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Abstract 
This paper considers practical, high-order methods for the iterative location 
of the roots of nonlinear equations, one at a time. Special attention is being 
paid to algorithms also applicable to multiple roots of initially known and 
unknown multiplicity. Efficient methods are presented in this note for the eva- 
luation of the multiplicity index of the root being sought. Also reviewed here 
are super-linear and super-cubic methods that converge contrarily or alterna-
tingly, enabling us, not only to approach the root briskly and confidently but 
also to actually bound and bracket it as we progress. 
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1. Introduction 

This note is mainly concerned with the numerical approximations of function 
roots by various iterative methods [1]-[8]. A multiplicity greater than one of a 
function root may greatly impede the convergence method used to iteratively 
locate it. The multiplicity index m of the sought root is often unknown before 
hand. It may well be a latent property of the root, not cursorily revealed, nor 
readily available. In this note, we examine and assess computational procedures 
to evaluate the multiplicity index m of the iteratively approached root. We fur-
ther constructively review the iterative methods [9] [10] [11] for approaching a 
root of a known or unknown multiplicity. Then we suggest several other useful, 
alternatingly converging and contrarily converging iterative methods to bound 
the sought root.  
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2. The Taylor Representation of an Osculating Function  

Approximation by polynomials is fundamental to numerical analysis. Taylor’s 
theorem plays in a crucial role. 

The monomial power function  

( ) , 1nf x x n= ≥                          (1) 

is ever smaller, as n is ever bigger, near 0x = . Function ( )f x  in Equation (1) 
is actually such that  

( ) ( ) ( ) ( ) ( ) ( ) ( )10 0 0 0 0, 0 0.n nf f f f f−′ ′′= = = = = ≠           (2) 

Such function is said to be osculating of degree n. 
In its most concise form, Taylor’s theorem generalizes this claim to any diffe-

rential function. It asserts that if Equation (2) holds true for any other differen-
tial function ( )f x , then this function is expressible as  

( ) ( ) ( ) ( ) ( ) ( )1 1or , 0
! !

n nn nf x x f f x f x x
n n

ξ ξ ξ = = < < 
 

        (3) 

for x to the right of zero. Equation (3) is said to be the Taylor form of osculating 
function ( )f x  of Equation (2). Power n is said to be the degree of osculation 
of ( )f x  at, here, 0x = . 

We take in Equation (3)  

( ) 1, 0n nf x Ax Bx A+= + ≠                      (4) 

and obtain from it the asymptotic form of intermediate value ξ   

1
x

n
ξ =

+
                            (5) 

for x close to zero. 
If the point of osculation of function ( )f x  is generally a, then  

1lim .
1x a

a
x a n
ξ

+→

−
=

− +
                        (6) 

See also [12] [13]. 
To observe a higher order approximation to ξ  we start with  

( ) ( ) ( ) ( )2 3 2 32 3 4 .f x x P Qx Rx Sx xf x P Q R Sξ ξ ξ ξ′= + + + = = + + +     (7) 

We presume that  
2Ax Bxξ = +                           (8) 

and readily have from Equation (7) that  

21 1 .
2 8

Rx x
Q

ξ = +                         (9) 

3. Repeated Taylor Expansion Examples  

Example one. We start with  

( ) ( )2
0 1 2exr x c c x c x= − + +                    (10) 
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and fix parameters 0 1 2, ,c c c  so as to have the osculation  

( ) ( ) ( ) ( ) 00 0, 0 0, 0 0, 0 e 1 0r r r r′ ′′ ′′′= = = = = ≠            (11) 

and then  

( )21e 1 .
2

x x x r x= + + +                       (12) 

In view of Equation (11) the Taylor form of ( )r x  is here  

( ) ( ) ( )3 31 1or e , 0
3! 3!

r x x r r x x xξξ ξ′′′= = < <            (13) 

or further, in view of Equation (11), approximately, if x is small  

( ) 3 2 21 1 11 for e 1 .
6 2 2

r x x ξξ ξ ξ ξ = + + = + + 
 

           (14) 

Here  

1
4

xξ =                            (15) 

Nearly. We assemble Equations (12), (13) and (14) to gain the better poly-
nomial approximation  

