action
recognition: a framework of optimal features selection based
on Euclidean distance and strong correlation,” Journal of Con-
trol Engineering and Applied Informatics, vol. 21, no. 3, pp. 3—
11, 2019.

(16]

(17]

(18]

(19]

(20]

(21]

11

X.D. Li, Y. L. Wang, Y. He, and G. Q. Zhu, “Research on the
algorithm of human single joint point repair based on Kinect,”
Techniques of Automation & Applications, vol. 35, no. 4,
pp. 96-98, 2016.

P. Girdhar, “Vision based human activity recognition: a com-
prehensive review of methods & techniques,” Turkish Journal
of Computer and Mathematics Education (TURCOMAT),
vol. 12, no. 10, pp. 7383-7394, 2021.

M. Sakamoto, T. Shinoda, K. Sakoma, T. Ishizu, A. Takei, and
T. Ito, “Interactive projection mapping using human detection
by machine learning,” Journal of Advances in Artificial Life
Robotics, vol. 1, no. 1, pp. 85-89, 2020.

N. Eichler, H. Hel-Or, I. Shimshoni, D. Itah, B. Gross, and
S. Raz, “3D motion capture system for assessing patient
motion during Fugl-Meyer stroke rehabilitation testing,” IET
Computer Vision, vol. 12, no. 7, pp. 963-975, 2018.

T.T.Nguyen, V. H.le, D. L. Duong, T. C. Pham, and D. le, “3D
human pose estimation in Vietnamese traditional martial art
videos,” Journal of Advanced Engineering and Computation,
vol. 3, no. 3, pp. 471-491, 2019.

H. Wang and L. Wang, “Beyond joints: learning representa-
tions from primitive geometries for skeleton-based action rec-
ognition and detection,” IEEE Transactions on Image
Processing, vol. 27, no. 9, pp. 4382-4394, 2018.



	Three-Dimensional Diffusion Model in Sports Dance Video Human Skeleton Detection and Extraction
	1. Introduction
	1.1. Describe the 3D Geometric Morphological Information of the Target
	1.2. Unaffected by Changes in External Light
	1.3. Less Influenced by Imaging Distance

	2. Related Work
	3. Application of THE Three-Dimensional Diffusion Model in the Detection and Extraction of a Human Skeleton in Sports Dance Videos
	3.1. Principle of Action Recognition Based on THE 3D Diffusion Model Convolutional Neural Network
	3.2. Human Skeleton Detection Based on THE 3D Diffusion Model Algorithm

	4. Experiments and Result Analysis
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