2 3 21 1 1e 1 1
2 6 2

x x x x ξ ξ = + + + + + 
 

               (16) 

becoming with ξ  of Equation (15)  

( ) ( )2 3 4 5 51 1 1 1 1e 1 , 0 .
2 6 24 192 320

x x x x x x r x r x x= + + + + + + =     (17) 

Example two. We write  

( ) ( ) ( )0 1ln 1r x x c c x= + − +                    (18) 

and fix parameters 0 1,c c  so that  

( ) ( ) ( )0 0, 0 0, 0 1 0r r r′ ′′= = = − ≠                 (19) 

and have the osculating remainder or residual  

( ) ( )ln 1 .r x x x= + −                      (20) 

The Taylor form of this osculating residual ( )r x  is then  

( ) ( ) ( ) ( ) 22 21 1or 1 .
2 2

r x x r r x xξ ξ −′′= = − +             (21) 

Here 3xξ = , nearly, with which we have  

( ) ( ) ( )
2

49 1ln 1 , 0 .
2 3 12

xx x r x r x x
x

 + = − + = − + 


        (22) 

Example three. We start with  

( ) ( )0 11r x x c c x= + − +                   (23) 

and fix parameters 0c  and 1c  so as to have both ( )0 0r =  and ( )0 0r′ = ,  

( ) ( ) ( ) ( )1 11 1 , 0 0, 0 0, 0 0.
2 4

r x x x r r r′ ′′= + − − = = = − ≠       (24) 
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The Taylor form of osculating function ( )r x  in the above Equation (24) is  

( ) ( )21 , 0
2

r x x r xξ ξ′′= < <                     (25) 

and we write  

( ) ( )

( )

3
2 2

22

1 1 11 1 1 1
2 2 8
1 11 1 1 .
2 8

x x r x x x

x x

ξ

ξ ξ

−

−

+ = + + = + − +

= + − + +
            (26) 

Returning to the approximation  

1 11 1 ,
2 3

xξ ξ ξ+ = + =                      (27) 

we finally reach  

( )
( ) ( )2 4

2

1 3 6 131 1 , 0 .
2 16 11523

xx x x r x r x x
x
+

+ = + − + = −
+


      (28) 

Example four. The osculating-approximating function need not be a poly-
nomial. Indeed, we write  

( ) ( )1 2e cos sinxr x c x c x= − +                   (29) 

and fix parameters 1 2,c c  so as to have ( )0 0r = , ( )0 0r′ = , ( )0 2 0r′′ = ≠ . 
The Taylor form of function ( )r x  is here  

( ) ( ) ( )2 21 1 1e cos sin ,
2 2 3

r x x r x xξξ ξ ξ ξ′′= = + + =          (30) 

and  

( ) ( ) 2e cos sin , 0 .x x x r x r x x= + + =               (31) 

4. Estimation of the Root Multiplicity Index  

Assuming that the power series expansion of function ( )f x , whose root a we 
are seeking to iteratively locate, is of the form  

( ) ( ) ( ) ( )( )2 , 1mf x x a A B x a C x a m= − + − + − + ≥         (32) 

we obtain from it the first-order estimate for the root multiplicity index m  

( ) ( )( )
2

2
2 2

1 2 ,f f f f Bu x a O x a u f f
f m Af m

′ ′ ′′  −′ ′= = = − − + − = ′ ′ 
   (33) 

and  

( )2

1 , .
2

u B O x a u f f
Au

′′
′− = + − =

′
                 (34) 

Then, the second-order estimation  

( ) ( ) ( )( )
2

2 32
2 4 2

1 21 62 , .
B m ACm

u uu x a O x a u f f
m m A

+ +
′ ′′ ′− = + − − + − =  (35) 
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For example, for 2 3 , 2f x x m= + = , we compute, at 0.1x = , the first-order 
and second-order approximations  

2.18 and 2.03m m= =                      (36) 

respectively. For 0.1x =  and 0.01x =  we compute from the above Equation 
(34)  

0.78 and 0.9753B B
A A
= =                     (37) 

respectively, both for 1B A = . 
We have also that, whatever k  

( )
( ) ( )0 0

0
0

1
mf x ku k O x a

f x m
−  = − + − 

 
               (38) 

from which we have for 1k =   

( )
( )

0 0

0

1ln ln 1 , .
f x ku

r m r
m f x

− = − = 
 

               (39) 

By the Padé rational approximation  

( ) ( ) ( ) 46 1ln 1 , 0
4 6 36
xx x r x r x x
x
+

+ = + = −
+

            (40) 

we have the first-order estimate  

( )
( )
0 0 0

0
0 0

1 1 4ln , , .
6 1 ln

f x u frm r u
r f x f

−+
= = =

′+
             (41) 

For example, for ( ) 3 4f x x x= +  we obtain from the above Equation (41), for 
{ }1.0,0.5,0.1x =  the corresponding root multiplicity index approximations: 
{ }3.72,3.51,3.14m =  for the exact 3m = . 

We notice that, whatever m, root a of u f f ′=  is isolated, namely always of 
multiplicity 1m = . Indeed  

( ) ( ) ( )( )2 3
2

1 1 .f Bu x a x a O x a
f m Am

= = − − − + −
′

          (42) 

5. Second Order Iterative Methods  

Our prevailing task is, at first, to stepwise and steadily, approach isolated root a 
of function ( )f x , ( ) 0f a = , ( ) 0f a′ ≠ . Being at point 0x x= , ( )0 0f x ≠ , 
we write the Taylor expansion  

( ) ( ) ( )0 0 0 0,f x x f x xf x x xδ δ ξ ξ δ′+ = + < < +             (43) 

and readily obtain from it, by the linearization ( )0 0f x xδ+ = , 0xξ = , the 
eminent Newton method  

( ) ( )0
1 0 0 0 0 0 0 0 0 0

0

, , , , .
f

x x x x u x u u f f x f f x
f

δ δ ′ ′= + = − = − = = =
′

   (44) 

The Newton method is a quadratic iterative method to an isolated root  
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( ) ( )( )2 3
1 0 0

1
2

fx a x a O x a
f
′′ 

− = − + − ′ 
               (45) 

where ( ) ( )0,f f a f f a′ ′ ′′ ′′= ≠ = < ∞ . 

6. Rectification for a Multiple Root by Undetermined  
Coefficients  

We recast Newton’s method in the open-ended form  

0
1 0 0

0

,
f

x x Pu u
f

= − =
′

                        (46) 

with the undetermined coefficient P, and have by Equation (32) that at a root of 
multiplicity 1m ≥   

( ) ( ) ( )( )2 3
1 0 0 021 .P P Bx a x a x a O x a

m Am
 − = − − + − + − 
 

        (47) 

Quadratic convergence is restored to the method, as is well known, with 
P m= . In the equation above, A and B are the coefficients in the power series 
expansion of ( )f x  in Equation (32). But, for this, we need to know in advance 
the multiplicity index m of root a. 

To have a quadratic method not needing the a-priori knowledge of multiplic-
ity index m of the searched root we take the m approximation of Equation (33) 
and obtain, the quadratic for any m, method  

0
1 0 02

0 0 0

f
x x f

f f f
′

= −
′ ′′−

                        (48) 

Method (48) is also obtained by applying Newton’s method to u f f ′= . See 
Equation (42). 

The advantage of method (48) is that it is quadratic; its drawback is that it re-
quires f ′′ . 

For example, for ( )f x   

( )mf x A Bx= +                           (49) 

we have by method (48) that  

( )
2

1 02 2 2
0 02 1

ABx x
A m ABmx B x m

= −
+ + +

                (50) 

for root 0a =  of any multiplicity index m. 

7. Two-Step Method  

To avoid the computation of f ′′  in the modified Newton method (48), we 
suggest the two-step method  

0 1 0 01
1 0 0 0 0 1 1 0 2 1 1 1

0 1 1 0 0 1

, , , , .
f x x ufx x m u u u m m x x m u
f f u u u u

−
= − = = = = = −

′ ′ − −
 (51) 

To observe its working we apply the method to the trial function ( )f x  of 
Equation (49) and have for the two-step method (51)  
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( )20
1 0 0

2m mBm m x O x
A m

−
= + +                  (52) 

and then  

( )2 30
2 0 02 .

m mBx x O x
A m

−
= +                    (53) 

8. Super-Linear Method  

With ( )1 , 0P m k k= − <  the modified Newton’s method of Equation (46) be-
comes super-linear and ultimately of alternating convergence [8]. For example, 
for ( ) 2 3f x x x= + , 2m = , 1 8k = − , we generate, starting with 0 1x =  the 
sequence  

{ }1 3 4 4 5 6
1 1,1.0 10 , 7.6 10 ,9.8 10 , 1.2 10 ,1.5 10 , 1.9 10 .x − − − − − −= × − × × − × × − ×  (54) 

9. Third Order Iterative Methods-and Higher  

We propose to replace now 0xξ =  in Newton’s method by the better  

0 1 0
0 0

0

1 ,
2 2

x x f
x x x u

f
ξ δ δ

+
= = + = − = −

′
              (55) 

to have the mid-point method  

( )0 0
2 0 0

0
0

,
1
2

f x f
x x x u

ff x x
δ

δ
= − = − = −

′ ′ + 
 

             (56) 

which now rises in order to become cubic  

( ) ( )( )
2

3 4
2 0 02

1
24

ff f fx a x a O x a
f

 ′′ ′ ′′′−
− = − + − ′ 

          (57) 

still with no need for ( )0f x′′ . See also Traub [1] page 164 Equations (8-12). 
The linearization  

( ) ( ) ( )
( )

0 0
0 0 0 0

0 0

1 1 , ,
2 2

f x f
f x x f x x f x x u

f x f
δ δ ξ ξ δ ′ ′ ′′+ = + = = − = − = −  ′ ′ 

 (58) 

reproduces out of Equation (56) the classical method of Halley  

( )

0

0 0
1 0 0 0 0 0 02

0 0 0 0 0
0 0 0

0 0

1
det

0 2 2 1
12 1det 22

f
f f

x x f x f x u
f f f f f f f u
f f

− 
 ′ ′ = + = − = −

′ ′ ′′−  ′′ ′− ′′ ′ 

 (59) 

which is likewise cubic  

( ) ( )( )
2

3 4
1 0 02

1 3 2
12

f f fx a x a O x a
f

 ′′ ′ ′′′−
− = − + − ′ 

           (60) 

but requires the, possibly costly, second derivative ( )f x′′  of ( )f x . 
Power series expansion turns the rational Halley’s method into a polynomial 

in 0u  method  
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20 0
1 0 0 0 0

0 0

,
2
f f

x x u u u
f f
′′

= − − =
′ ′

                    (61) 

which is still cubic  

( ) ( )( )
2

3 4
1 0 02

3
6

f f fx a x a O x a
f

′′ ′ ′′′−
− = − + −

′
             (62) 

provided that ( ) 0f f a′ ′= ≠ . 
Moreover,  

2 30 0 0
1 0 0 0 0 0

0 0 0

,
2 3
f f f

x x u u u u
f f f
′′ ′′′

= − − − =
′ ′ ′

               (63) 

is quartic  

( ) ( )( )
3 2

4 5
1 0 03

2
8

f f f f f fx a x a O x a
f

′′ ′ ′′ ′′′ ′ ′′′′− + +
− = − + −

′
 

provided that ( ) 0f a′ ≠ . 
We generalize the method in Equation (63) as  

2 30 0 0
1 0 0 0 0 0

0 0 0

,
2 3
f f f

x x Pu Q u R u u
f f f
′′ ′′′

= − − − =
′ ′ ′

            (65) 

and recover a one-sided cubic convergence method to a root, even of multiplici-
ty m, for  

( )2 3 31 14 , , ,
3 2

P m m Q m R m= − = = −               (66) 

( ) ( )( )
2

3 4
1 0 02

2 .Bx a x a O x a
Am

 − = − + − 
 

            (67) 

10. Correction of Halley’s Method for Multiple Roots  

We rewrite Halley’s method of Equation (59) with the open coefficients P and Q 
as  

0
1 0 02

0 0 0

Pf
x x f

Qf f f
′

= −
′ ′′−

                    (68) 

and determine by power series expansion that if (See also [11])  

12, 1P Q
m

= = +                        (69) 

then convergence remains cubic for a root of any known multiplicity 1m ≥   

( ) ( ) ( )( )
2

3 4
1 0 02 2

1 2
.

2
m B mAC

x a x a O x a
m A

+ −
− = − + −          (70) 

11. A Third-Order, One-Sided, Chord Method  

Having secured  

( ) ( ) ( )0
0 0 0 0 0 1 0 0 0 1 1

0

, , , , ,
f

x f f x f f x x x u u f f x
f

′ ′= = = − = =
′

   (71) 
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we pass through the two points ( ) ( )0 0 1 1, , ,x f x f  the chord, or secant, line  

( ) 1 0 1 0 0 1

1 0 1 0

, , .
f f x f x f

g x Px Q P Q
x x x x
− −

= + = =
− −

           (72) 

We take the root of ( ) 0g x = , as the next 2x , and have  

( ) ( )2 1
2 0 0 2 0 0 2 0 0

0

1 or 1 or 1 ,
1

fx x u x x r u x x r r u r
r f

= − = − + = − + + =
−

 (73) 

which are, all three, cubic,  

( ) ( )
2 2

3 3
2 0 2 0

1 1, ,
4 2

f fx a x a x a x a
f f
′′ ′′   

− = − − = −   ′ ′   
 

( ) ( )( )
2

3 3
2 0 0

1
4

fx a x a O x a
f
′′ 

− = − + − ′ 
             (74) 

respectively. See also Traub [1] page 180 Equations (8-55). 
Convergence of this method is one sided, namely, if 0 0x a− > , then also 

2 0x a− > , and if 0 0x a− < , then also 2 0x a− < . 
For example, for ( ) 2f x x x= +  we obtain by the method of the first Equa-

tion (73) the two oppositely converging sequences  

2 2
1 1 1 1 1 1, , and , ,
6 126 1953126 4 28 1953124

x x   = − − − =   
   

      (75) 

by which root 0a =  is bounded, or bracketed, as  

1 1 .
1953126 1953124

a−
< <                    (76) 

12. Quartic and Quintic Methods  

Once 2x  is computed by Equation (73), just one additional computation of 
( )f x  makes the pseudo-Newton’s method  

( )
( )

( ) ( )2 2 1 0 1
3 2 2 0

2 1 0 0

, 1 ,
f x f x f f fx x x A r f r
g x A x x f

− ′= − = − = = − =
′ −

     (77) 

for ( )g x  in Equation (72), quartic  

( ) ( )( )
3

4 5
3 0 0

1 .
4

fx a x a O x a
f
′′ 

− = − + − ′ 
              (78) 

From a parabola passing through the data ( )0 0 0, ,x f f ′  and ( )1 1,x f  we ob-
tain a better approximation for ( )2f x′ , and with it the method  

( )2 2 1
3 2 2

0 0 0

1 ,
2 1 2
f x f fx x x r
A f r f f

= − = − =
′ ′− −

               (79) 

which we verify to be quintic  

( )
( ) ( )( )

2 2
5 6

3 0 04

31 .
12

f f f f
x a x a O x a

f

 ′′ ′′ ′ ′′′−
 − = − + −

′ 
 

         (80) 
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13. Fourth-Order, Parabolic Interpolant Method  

We can do still better with a parabolic interpolation that includes, the already 
evaluated, 0f ′ . We pass through the data ( )0 0 0, ,x f f ′  and ( )1 1,x f   

( ) ( ) ( )0
0 0 0 0 0 1 0 0 0 1 1

0

, , , , ,
f

x f f x f f x x x u u f f x
f

′ ′= = = − = =
′

      (81) 

the parabola  

( )
2 2 2

2 20 0 0
0 0 0 0 0 0

0 0 0

, , 2 ,
f f f

q x Ax Bx C A r B f r x C f f x r x
f f f
′ ′ ′

′ ′= + + = = − = − +  (82) 

where ( )1 0 0 1 1 1 0, ,x x u f f x r f f= − = = , and  

( ) ( )( )21
0 0

0

1 .
2

f fr x a O x a
f f

′′ 
= = − + − ′ 

               (83) 

We take the nearest root of ( ) 0q x = , as 2x  and have, by expansion in pow-
ers of r, the ultimate quartic method  

( )
2

2 0
2 2 0 0 0

0

4 or 1 2 , ,
2

fB B ACx x x r r u u
A f

+ −
= − = − + + =

′
       (84) 

( )( ) ( )( )4 52
2 0 03

1 15 2 .
24

fx a f f f x a O x a
f
′′

′′ ′ ′′′− = − − + −
′

         (85) 

Method (84) is the expanded and ultimately truncated form of several pub-
lished fourth-order chord methods, among them the rational method of Os-
trowski [3], appendix G.  

( ) ( )2 3 1
2 0 0 0 0 1 0 0

0

1 1 2 4 , ,
1 2

frx x u x r r r u f f x u r
r f

−
= − = − + + + + = − =

−
  (86) 

( )
( ) ( )( )

2
4 5

2 0 03

3 21 .
24

f f f f
x a x a O x a

f

 ′′ ′′ ′ ′′′−
 − = − + −

′ 
 

        (87) 

See in particular Traub [1] page 184 Equations (8-78). 

14. From a Cubic to a Quartic Method  

We write the second order, 2n = , version of the Taylor-Lagrange formula  

( ) ( ) ( ) ( )2
0 0 0

1 ,
2

f x f x xf x x f x x xδ δ ξ δ′ ′′= + + = −           (88) 

and take ( ) 00,f x xξ= =  to have the iterative method  

( ) ( ) ( )2
1 0 0 0 0

1, 0 .
2

x x x f x xf x x f xδ δ δ′ ′′= + = + +           (89) 

We approximate the solution of the increment equation  

2
0 0 0

1 0
2

f xf x fδ δ′ ′′+ + =                      (90) 

by the power series  

( )2 3 4
0 0 0 0 0x P Qf Rf Sf Tf fδ = + + + + +               (91) 
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and have, by substitution and collection that  

( ) ( )2 2
0 0 0 0 0 0 0

2 3
0 0 0 0

11
2

1 0
2

Pf Qf P f f Rf PQf f

Sf Q f PRf f

 ′ ′ ′′ ′ ′′+ + + + + 
 

 ′ ′′ ′′+ + + + = 
 



            (92) 

from which we have, with 0 0 0s f f′′ ′= , that  

( )2 2
0 0 0 0

0

1 1 1, , , ,
2 2

P Q P s R PQs S Q PR s T QR PS s
f

 = − = − = − = − + = − + ′  
 (93) 

and so on. 
The methods  

2 2 3
1 0 0 0 2 0 0 0 0andx x Pf Qf x x Pf Qf Rf= + + = + + +          (94) 

or  

2
1 0 0 0 2 0 0 0 0

1 1 11 , 1 , , ,
2 2 2

f fx x v u x x v v u u s v us
f f

′′   = − + = − + + = = =    ′ ′   
 (95) 

are both (the first is a Chebyshev method) cubic  

( ) ( )( )
( ) ( )( )

2
3 4

1 0 02

3 4
2 0 0

1 3 ,
6

1 ,
3

f f fx a x a O x a
f

fx a x a O x a
f

′′ ′ ′′′−
− = − + −

′

′′′ 
− = − − + − ′ 

            (96) 

respectively, provided that ( ) 0f a′ ≠ . 
The method  

( ) ( ) 20 0 0
1 0 0 0 0 0 2

0 0

3 1, , , ,
2 2

m mf f f
x x P Qv u u v P Q m

f f
−′′

= − + = = = =
′ ′

   (97) 

converges cubically to a root of any known multiplicity 1m ≥   

( ) ( ) ( )( )
2

3 4
1 0 02 2

3 2
.

2
m B mAC

x a x a O x a
A m

+ −
− = − + −          (98) 

Since here 2n =  we propose to try  

0 1
2 1 .
3 3

x xξ = +                        (99) 

We recalculate ( )f ξ′′ , and verify that the second method in Equation (94) 
above, rises by this choice of ξ  to a quartic  

( ) ( )( )
3

4 5
1 0 03

1 45 .
72

f fx a x a O x a
ff

 ′′ ′′′′
− = + − + − ′′ 

        (100) 

15. Oppositely Converging Super-Quadratic Methods  

We start here with  

( ) ( )0 1
2 0 0 0 1 1 1 0 0

0 0

1 , , , ,
f fx x Pr u u r f f x x x u
f f

= − + = = = = −
′

     (101) 
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for undetermined coefficient P, and have  

( )( ) ( )( )2 3
2 0 0

1 1 .
2

fx a P x a O x a
f
′′

− = − − + −
′

           (102) 

We ask that  

( )
2

1 2f fP k
f f
′′ ′′ 

− =  ′ ′ 
                   (103) 

for parameter k, or, in view of Equation (38), that  

0

1 4 rP k
u

= −                        (104) 

by which the iterative method in Equation (101) turns into  

( ) 2
2 0 01 4x x r u kr= − + +                    (105) 

for any k, and  

( ) ( )( )
2

2 3
2 0 0 .fx a k x a O x a

f
′′ 

− = − + − ′ 
            (106) 

This super-quadratic method converges from above if 0k > , and from below 
if 0k < . 

The interest in the method  

( )0 0
2 0 0 1 0 0 1 1 0

0 1 0

2 , 2 , ,
f f

x x u x x u f f x u
f f f

= − = − = =
′−

        (107) 

is that it ultimately converges oppositely to Newton’s method,  

( ) ( )( )2 3
2 0 0

1
2

fx a x a O x a
f
′′

− = − − + −
′

               (108) 

as seen by comparing Equation (108) with Equation (45). 
For example, for ( ) 2f x x x= +  we compute, starting at 0 1 2x = , from 

Newton’s method and from method (107), respectively,  

1
1 1 1 1 1, , , , ,
2 8 80 6560 43046720

x  =  
 

 

2
1 1 1 1 1, , , ,
2 10 82 6562 43046722

x  = − − − − 
 

 

( )1 2
1 1 1 1 1 1 1, , , ,
2 2 1 40 3280 21523360 926510094425920

x x  + =  
 

    (109) 

and root a is bounded, or bracketed, thereby as  

1 1 .
43046722 43046720

a−
< <                   (110) 

The average of Newton’s method and the method of Equation (107) is cubic,  

( ) ( ) ( )( )3 4
1 2 0 0

1 1 .
2 6

fx x a x a O x a
f
′′′ 

+ − = − + − ′ 
         (111) 
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16. Alternatingly Converging Super-Linear and Super-Cubic  
Methods  

We start by modifying Newton’s method into  

( ) 0
1 0

0

1
f

x x k
f

= − +
′
                      (112) 

for any k, and for which  

( ) ( )( )2
1 0 0x a k x a O x a− = − − + −               (113) 

indicating that, invariably, the method converges, at least asymptotically, alter-
natingly, if 0k > . 

For example, for ( ) 2f x x x= + , 1 8k = , 0 1x = , we compute by method 
(112) the super-linearly converging sequence  

{ }1 2 3 4 5
1 1, 2.5 10 ,1.6 10 , 1.7 10 ,2.1 10 , 2.7 10x − − − − −= × × − × × − ×     (114) 

and root 0a =  is bracketed as  
5 42.6706 10 2.1406 10 .a− −− × < < ×              (115) 

For a higher order method we start with, the originally quartic  

( ) ( )2 0 1
2 0 0 0 1 0 0

0 0

1 , , ,
f fx x r Qr u u r f f x u
f f

= − + + = = = −
′

     (116) 

of Equation (63), and have that  

( ) ( )( ) ( )
2

3 4
2 0 0

1, 2
4

fx a k x a O x a k Q
f
′′ 

− = − − + − = − ′ 
      (117) 

indicating that this super cubic method converges alternatingly if parameter 
0k > . 

For example, for ( ) 2f x x x= +  we generate by method (116) with 1k =  the 
alternating sequence  

{ }6 15
2 1, 0.012,8.34 10 , 2.32 10x − −= − × − ×            (118) 

and root 0a =  is bracketed as  
15 62.32 10 8.34 10 .a− −− × < < ×                (119) 

17. Still Higher Order Methods  

Starting with  

( ) ( )2 3
0 0 0

1 1
2 6

f x f xf x f x fδ δ δ ξ′ ′′ ′′′= + + +           (120) 

we have the suggested iterative method  

2 3
1 0 0 0 0 0

1 1, 0
2 6

x x x f xf x f x fδ δ δ δ′ ′′ ′′′= + + + + =          (121) 

and we take  

( )2 3
0 0 0 0x P Qf Rf Sf fδ = + + + +               (122) 
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with  

3 2 2

2 2

1 1 1, , ,
2 6

1 1 .
2 2

P Q P f R P Qf P f
f

S P Q f PRf P Qf

 ′′ ′′ ′′′= − = = + ′  
 ′′ ′′ ′′′= + + 
 

          (123) 

The resulting methods  

( ) ( )2 2 3
1 0 0 0 0 2 0 0 0 0 0andx x P Qf Rf f x x P Qf Rf Sf f= + + + = + + + +    (124) 

are both quartic  

( ) ( )( )4 5
2 0 0

1
24

fx a x a O x a
f
′′′′ 

− = − + − ′ 
            (125) 

provided that ( ) 0f a′ ≠ . 
Recalculating ( )f ξ′′′  at  

0 1
3 1
4 4

x xξ = +                        (126) 

the method rises to quintic  

( )( )( )

( )( )

554 3
2 04

6
0

1 840 840 80 3
960

.

x a f f f f f f ff f x a
f

O x a

′′ ′ ′′ ′′′ ′ ′′′ ′− = − + − −
′

+ −
  (127) 

18. Higher-Order Methods, Multiple Root  

We reconsider the typical third-order method in Equation (61), but with the ar-
bitrary coefficients P and Q  

20 0
1 0 0 0 0

0 0

, .
f f

x x Pu Q u u
f f
′′

= − − =
′ ′

                  (128) 

By power series expansion we have that  

( )( )

( )( ) ( )( )

2
1 02

2 3
0 03

1

3

x a m mP Q mQ x a
m

B mP Q mQ x a O x a
Am

− = − + − −

+ − + − + −
        (129) 

and cubic convergence is maintained with  

( ) 21 13 , .
2 2

P m m Q m= − =                    (130) 

See also Petković [9], Osada [10], Traub [1], Changbum Chun [11], and in 
particular Osada, who suggested the simpler remarkable cubic method  

( ) ( )20 0
1 0

0 0

1 11 1 , 1.
2 2

f f
x x m m m m

f f
′

= − + + − >
′ ′′

             (131) 

A still higher order method is  

( ) ( )( )1 0 0 0 01 1 2 , 2.x x Pf Q m f R m m f m′ ′′= + + − + − − >         (132) 
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For 3m = , for example, we determine that  
2

0 0 0
/ 2 3 2

0 0 0 0

2 51 , ,
6 3 9prime

f f f
R Q P

f f f f
′′ ′′ ′′′

= − = = − +
′ ′ ′

             (133) 

makes the method quartic  

( ) ( )( )
3 2

4 5
1 0 03

8 20 15 .
3

B ABC A Dx a x a O x a
A

− + −
− = − + −       (134) 

To have a cubic method that does not require an a-priori knowledge of the 
root multiplicity, we replace f by u to have  

20
1 0 0 0

0

1 , ,
2

u u fx x v v v u
u u f
′′

= − − = =
′ ′ ′

                 (135) 

for which  

( ) ( ) ( )( )
2

3 4
1 0 02 2

1 2
.

m B mAC
x a x a O x a

A m
− +

− = − + −          (136) 

Still higher order methods are readily thus generated. See also [14] [15] [16] 
and [17].  

19. Conclusions 

We have demonstrated in this paper the usefulness of a number of practical, 
high order methods for the iterative location of the roots of single-variable non-
linear equations. We have presented here algorithms to estimate the multiplicity 
of a considered root. Special attention was given here to algorithms thriftily ap-
plicable to multiple roots of initially known and unknown multiplicity. 

We have further demonstrated here the advantage of super-linear and super- 
cubic methods that converge contrarily or alternatingly, enabling us, not only to 
confidently approach the root, but to also actually bound and bracket it as we 
progress.  
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